Frp-2019.pdf

  • Uploaded by: Koi Toh Hai
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Frp-2019.pdf as PDF for free.

More details

  • Words: 1,148
  • Pages: 58
Composite)Materials)and)their)use)in) Civil)Infrastructure:)An)Introduction

K.K.#Bajpai Principal#Scientific#Officer Structural#Engineering#Laboratory IIT#Kanpur

Fibre&Composites&– Introduction Definition:&Composites&are&created&by& synthetic&assembly&of&2&or&more&constituents ! !

Reinforcement&phase&(Fibres) Binder&phase&(matrix)

Advantages ! ! ! ! ! !

Corrosion&resistant High&strength&and&stiffness High&Strength/Weight&ratio Very&Low&Coefficient&of&Thermal&Expansion High&Internal&Damping:&Better&NVH&control Material&can&be&designed&in&addition&to&the& structure

Why$fibreous$materials$are$stronger 1.5 Compressive Strength (Kg/cm2)

Imperfections/flaws$in$bulk$ material$are$prone$to$exist Presence$of$flaw$in$a$form$of$ crack$perpendicular$to$ loading$direction Measured$strength$are$much$ smaller$than$theoretical$ values$for$bulk$materials

Andes Straw 1 Ichu grass

0.5

J. Vargas Data

0 -0.5

0

0.5 1 1.5 2 2.5 % Straw or Grass

3

3.5

Material

Density, (g/cc)

Modulus, (GPa)

Tensile, Strength, (GPa)

Yield, Strength, (GPa)

Ratio,of, Modulus,to, Density, (Specific, Modulus)

Ratio,of,Tensile, Strength,to, Density, (Specific, Strength)

Mild%Steel%

7.8

210

0.45.0.83

0.25.0.30

26.9

0.058%– 0.106

Aluminum

2.7

69

0.31

0.275

25.5

0.115

E.Glass%Fiber

2.54

72.4

3.5

..

28.5

1.38

High%Strength% Carbon%Fiber

1.90

240.0

2.5

..

126.0

1.30

High%Modulus% Carbon%Fiber

1.90

390.0

2.1

..

205.0

1.10

Kevlar.49%Fiber

1.50

130.0

2.8

..

87.0

1.87

Fibres'only'can'not'be'used'as' structural'material Embedding'of'fibres'in'a'suitable' material'which'should'be'capable'of ! ! !

Transfer'loads'to'fibres Providing'environmental'protection Providing'protection'from'mechanical' abrasion

Classification Composite.Materials(FRP)

Single-Layer

Multi-Layer

Laminates Continuous-Fibers Unidirectional

Hybrids

Discontinuous-Fibers

Bi; directional

Random

Preferred

Applications

! ! ! !

Aerospace-industry Sporting-goods Automotive Construction

F"16%Use%of%Carbon"Epoxy% Wt.%Savings%23% Boeing%757%Weight% reduction%31%%using%FRP

Applications…

FRP/as/Main/ Reinforcement/ 40%/of/World’s/ steel/production/ used/to/repair/ corrosion/ problems/ Canadian/Society/of/ Civil/Engineers,/2003 !

Huge/scope/for/ FRP/bars

Applications… FRP/bars/as/ replacement/of/ steel/bars

Applications….

FRP0strengthening !

!

Very0effective0in0magnetic0isolation0and0 corrosion0resistance0applications Easy0to0handle/apply0in0strengthening0of0 masonry0structures0

compared0to0traditional0strengthening0 techniques

Benefits…

Un*reinforced/Masonry/(URM)/Infill/Walls/ strengthened/with/FRP/laminates/ !

Subjected/to/loads " In*plane " Out*of*plane

WL/EL !

Remarkable/increase/in/strength/&/ductility !

Ehsani/et/al,/1999/ Hamilton/et/al,/1999 Velazquez/et/al,/2000/ Bajpai/et/al,/2002,/2008

FRP$as$Main$Reinforcement…

Design$philosophy$understood… !

Design$Guidelines$; India

HYSD steel Stress

Mild steel

FRP Stress

Concrete

Concrete Strain

Strain

FRP$Rebars$(CFRP$and$GFRP)

ACI 440.1R-01 "Guide for the Design and Construction of Concrete Reinforced with FRP Bars"

Costs%of%composite%manufacture Material%costs%22 higher%for%composites ! !

Constituent%materials%(e.g.,%fibers%and%resin) Processing%costs%22 embedding%fibers%in%matrix% " not%required%for%metals%Carbon%fibers%order%of%magnitude%

higher%than%aluminum

Design%costs%22 lower%for%composites !

