From Pain To Sleep: Listening To Patient-reported Outcomes

  • Uploaded by: Children's National Medical Center
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View From Pain To Sleep: Listening To Patient-reported Outcomes as PDF for free.

More details

  • Words: 3,217
  • Pages: 33
From Pain to Sleep: Listening to  Patient‐Reported Outcomes Pediatric Trends 2009

Pamela S. Hinds, PhD, RN, FAAN Director, Nursing Research Children’s National Medical Center Washington, D.C.

Objectives: • describe the role of nurses in generating clinical  research questions as influenced by patient‐reports. • analyze the evolution of a research program  centered around nurses’ responses to patient‐ reported outcomes

Amazing Collaborators • • • • • • •

Marilyn Hockenberry, PhD, RN, PNP,FAAN Heather Jones, MN Sue Zupanec, MN Ching‐Hon Pui, M.D. Mary Relling, PharmD Deo Kumar Srivastava, PhD Susan Clifton, RN

Amazing Collaborators • • • • • • •

Nancy K. West, BSN, CRA Michele Pritchard, PhD, PNP Kelly Vallance, M.D. Jami Gattuso, MSN Jia Yang, PhD Brett Loechelt, MD Jane Sande, MD

Patient‐Reported Outcomes • What are they? ‘a measurement of any aspect of patient’s health  status that comes directly from the patient (i.e.,  without the interpretation of the patient’s  responses by physician or others)’ – FDA, 2006

PROs: why such interest? • Provide clinically valuable information about  the patient’s experience with treatment or  disease‐related care • • • •

Symptoms Toxicities Burden Benefits

PROs: Why such Interest? • FDA Preference – Guidance for Industry: Patient‐Reported Outcome  Measures, 2006 • NIH Involvement – Instrumentation Funding Opportunities • AHRQ Report – Lorenz, Lynn, Hughes et al., 2006

PROs in Pediatrics • Not always possible – Disease or treatment factors – Developmental status – Family culture

• Reasonable reliance upon proxy reports – Early involvement of proxies –not just at end of  life

PROs at End of Life 8 7 6 5 4 3 2 1 0 Ineligible

Patient

Parent

Staff

Record

Other

PROs Require • Respect for the child’s voice • Standardized ways to invite the child’s voice  • Action on behalf of the child’s report

From Pain to Sleep: • Initial study in the pediatric intensive care unit  to study instruments by patient‐reported pain • Compared scores and acceptability of  instruments to children ages 4 and older • Faces Scale, Hester Poker Chips, VAS • Cultural aspects for parents • Child report: ‘you think pain is the worst… it’s  not.’

Fatigue

Distinguishing Fatigue in its Age‐ Related forms • One of 10 monitored symptoms: Fatigue was rated  as most prevalent and distressing • Two‐site Fatigue Scholars’ Program (Oncology  Nursing Society) – Conceptual Definitions – Instruments

What is fatigue? • Cancer‐related fatigue  (focus groups,  individual interviews, concept analysis)‐ – In 7 to 12 year olds: a profound sense of being weak or  tired, or of having difficulty with movement such as  arms or legs too heavy to life and eyes to heavy to open. » Hinds, Hockenberry‐Eaton, Gilger et al., 1999

– In 13 to 18 year olds: a changing state of  exhaustion that is a physical condition, at other  times a mental state, and at other times a  combination of physical, emotional and mental  tiredness » Hinds, Hockenberry‐Eaton, Gilger et al.,1999

Method Differences with  Adolescents • Individual Interviews: Code for Sadness • Focus groups: Code for Anger – implications for measurement and clinical  assessment identified – Education sheets created

