3º ESO Fracciones y potencias – Soluciones y resueltos
Pedro Castro Ortega Profesor del IES “Fernando de Mena”
Soluciones a los ejercicios de Fracciones Nota: en algunos ejercicios se da solamente la solución final. En otros se hace el desarrollo completo hasta llegar a la solución. 1. Resolver las siguientes operaciones con fracciones, simplificando en todo momento los pasos intermedios y el resultado: a)
1 1 6 13 + ⋅ = 4 3 5 20
1 1 6 7 b) + ⋅ = 4 3 5 10 2 1 13 c) 1 − ⋅ = 3 5 15
2 1 1 d) 1 − ⋅ = 3 5 15 2 4 1 e) − + ⋅ = 0 3 3 2
1 1 6 6 3 2 6 5 6 30 f) −1 + − ⋅ = − + − ⋅ = − ⋅ = − = −1 2 3 5 6 6 6 5 6 5 30 2 1 4 1 6 2 4 6 2 4 2 6 4 6 8 g) − + ⋅ − ⋅ = − + − = − + − = − + − = − 5 3 5 3 5 5 15 15 5 15 5 15 15 15 15
1 4 2 4 2 2 1 4 1 6 6 5 4 6 h) − + ⋅ − ⋅ = − + ⋅ − = − ⋅ − = − − = 15 5 5 75 5 5 3 5 3 5 15 15 5 15 =−
i)
1 1 4 1 5 8 1 4 1 40 1 4 1 10 + ⋅ − + ⋅ = + − + = + − + = 2 3 3 12 4 3 2 9 12 12 2 9 12 3 =
j)
4 30 34 − =− 75 75 75
18 16 3 120 151 + − + = 36 36 36 36 36
1 1 4 1 5 8 3 2 4 1 40 5 4 1 10 20 1 10 = ⋅ − + = − + = + ⋅ − + ⋅ = + ⋅ − + 2 3 3 12 4 3 6 6 3 12 12 6 3 12 3 18 12 3 =
10 1 10 40 3 120 157 − + = − + = 9 12 3 36 36 36 36
1 1 2 1 k) 1 − + ⋅ = 2 3 5 3 1 1 2 19 l) 1 − + ⋅ = 2 3 5 30 1 4 2 1 5 4 2 5 1 m) − ⋅ − + ⋅ = − − + = − 2 7 14 2 7 14 14 14 14
1
3º ESO Fracciones y potencias – Soluciones y resueltos
Pedro Castro Ortega Profesor del IES “Fernando de Mena”
1 4 2 1 5 1 8 2 5 1 6 5 1 3 5 n) − ⋅ − + ⋅ = − ⋅ − + = − ⋅ + = − ⋅ + = 2 7 14 2 7 2 14 14 14 2 14 14 2 7 14 =−
ñ)
o)
3 5 2 1 + = = 14 14 14 7
17 15 4 1 2 1 14 16 17 4 3 10 1 14 − + : + − + : = −3+ : + − + : 2 = 9 5 3 5 3 15 3 8 9 3 15 15 15 3 =
17 4 12 14 17 4 4 7 17 20 7 −3+ : + = −3+ : + = −3+ + = 9 3 15 6 9 3 5 3 9 12 3
=
17 5 7 17 27 15 21 26 −3+ + = − + + = 9 3 3 9 9 9 9 9
1 4 5 1 3 10 1 24 1 30 1 8 1 5 + : ⋅ − ⋅ + 4 = + ⋅ − + 4 = + ⋅ − + 4 = 3 3 6 2 2 9 3 15 2 18 3 5 2 3 1 8 3 10 24 1 8 17 1 136 1 68 10 136 146 73 = + ⋅ − + = + ⋅ = + = + = + = = 3 5 6 6 6 3 5 6 3 30 3 15 30 30 30 15
p)
q)
4 7 3 1 1 7 6 4 21 1 4 1 7 20 − ⋅ + ⋅ 2 + − + 4: = − + ⋅ + − + = 5 3 7 5 2 3 5 5 21 5 2 2 3 6 =