Can%reduce%the%number%of%parts%in%a%complex% assembly%by%designing%the%material%in%combination% with%the%structure

Increased%performance%must%justify%higher% material%costs

Forms&of&Reinforcement&Phase Fibers& ! ! !

cross2section&can&be&circular,&square&or&hexagonal Diameters&22>&~10&µm Lengths&22>&L/D&ratio " 100&22 for&chopped&fiber " much&longer&for&continuous&fiber

Particulate For&sizes&>&1&µm,&strength&of&particle&is&involved&in& load&sharing&with&matrix

Flakes !

flat&platelet&form

Fibers'( Glass Most'widely'used'fiber Uses:'piping,'tanks,'boats,'sporting'goods Advantages ! ! !

low'cost Corrosion'resistance Low'cost'relative'to'other'composites:'

Disadvantages ! ! !

Relatively'low'strength High'elongation Moderate'strength'and'weight

Types: ! !

E(Glass'( electrical,'cheaper S(Glass'( high'strength

Fibers'( Carbon 2nd'most'widely'used'fiber Examples !

aerospace,'sporting'goods,'construction

Advantages ! ! ! !

high'stiffness'and'strength Low'density Intermediate'cost Properties:' " " " "

Standard'modulus:'207(240'Gpa Intermediate'modulus:'240(340'GPa High'modulus:'340(960'GPa' Diameter:'5(8'microns,'smaller'than'human'hair !

Fibers'grouped'into'tows'or'yarns'of'2(12k'fibers

Fibers'(( Carbon'(2) Types'of'carbon'fiber ! !

vary'in'strength'with'processing Trade(off'between'strength'and'modulus

Intermediate'modulus !

PAN'(Polyacrylonitrile)' " fiber'precursor'heated'and'stretched'to'align'structure'

and'remove'non(carbon'material

High'modulus' !

!

made'from'petroleum'pitch'precursor'at'lower' cost'(Pyrolysis'Method) much'lower'strength

Fibers'( Aramid'(Kevlar) Uses:' !

high'performance'replacement'for'glass' fiber

Examples !

Armor,'protective'clothing,'industrial,' sporting'goods

Advantages:' " higher'strength'and'lighter'than'glass " More'ductile'than'carbon

Fibers'( Others Boron ! ! !

High'stiffness,'very'high'cost Large'diameter'( 200'microns Good'compressive'strength

Polyethylene'( trade'name:'Spectra'fiber ! ! ! !

Textile'industry High'strength Extremely'light'weight Low'range'of'temperature'usage

Fibers'(( Others'(2) Ceramic'Fibers'(and'matrices) !

! !

!

Very'high'temperature'applications'(e.g.' engine'components) Silicon'carbide'fiber'( in'whisker'form. Ceramic'matrix'so'temperature'resistance' is'not'compromised Infrequent'use

Matrix'Materials Functions'of'the'matrix ! !

Transmit'force'between'fibers arrest'cracks'from'spreading'between'fibers " do'not'carry'most'of'the'load

! !

hold'fibers'in'proper'oreintation protect'fibers'from'environment

" mechanical'forces'can'cause'cracks'that'allow'

environment'to'affect'fibers

Demands'on'matrix' ! ! ! ! !

Interlaminar'shear'strength Toughness Moisture/environmental'resistance Temperature'properties Cost

Matrices)* Polymeric Thermosets ! ! !

cure)by)chemical)reaction Irreversible Examples " Polyester,)vinylester !

Most)common,)lower)cost,)solvent)resistance

" Epoxy)resins !

Superior)performance,)relatively)costly

Matrices)* Thermoplastics Formed)by)heating)to)elevated)temperature) at)which)softening)occurs ! ! !

Reversible)reaction Can)be)reformed)and/or)repaired)* not)common Limited)in)temperature)range)to)1500C

Examples !

Polypropylene) " with)nylon)or)glass) " can)be)injected** inexpensive

!

Soften)layers)of)combined)fiber)and)resin)and) place)in)a)mold)** higher)costs

Matrices)* Others Metal)Matrix)Composites)* higher) temperature !

e.g.,)Aluminum)with)boron)or)carbon)fibers

Ceramic)matrix)materials)* very)high) temperature !

Fiber)is)used)to)add)toughness,)not) necessarily)higher)in)strength)and)stiffness

Important)Note Composite)properties)are)less)than) that)of)the)fiber)because)of)dilution) by)the)matrix)and)the)need)to) orient)fibers)in)different)directions.)