CONTRIBUTING  FACTORS Environmental

Personal/Behavioral

• Lacking a schedule • Interruptions in a hospital environment

+

+

Cultural/Family/Other

+

Treatment-Related

+

FATIGUE _

Environmental

_

Personal/Behavioral

_

_

Cultural/Family/Other

• Protected rest time • Controlled or reduced interruptions • Being quiet

ALLEVIATING FACTORS

Treatment-Related

Measuring Fatigue and the  Derivation of Screening Items • Instruments: – Fatigue Scale – Child (10‐item; 7 day and 24‐hour versions; cut  score)

– Fatigue Scale – Adolescent (14‐item; 7 day and 24‐hour  versions)

– Fatigue Scale – Parent (17‐item; 7 day and 24‐hour versions) – Fatigue Scale – Staff (9‐item; 7 day and 24‐hour versions) – Symptom Distress Scale – Patient (10‐item; ‘this day’)

Instrumentation Instrument

Internal  Consistency

Construct Validity‐ Factor Analysis

Construct  Validity ‐ Correlations

FS‐Child

0.84

Lack of energy Can’t function Altered mood

0.35/FS‐Parent 0.16/FS‐Staff 0.45/ Depression

FS‐Adolescent 0.95

Lack of energy Can’t function Altered mood Can’t engage

0.76/FS‐Parent 0.27/FS‐Staff 0.87/ Depression 

FS‐Parent

Lack of energy Can’t function Altered Sleep Altered Mood

0.43/Staff

0.88

Instrumentation • Child and Adolescent versions distinguished between  those experiencing anemia and those who were not. • Gender differences: females reporting more  symptoms of fatigue and higher intensity • Age: adolescents reported more symptoms of fatigue  and higher intensity than did children

Clinical Screen Item: • ‘Tired’ Item from the SDS: Please put a circle around the number that most closely  measures how tired you are feeling today. Could not feel more tired      5

4                3               2               1

(score of 3 or higher invites a full fatigue assessment)

I am not tired at all

Clinical Screen Item • NCCN Guidelines

Research Instruments to Measure Cancer‐related Fatigue  in Children and Adolescents



Child Fatigue Scale (7‐to 12‐year olds) – Hockenberry et al., 2003



Adolescent Fatigue Scale (13‐to18‐ year olds) – Hinds et al., 2007



The Revised Memorial Symptom Assessment Scale (7‐to 12‐year olds) – Collins et al., 2002



The Pediatric FACT Scale – Lai et al., 2007



The Symptom Distress Scale (8‐ to 18‐ year olds) – Hinds, et al., 2000; Hinds et al., 2002



PedsQL Fatigue Scale (8 to 12; 13 to 18 year olds) – Varni et al., 2004

Incidence of Fatigue in Children and Adolescents  with Cancer “nearly universal” • Distressing levels reported at: – time of diagnosis (fatigue at diagnosis is predictive of fatigue during  treatment) – Collins et al., 2002; Hinds et al., 1999

– During treatment (significantly increased during reinduction for ALL and  during hospitalizations) – Hockenberry et al., 2003; Hinds et al., 1990; Hinds et al, 2007

– Up to 23 years following treatment (most distressing) – Crom et al., 200x; Meeske et al., 2005

– During the last 30 days of life – Wolfe et al., 2000

CONTRIBUTING  FACTORS

Environmental

Personal/Behavioral

• Lacking a schedule • Interruptions in a hospital environment

+

+

Cultural/Family/Other

+

Treatment-Related

+

FATIGUE _

Environmental

_

_

Personal/Behavioral

_

Cultural/Family/Other

• Protected rest time • Controlled or reduced interruptions • Being quiet

ALLEVIATING FACTORS

Treatment-Related

Actigraph • Sleep Parameters – Sleep duration – Sleep efficiency – Nocturnal  awakenings – Actual sleep minutes – Total daily sleep  minutes – Total daily nap  minutes – Total nocturnal sleep  minutes – Sleep latency – Wake after sleep  onset 

http://www.cartoonstock.com/newscartoons/cartoonists/rbo/lowres/rbon104l.jpg

Benefits of Actigraphy • Small and innocuous • Able to attach to wrist or ankle for prolonged periods of time- able to assess motion and thus sleep patterns overtime • Provides continuous activity data with little interference or limitations imposed on the subject • Can be used in the home environment • Does not require ongoing monitoring by professionals • Cost effective