4 1 5 7 10 4 5 7 10 4 1 7 10 − 1 + ⋅ − + = −1 + − + = −1 + − + = 5 5 2 3 3 5 10 3 3 5 2 3 3
=
24 30 15 70 100 39 13 − + − + = = 30 30 30 30 30 30 10
2 5 3 4 5 3 12 2 5 3 2 5 3 12 + ⋅ + − + : 4 + = + ⋅ + − + + = 3 4 5 10 4 5 5 3 4 5 5 4 20 5 =
2 5 5 5 3 12 2 5 5 3 12 2 5 5 3 12 + ⋅ − + + = + ⋅1 − + + = + − + + = 3 4 5 4 20 5 3 4 4 20 5 3 4 4 20 5
=
40 75 75 9 144 193 + − + + = 60 60 60 60 60 60
1 7 2 5 1 7 1 5 1 12 14 3 10 r) 2 + : 2 + − + = 2 + : 2 + − + = 2 + : + − + = 5 3 4 3 5 3 2 3 5 6 6 6 6 1 33 1 11 2 110 2 112 = 2+ : = 2+ : = 2+ = + = 5 6 5 2 55 55 55 55
2 4 2 3 7 4 2 4 1 3 49 40 112 35 3 49 s) − + ⋅ − : = − + ⋅ − = − + = ⋅ − 7 5 8 2 5 7 7 5 4 2 20 140 140 140 2 20 =−
37 3 49 111 49 111 686 797 ⋅ − =− − =− − =− 140 2 20 280 20 280 280 280
2
3º ESO Fracciones y potencias – Soluciones y resueltos
t)
u)
3 1 4 4 2 15 3 4 4 30 3 2 4 5 − ⋅ : − ⋅ + 1 = − : − + 1 = − : − + 1 = 2 2 3 3 3 8 2 6 3 24 2 3 3 4 3 2 16 15 12 3 2 13 3 24 117 48 69 23 = − : − + = − : = − = − = = 2 3 12 12 12 2 3 12 2 39 78 78 78 26 2 3 1 2 9 2 2 7 2 12 7 + 1 − − = + 1 − − = + 1 − = + − = 3 4 6 3 12 12 3 12 3 12 12 =
v)
Pedro Castro Ortega Profesor del IES “Fernando de Mena”
2 5 8 5 13 + = + = 3 12 12 12 12
2 3 1 2 1 6 1 3 1 1 − − − − + − − + − = 3 2 5 5 3 5 2 4 2 3 =
2 3 1 6 5 12 5 3 3 2 − − − − + − − + − = 3 2 5 15 15 10 10 4 6 6
=
2 3 1 1 7 3 1 2 45 6 2 21 3 1 − − − + − + = − − − + − + = 3 2 5 15 10 4 6 3 30 30 30 30 4 6
=
2 58 3 1 2 29 3 1 40 116 45 10 111 37 − − + = − − + = − − + =− =− 3 30 4 6 3 15 4 6 60 60 60 60 60 20
5 5 7 2 1 5 6 7 8 w) 2 + − 3 − − + = 2 + − − − + = 2 10 5 4 2 2 10 20 20
1 7 13 1 14 13 1 1 40 10 1 29 = 2− − − = 2− − − = 2− − = − − = 2 10 20 2 20 20 2 20 20 20 20 20 4 1 2 1 4 4 5 4 1 4 6 1 1 x) 2 − − + − − + 2 − = 2 − − + − − + − = 5 3 2 5 3 3 3 10 10 3 3 3 5
4 9 1 10 1 40 27 10 10 1 = 2− − − − − = 2− − − − − = 3 10 3 3 5 30 30 30 3 5 = 2−
3 10 1 1 10 1 60 3 100 6 49 − − = 2− − − = − − − =− 30 3 5 10 3 5 30 30 30 30 30
4 −1 5 2 7 12 −1 15 8 7 y) − + 2 − − + − = − + 2 − − + − = 3 9 4 3 2 9 9 12 12 2 7 7 12 −1 15 8 7 13 = − + 2 − − + − = + 2 + − = 9 9 12 12 2 9 12 2