Material

Density, g/cc (fibre only)

Modulus, GPa (fibre only)

Tensile, Strength, GPa (fibre only)

Yield, Strength, Gpa (fibre only)

Ratio,of, Modulus,to, Density,(fibre only)

Ratio,of,Tensile, Strength,to, Density, (fibre onlt)

Mild%Steel%

7.8

210

0.45.0.83

0.25.0.30

26.9

0.058%– 0.106

Aluminum

2.7

69

0.31

0.275

25.5

0.115

E.Glass%Epoxy (Vf =%57%)

1.97 (2.54)

21.5 (72.0)

0.57 (3.5)

..

10.9 (28.5)

0.26 (1.38)

Carbon%.Epoxy%% (Vf =%58%)

1.54 (1.90)

83.0 (240/390)

0.38 (2.5./2.1)

..

53.5 (126/205)

0.24 (1.30/1.10)

Kevlar.49. Epoxy (Vf =%60%)

1.40 (1.50)

40.0 (130)

0.65 (2.8)

..

29.0 (87)

0.46 (1.87)

Composites

Rule%of%Mixtures%(Unidirectional% Composites:%Longitudinal%Direction) For%a%composite%loaded%along%its%fiber%axis,%we%can% assume%that%the%strain%in%the%fibers%and%the%strain%in%the% matrix%must%be%the%same.%%From%this,%it%is%easy%to%derive% expressions%for%the%elastic%modulus%of%the%composite%as%a% function%of%its%constituents:

where%ECL means%the%modulus%of%the%composite%in%the% longitudinal%direction,%and%the%m%subscript%means%matrix% while%the%f%subscript%means%fiber.%V%means%volume% fraction.

! c = ! f V f + ! m (1 " V f ) Fiber

Composite Stress Matrix

Strain

Unidirectional,Loading,::,Load,sharing,between,fibers,and,matrix

1 0.9 0.8 0.7

Pf / Pc

0.6 0.5 Ef/Em = 1

0.4

Ef/Em = 2 Ef/Em = 5

0.3

Ef/Em = 10 Ef/Em = 20

0.2

Ef/Em = 50 Ef/Em = 100

0.1 0 0

0.1

0.2

0.3

0.4

0.5

Fiber Volume Fraction

0.6

0.7

0.8

Minimum fibre volume fraction (Vmin) Continuing the expression for rule mixture:

! c = ! f V f + ! m (1 " V f )

(1)

If we assume all the fibres fail at the same time (the failure strain of the fibres is less than the matrix), under these conditions the ultimate longitudinal strength (σcu) of composite can be assumed equal to the composite stress at the fibre fracture strain, εf* equation (1)

can

therefore be used to obtain

! cu = ! fuV f + (! m )# (1 " V f ) * f

(2)

Where σfu is ultimate strength of fibres, and (σm_) εf* is the matrix stress at the fibre fracture strain εf*.

Minimum fibre volume fraction (Vmin) Contd…. If the fibre volume fraction is small, i.e. below Vmin, the matrix will be able to support the entire composite when all the fibres break. At the composite strains higher than the fibre fracture strain, the composite will eventually fail when the matrix stress equals its ultimate strength (σ mu). Thus, for fibre volume fraction less than Vmin equation (1) can be written as

! cu = ! mu (1 " V f )

(3)

Now Vmin can be defined as the minimum fibre volume fraction that ensures fibre controlled composite failure. Vmin can be obtained by equating right hand sides of equation (2) and (3). Thus

Vmin =

" mu # (" m )!

* f

" fu + " mu # (" m )!

* f

(4)

Critical fibre volume fraction (Vcrit) The$longitudinal$composite$strengths,$as$predicted$by$equation$ (2)$&$(3)$have$been$plotted$against$fibre$volume$fractions$in$ the$following$figure: σ

" cu = " fuV f + (" m )! (1 # V f ) * f

σcu

εf

ε

Vcrit

! cu = ! mu (1 " V f )

σmu (σm)εf

Vmin

Vf

σfu

σfu

Equation)(2))predicts)composite)strength)that)can)be)lower)or) higher)than)matrix)strength)depending)on)the)fibre)volume) fraction,)however)equation)(3))predicts)composite)strength)that)is) always)less)than)the)strength)of)matrix.) A)critical)fibre)volume)fraction,)Vcrit,)therefore)can)be)defined,)as) follows,)that)must)be)expressed)for)matrix)strengthening:

" cu = " fuV f + (" m )! (1 # V f ) $ " mu * f

Vcrit =

" mu # (" m )! " fu # (" m )!