American Academy of Sleep Medicine  Recommendations

• Actigraphy has proven useful for delineating sleep patterns and documenting treatment response in normal children, as well as in special populations Morgenthaler et al(2007)

The first Intervention • Enhanced Activity in Hospitalized Children  with Cancer • 2‐site, randomized pilot study • 27 patients with a solid tumor or AML  diagnosis admitted for chemotherapy • Peddling twice daily for 20 minutes • Intervention successfully delivered 85.4% of  scheduled times

The first Intervention • Trend towards the activity arm having better quality  sleep (more efficient) (F=4.17, p=0.053) • Children experiencing 19 or more nocturnal  awakenings were significantly more fatigued the  next day • Children with higher nocturnal awakenings had  longer sleep duration (F=6.35, p=0.0007)

Dexamethasone (DEX), Sleep and  Fatigue • Examining treatment influences on fatigue  and sleep in children with ALL • Study purpose:  – To assess the relationship between systemic  exposure to DEX  and sleep quality and fatigue in  patients with ALL during continuation

DEX, Sleep and Fatigue • Two hypotheses: – 1. DEX contributes to changes in sleep efficiency,  actual sleep minutes, sleep duration, nocturnal  awakenings, total daily sleep minutes, and daily  nap minutes and to increased fatigue – 2. patient age, sex and ALL risk category influence  the extent of change in sleep and fatigue  observed during DEX treatment

Study Design 10 Continuous Days: 1 2

No DEX

3

4

•Sleep Diary •Fatigue Scale (parent and patient)

5

6

DEX

Blood Samples Pre-DEX, 1,2,4,8 h

Actigraph worn

7

8

9

•Sleep Diary •Fatigue Scale (parent and patient)

10

Actigraph Readings 1 2 Consecutive Days

3 4 5 6 7 8 9 10 1200

1800

0000

0600

Time (hours)

DEX Study Findings  • DEX does alter sleep parameters – Increases sleep duration, total daily sleep minutes,  total nap minutes – Diary reports: restless sleep, increased nap times,  increased tiredness and loss of energy

• DEX Increases Fatigue – PATIENT REPORT—Day 5 on dex: significant increases  in fatigue in 7‐12 year olds and 13‐18 year olds – PARENT REPORT—significant increases in fatigue  during the on dex period

1200

• Age: teens were in bed less time on DEX and had  slept fewer minutes • Risk group: significantly associated with sleep  efficiency, actual sleep minutes and nocturnal  awakenings, but not with fatigue (patient or parent  report) – St Jude Standard risk received highest dose DEX (significantly lower  sleep efficiency)

• Gender : males had more nocturnal awakenings (and  lower sleep efficiency); females napped more

Fatigue in Children with Cancer (2 separate studies and populations)

• Hospitalized • Home, pre dex • Home, on dex

Fatigue score 23 (9-43) Fatigue score 7.5-11.9 Fatigue score 13-21

• Highest fatigue score possible is 70 • On dexamethasone, fatigue scores are similar to the scores of hospitalized patients

Fatigue in Adolescents with Cancer (2 separate studies and populations)

• Hospitalized • Home, pre dex • Home, on dex

Fatigue score 32 Fatigue score 23-29 Fatigue score 32-33

• On dexamethasone, fatigue is the same as when hospitalized • Adolescents report higher fatigue scores than do children

Daily Parent Report Diary  • 15 item parent report scale • Reports parents perceptions of child’s sleep and nap patterns during the previous 24 hours • Additional items relate to naps, tiredness, consumption of selected food items and perceived energy levels • Items strongly correlated with actigraph findings (r=0.89;p=0.001) (Sadeh, 1994) • Completed 4 times during 10 day study period

