Fréquence Et Pulsation

  • July 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Fréquence Et Pulsation as PDF for free.

More details

  • Words: 1,040
  • Pages: 1
Fréquence f et pulsation ϖ

Longueur d’onde λ, nombre d’onde k, période T et célérité c c λ = c ⋅T = f

ω ⇔ ω = f ⋅ 2 ⋅π 2 ⋅π f : Hz / ω : rad ⋅ s − 1 Intensité acoustique I P I = S I :W ⋅ m −2 / P :W / S : m −2 f =

k =

peff

peff

2

2

p 1 2 = = max = ⋅ ρ ⋅ c ⋅ vmax I= ρ ⋅c 2⋅ ρ ⋅c 2 Z 1 2⋅ I I = ⋅ ρ ⋅ c ⋅ a2 ⋅ω2 ⇔ a = 2 ρ ⋅ c ⋅ω2 2

p max v 2 / veff = max 2 2 peff a ⋅ 2 ⋅ π ⋅ f = = ρ ⋅c 2

λ

vmax

L I = 10 ⋅ log

I ⇔ I = I 0 ⋅ 10 I0

L2 L3  L1  L Tot = 10 ⋅ log  10 10 + 10 10 + 10 10 + ...    si : L1 = L 2 = L 3 = ...

L Tot = L + 10 ⋅ log (n )

L : dB / I : W ⋅ m − 2

∂ s ( x ,t ) ∂x ds ( x ,t )

2 K : Pa ⋅ m −1 / I = W ⋅ m − 2 / f c : Hz Octave

   

Différentielle totale dx    x   = a ⋅ ω ⋅  dt −  ⋅ cos  ω  t −   c  c    

−1

/ ρ : kg ⋅ m − 3

−1

⋅K

−1

/ M : kg ⋅ mol

−1

L

LP = 10 ⋅ log

P P ⇔ P = P0 ⋅ 10 10 P0

LP : dB / P : W / P0 : W = 1 ⋅ 10 −12 / 1 ⋅ 10 −13 USA Atténuation géométrique

P 4 ⋅π ⋅ r2 P :W / I :W ⋅ m−2 / r : m

I=

Théorème de Joseph Fourrier : Une fonction périodique de fréquence f, peut toujours se décomposer d’une seule façon en une somme de fonctions sinusoïdales de fréquences f0, 2f0, 3f0,… kf0. Le terme de fréquence f0 est la fondamental, les autres sont les harmoniques. 1. 1f0, 2.3f0,… sont le bruit. Bruit rose

I = K ⋅ ln 2

L I = 10 ⋅ log

fc y

I K ⋅ ln 2 ⇔ K ⋅ ln 2 = I 0 ⋅ 10 10 I0

L I : dB / I : W ⋅ m − 2 / I 0 : W ⋅ m − 2 = 1 ⋅ 10 −12

3

2

fc x = f = x2 ⋅ f = x ⋅ fc

f c1 = f = fc2

M

L

fc = x ⋅ f / x =

Dilatation relative

  x ⋅ a ⋅ cos  ω  t − c c  

fc

Tiers d’octave

  x  = ω ⋅ a ⋅ cos  ω  t −   c   

ω

I =K⋅

lim sup = y 2 ⋅ f = y ⋅ f c

Vitesse vibratoire

= −

L : dB / I : W ⋅ m − 2 / T : tps / t : tps

lim inf = f =

  x  = a ⋅ sin  ω  t −   c   

∂t

−5

 1  I ⋅ t + I ⋅ t + I ⋅ t + ...   Leq = 10 ⋅ log   1 1 2 2 3 3 I0  T 

fc = y ⋅ f / y = 2

Equation générale de la déformation périodique.

∂ s ( x ,t )

LI 20

Bruit blanc, fréquence centrale fc et coef de proportionnalité K

I Tot = I 1 + I 2 + I 3 + ...

s ( x ,t )

p0

⇔ p eff = p 0 ⋅ 10

L3 L2  1  L1  Leq = 10 ⋅ log  10 10 ⋅ t1 + 10 10 ⋅ t 2 + 10 10 ⋅ t 3 + ...    T 

Addition de niveaux sonores

γ ⋅ R ⋅T

Niveau de puissance LP et Puissance P

Niveau équivalent Leq

c : m ⋅ s −1 / ρ : kg ⋅ m −3 / v = m ⋅ s −1 / a : m

=

ρ

E : Pa / R : J ⋅ mol

LI 10

L I : dB / I : W ⋅ m − 2 / I 0 : W ⋅ m − 2 = 1 ⋅ 10 −12

p eff

χ ⋅ρ

R = 8 . 314

Niveau d’intensité acoustique LI

L I : dB / p eff : Pa / p 0 : Pa = 2 ⋅ 10

I : W ⋅ m −2 / p : Pa / Z : kg ⋅ m −2 ⋅ s −1

E

c : m ⋅ s −1 / χ : Pa

L I = 20 ⋅ log ⋅

p max = I ⋅ 2 ⋅ ρ ⋅ c

=

Z : kg ⋅ m − 2 ⋅ s −1 / c : m ⋅ s −1 / ρ : kg ⋅ m − 3

2

2⋅ I = ρ ⋅c

1

T : Kelvin = ° C + 273 . 15

Niveau de pression LI

2

peff = veff

c =

f : Hz / c : m ⋅ s − 1 / T : s / λ : m Impédance acoustique Z

Z = ρ ⋅c

Intensité acoustique moyenne I Pression p et vitesse v 2

2 ⋅π

Vitesse de propagation de l’onde (célérité) c, coef de compressibilité adiabatique χ, masse volumique ρ, élasticité du matériau (module de Young) E, masse M, cste des gaz parfaits R, coef adiabatique γ et température T

fc / y = y lim inf = f = y ⋅ f c

lim inf = f =

6

2

Related Documents

Et
November 2019 61
Et
June 2020 51
Et
October 2019 64
Et
November 2019 63
Et-konfig
April 2020 40
Online Et
November 2019 52