* f

* f

Rule#of#Mixtures#(Unidirectional# Composites:#Transverse#Direction) If#the#composite#is#loaded#transverse#to# the#fiber,#we#get#a#different#expression# for#stiffness:

Modulus'of'Unidirectional'Composites'as'a' function'of'volume'fraction

Ec''

Ef EcL EcT Em 0

0.1

0.2

0.3

0.4

0.5

Vf

0.6

0.7

0.8

0.9

1

Transverse(Loading(::(Shear(Modulus(and(Poisson’s(Ratio It(may(be(assumed(that(shearing(stress(on(fibers(and(the(matrix(are(equal

The(total(shear(deformation(is(the(sum(of(shear(deformations(of(fibers(and the(matrix

The(shear(deformations(can(be(written(as(the(product(of(corresponding shear(strain(and(the(cumulative(thickness

Transverse#Loading#::#Shear#Modulus#and#Poisson’s#Ratio#contd…

Recognizing#thickness#is#proportional#to#volume#fraction#yields

The#shear#strains#can#be#replaced#by#the#ratios#of#shear#stress#and# appropriate#shear#modulus#as#follows:

Where######is#the#inEplane#shear#modulus#of#the#composite#and######and###### are#the#shear#modulii#of#the#fibers#and#matrix,#respectively.

Or#we#can#simplify#the#above#equation#as:

Transverse(Loading(::(Shear(Modulus(and(Poisson’s(Ratio(contd…

The(major(Poisson’s(ratio(can(be(predicted(using(the(same(model(as(that( used(for(predicting(transverse(Elastic(modulus.((The(rule(of(mixture(for( the(major(Poisson’s(ratio(of(a(unidirectional(composite(can(be(derived(as:

Further,(the(relationship(between(major(and(minor(Poisson’s(ratios(is:

Transverse(loading It(is(pretty(clear(that(loading(the( composite(transverse(to(the(fiber( direction(is(not a(good(idea.((

Transverse(loading This(problem( can(be(reduced( in(a(number(of( ways: !

Make(a( structure( consisting(of( multiple(layers( of(composite,( with(the(fibers( aligned(in( different( directions(in( each(layer.((

Transverse(loading !

Make(a(random(array of(fibers " Reduces(directionality,(but(also( reduces(performance " example:((glass(mats(used(in(boat( construction

!

Design(part(so(stresses(are( always(along(fiber(axis. " Possible(in(some(applications(like( rackets(and(club(shaftsA((not( always(possible

Material(Forms(and(Manufacturing Objectives(of(material(production ! ! ! !

assemble(fibers impregnate(resin shape(product cure(resin(

Manufacturing+, Filament+Winding Highly+automated !

!

low+manufacturing+ costs+if+high+ throughput e.g.,+Glass+fiber+pipe,+ sailboard+masts

Prepregs Prepreg'and'prepreg'layup !

“prepreg”'0 partially'cured'mixture'of'fiber' and'resin " Unidirectional'prepreg'tape'with'paper'backing ! !

!

wound'on'spools Cut'and'stacked

Curing'conditions " Typical'temperature'and'pressure'in'autoclave' is'12002000C,'100'psi

Manufacturing+, Layups compression molding

vacuum+bagging

Manufacturing+– Lay/up+Contd

Advantages: Large+&+Complex+items Minimum+Equipment Low+Tooling+Cost

Resin&transfer&molding&(RTM) Dry6fiber&preform&&placed&in&a&closed& mold,&resin&injected&into&mold,&then& cured Advantages:

High&Quality&&Finish Higher&Dimensional& tolerance

Pultrusion Fiber-and-matrix-are-pulled-through-adie,-like-extrusion-of-metals-88 assembles-fibers,-impregnates-theresin,-shapes-the-product,-and-curesthe-resin-in-one-step. ! Example.-Fishing-rods,-Re8bars !

Pultrusion

Reference'Books/Publications Fiber'Reinforced'Composites By'P.K.'Mallik'(Chapters'1,2,3,&5)

Hand'Book'of'Composites By'George'Lubin''(Chapters'1'&'2)

Analysis'and'Performance'of'Fiber'Composites By'B.D.'Agarwal'and'L.'J.'Broutman'(Chapters'1,2,&3)

FRP'Strengthened'RC'Structures By'J.G.'Teng,'J.F.'Chen,'S.T.'Smith,'&'L.'Lam

StatePofPthePArt'Report'on'Fiber'Reinforced'Plastic' Reinforcement'for'Concrete'Structures Reported'by'ACI'Committee'440

More Documents from "Koi Toh Hai"

Frp-2019.pdf
May 2020 2
10yeuto
May 2020 26
Day Mu On
May 2020 25
Bibenh
May 2020 26
Andamhoply
May 2020 24