Descriptive Statistics for differences (Diary‐Actigraph) by day 2 and 5  ON vs OFF DEX N

Sleep Onset Differences (Diary-Actigraph)

Morning Wake Differences (Diary-Actigraph)

Mean

Std

Median

Min

Max

t

Prt

W1-D2

74

-44.03

94.48

-24.50

-555.00

111.0

-4.01

<.01

W1-D5

77

-34.83

78.31

-22.00

-277.00

138.00

-3.90

<.01

W2-D2

76

-32.93

91.03

-22.50

-440.00

148.00

-3.15

<.01

W2-D5

73

-13.58

102.62

-7.00

-340.00

324.00

-1.13

0.26

W1-D2

74

35.62

81.49

7.50

-101.00

401.00

3.76

<.01

W1-D5

77

26.66

69.09

15.00

-221.00

221.00

3.39

<.01

W2-D2

76

18.66

86.04

15.50

-408.00

239.00

1.89

0.06

W2-D5

73

19.77

83.98

21.00

-247.00

251.00

2.01

0.049

Consistent sleep onset and wake time

Consistency of wake time by  gender, weekday vs weekend,  and DEX vs. No Dex

•Girls did not have significant differences in wake time consistency weekday versus weekend •Boys had more consistent wake time on weekdays compared to weekends •Boys had more consistent wake times compared to girls •Dexamethasone (week 2) did not significantly alter wake time consistency

Association of fatigue with consistent  wake time  • Multiple regression analysis: younger boys  with more consistent wake times had  lower fatigue scores • May suggest that consistent morning wake times  for the younger child on ALL maintenance therapy  can help to minimize fatigue 

Potential Biological Mechanisms of  Sleep  Disturbance and of Fatigue • What are the potential biological mechanisms? – Steroids? – PK, PGN

– Albumin? – Cytokines? – Neuroanatomy or Neurophysiology?  – Neurochemicals?

Potential Biological Mechanisms of  Sleep Disturbance and of Fatigue • Steroids contribute to altered sleep  disturbances and fatigue – How?  • Pharmacokinetics – Exposure to dexamethasone (AUC) increases with age and is higher in standard care ALL risk compared to low risk groups – Wake after sleep onset increases as AUC increases – A decrease in time to attain threshold of 100 nM is significantly  associated with increased sleep efficiency  – No PK association with fatigue – No association with clearance and sleep or fatigue

Potential Biological Mechanisms of  Sleep Disturbance and of Fatigue • Steroids contribute to altered sleep  disturbances and fatigue – How? • Pharmacogenomics: SNP genotype and sleep and  fatigue – AHSG/C>G exon 7 (sleep efficiency) – CYP11B2/K1733R (sleep duration) – IL6/IL6_C‐634‐G (sleep duration)

Potential Biological Mechanisms of  Sleep Disturbance and of Fatigue • Albumin and dexamethasone – Low albumin likely leads to higher and longer exposure to dexamethasone  – Relationship between albumin and fatigue established in adults (direct  relationship not mediated by a steroid) • Wang et al., 2002, JCO

– albumin and dexamethasone associated during reinduction  • Yang, et al., 2008, JCO

– No relationship between albumin and dexamethasone PK during  continuation

Can we improve sleep and fatigue in   children with cancer?  • • • • • •

Increase daytime physical activity Modify the hospital sleep environment Use relaxation interventions Administer pharmacologic interventions  Consider complimentary therapies Implement Educational interventions: ‐ preparing families for likely and fatigue changes  ‐ share with families sleep hygiene principles and hours        of sleep needed for their child

Sleep Hygiene Principles  • consistent bed times and wake times • making sure that your child receives enough sleep every  day to feel alert and well rested • naps based on developmental age and stage • limiting caffeine before bedtime • child's bedroom at a comfortable temperature  • Child not going to bed hungry • child's bed and bedroom are inviting and comfortable • a regular bedtime ritual to help  child prepare for nighttime  sleep 

New Protocol: BTSLEP • Sleep hygiene intervention (protected sleep  time) • Assessing fatigue, sleep quality, cytokine  activity and polymorphisms, and  neurotransmitters

We are doing a study! We are asking you to be a part of the study. Why are we doing a study?

To learn how children sleep when they are in the hospital. To learn how tired children get when they are in the hospital. To learn about children’s moods when they are in the hospital.

What will happen to me in this study?

You will have to wear the Actigraph all the time you are in the hospital. The Actigraph looks like a watch. It is a little computer. It will tell us how well you sleep.

You will answer questions one time a day. We will ask you about your sleep and how you feel.

You will choose special things to do before you go to bed. These are things to help you sleep. We will visit you and help you.

You will choose some soothing sounds to listen to at night.

You will choose your “lights out” and “lights on” time

You will let us draw a little bit of extra blood for special tests. This would be with morning labs.

What will we do?

The staff will try hard to go in and out of your room less at night. They will come in if you want them to.

We will put up an extra window cover to keep light out of your room when you are sleeping.

From Pain to Sleep: PROs • Asking and then Listening to our patients • Having a standardized way of asking • Acting on patients’ reports

Reference List Carskadon MA. Patterns of sleep and sleepiness in adolescents. Pediatrician. 1990;17:5‐12. Cleeland CS, Bennett GJ, Dantzer R et al. Are the symptoms of cancer and cancer treatment due to a shared biologic mechanism? A cytokine‐ immunologic model of cancer symptoms. Cancer 2003;97:2919‐2925.  Hinds PS, Hockenberry‐Eaton M, Gilger E et al. Comparing patient, parent, and staff descriptions of fatigue in pediatric oncology patients.  Cancer Nurs. 1999;22:277‐288. Hinds PS, Schum L, Srivastava DK. Is clinical relevance sometimes lost in summative scores? West J.Nurs.Res. 2002;24:345‐353. Hinds P, Scholes S, Gattuso J, Riggins M, Heffner B. Adaptation to illness in adolescents with cancer. J.Pediatr.Oncol.Nurs. 1990;7:64‐65. Hinds PS, Hockenberry MJ, Gattuso JS et al. Dexamethasone alters sleep and fatigue in pediatric patients with acute lymphoblastic leukemia.  Cancer 2007;110:2321‐2330. Hart CN, Palermo TM, Rosen CL. Health‐related quality of life among children presenting to a pediatric sleep disorders clinic. Behav.Sleep  Med. 2005;3:4‐17. K Kurzrock R. Cytokine deregulation in hematological malignancies: clinical and biological implications. Clin.Cancer Res. 1997;3:2581‐2584.

Kurzrock R. The role of cytokines in cancer‐related fatigue. Cancer 2001;92:1684‐1688. Lee BN, Dantzer R, Langley KE et al. A cytokine‐based neuroimmunologic mechanism of cancer‐related symptoms. Neuroimmunomodulation.  2004;11:279‐292. Meeske KA, Siegel SE, Globe DR, Mack WJ, Bernstein L. Prevalence and correlates of fatigue in long‐term survivors of childhood leukemia.  J.Clin.Oncol. 2005;23:5501‐5510. Mindell, J. A. and Owens, J. A. Lee BN, Dantzer R, Langley KE et al. A cytokine‐based neuroimmunologic mechanism of cancer‐related  symptoms. Neuroimmunomodulation. 2004;11:279‐292. Vardy J, Chiew KS, Galica J, Pond GR, Tannock IF. Side effects associated with the use of dexamethasone for prophylaxis of delayed emesis  after moderately emetogenic chemotherapy. Br.J.Cancer 2006;94:1011‐1015. Wood LJ, Nail LM, Gilster A, Winters KA, Elsea CR. Cancer chemotherapy‐related symptoms: evidence to suggest a role for proinflammatory cytokines. Oncol.Nurs.Forum 2006;33:535‐542.

References II Belluco C, Olivieri F, Bonafe M et al. ‐174 G>C polymorphism of interleukin 6 gene promoter affects interleukin 6 serum level in  patients with colorectal cancer. Clin.Cancer Res. 2003;9:2173‐2176. Fayad L, Cabanillas F, Talpaz M, McLaughlin P, Kurzrock R. High serum interleukin‐6 levels correlate with a shorter failure‐free  survival in indolent lymphoma. Leuk.Lymphoma 1998;30:563‐571.  Hong S, Mills PJ, Loredo JS, Adler KA, Dimsdale JE. The association between interleukin‐6, sleep, and demographic characteristics.  Brain Behav.Immun. 2005;19:165‐172. Rich T, Innominato PF, Boerner J et al. Elevated serum cytokines correlated with altered behavior, serum cortisol rhythm, and  dampened 24‐hour rest‐activity patterns in patients with metastatic colorectal cancer. Clin.Cancer Res. 2005;11:1757‐1764.  Schiller JH, Storer BE, Witt PL et al. Biological and clinical effects of intravenous tumor necrosis factor‐alpha administered three  times weekly. Cancer Res. 1991;51:1651‐1658. Vgontzas AN, Bixler EO, Lin HM et al. IL‐6 and its circadian secretion in humans. Neuroimmunomodulation. 2005;12:131‐140. Vgontzas AN, Zoumakis E, Bixler EO et al. Adverse effects of modest sleep restriction on sleepiness, performance, and  inflammatory cytokines. J.Clin.Endocrinol.Metab 2004;89:2119‐2126. Vgontzas AN, Zoumakis E, Lin HM et al. Marked decrease in sleepiness in patients with sleep apnea by etanercept, a tumor  necrosis factor‐alpha antagonist. J.Clin.Endocrinol.Metab 2004;89:4409‐4413.

References Kurzrock R. The role of cytokines in cancer‐related fatigue. Cancer 2001;92:1684‐1688. Fayad L, Cabanillas F, Talpaz M, McLaughlin P, Kurzrock R. High serum interleukin‐6 levels correlate with a shorter failure‐free  survival in indolent lymphoma. Leuk.Lymphoma 1998;30:563‐571. Rich T, Innominato PF, Boerner J et al. Elevated serum cytokines correlated with altered behavior, serum cortisol rhythm, and  dampened 24‐hour rest‐activity patterns in patients with metastatic colorectal cancer. Clin.Cancer Res. 2005;11:1757‐1764. Belluco C, Olivieri F, Bonafe M et al. ‐174 G>C polymorphism of interleukin 6 gene promoter affects interleukin 6 serum level in  patients with colorectal cancer. Clin.Cancer Res. 2003;9:2173‐2176. Vgontzas AN, Bixler EO, Lin HM et al. IL‐6 and its circadian secretion in humans. Neuroimmunomodulation. 2005;12:131‐140. Vgontzas AN, Zoumakis E, Bixler EO et al. Adverse effects of modest sleep restriction on sleepiness, performance, and  inflammatory cytokines. J.Clin.Endocrinol.Metab 2004;89:2119‐2126. Hong S, Mills PJ, Loredo JS, Adler KA, Dimsdale JE. The association between interleukin‐6, sleep, and demographic characteristics.  Brain Behav.Immun. 2005;19:165‐172. Vgontzas AN, Zoumakis E, Lin HM et al. Marked decrease in sleepiness in patients with sleep apnea by etanercept, a tumor  necrosis factor‐alpha antagonist. J.Clin.Endocrinol.Metab 2004;89:4409‐4413. Schiller JH, Storer BE, Witt PL et al. Biological and clinical effects of intravenous tumor necrosis factor‐alpha administered three  times weekly. Cancer Res. 1991;51:1651‐1658.

Related Documents


More Documents from ""