=
13 24 7 7 13 31 7 52 93 126 19 + + − = + − = + − = 9 12 12 2 9 12 2 36 36 36 36
4 1 7 4 5 1 1 4 1 4 5 1 1 z) + : − ⋅ + = + : − ⋅ + = 6 2 3 12 6 15 6 14 3 12 6 15
3
3º ESO Fracciones y potencias – Soluciones y resueltos
Pedro Castro Ortega Profesor del IES “Fernando de Mena”
28 3 16 5 15 6 31 11 21 372 7 = + : − ⋅ + = : ⋅ = ⋅ = 42 42 12 12 90 90 42 12 90 462 30 =
372 7 62 7 434 31 ⋅ = ⋅ = = 462 30 77 30 2310 165
3
1
5 7
1
3 8
1 8
5 28 1
α) − + 4 − − 2 − + − = − + − − − + − = 2 4 2 8 8 2 2 4 4 8 8 8
8 3 7 3 27 3 28 6 27 25 33 = − + − + = − + − + = − = − = −1 8 8 2 4 8 8 8 8 8 8 8 1 + 2 5 5 12 1 3 7 5 1 4 1 β) − ⋅ − 1 ⋅ 3 − = − ⋅ − ⋅ 3 − = 3 15 15 3 3 3 3 5 3
γ)
=−
7 2 7 7 6 7 7 7 7 30 7 ⋅ − ⋅ 3 − = − ⋅ − − = − ⋅ −2 − = − ⋅ − − = 15 3 15 15 3 15 15 15 15 15 15
=−
7 37 259 ⋅ − = 15 15 225
4 12 1 2 3 1 2 4 3 1 4 3 1 5 2 : + − − 3 : 1 − = : + − − 3 : − = 5 16 6 3 8 6 5 5 4 6 6 8 6 5 5
=
4 3 5 3 5 4 5 3 15 1 3 4 15 3 : ⋅ − −3 : = : − −3 = : − − = 5 4 6 8 6 5 5 24 8 18 5 8 8 18
=
4 2 15 32 15 16 15 288 75 213 71 : − = − = − = − = = 5 8 18 10 18 5 18 90 90 90 30
4
3º ESO Fracciones y potencias – Soluciones y resueltos
Pedro Castro Ortega Profesor del IES “Fernando de Mena”
Soluciones a los ejercicios de Potencias Nota: en algunos ejercicios se da solamente la solución final. En otros se hace el desarrollo completo hasta llegar a la solución. 2. Calcular las siguientes potencias de exponente natural (sin usar calculadora): a) (–2)4 = 16 e) −2−3 = −
1 8
b) (–2)3 = −8
c) −22 = −4
1 4
g) (–2)−3 = −
f) (–2)−2 =| −2
−4
1 8
h) –32 = −9
−1 k) = 16 2
l) (−4)2 = 16
−4
1 j) = 4 2
i) (–1)−7 = −1
d) (–3)2 = 9
−1 m) = 81 3
4 n) = 1 5
ñ) 1−37 = −1
o) –52 = −25
p) (–1)523 = −1
q) 10 = 1
r) 2350 = 1
s) (–1)0 = 1
0
t) (0,75)0 = 1
3. Expresar como una única potencia de base entera o racional: 2 a) 5
c)
2
−1
2 2 : = 5 5
3
35 ⋅ 3−7 3−2 = 2 = 3−4 2 3 3
e) ( 22 ⋅ 2−3 ) = ( 2−1 ) = 24 −4
−4
3
4
2
5 2 2 : = = 2 5 5
2
4
j)
−2
4
3 3 3 3 ⋅ − = ⋅ = 2 2 2 2
2 4 ⋅ 4 −2 2 4 ⋅ 2 −4 = = 2 −6 2 6 8 2
125
2
2 k) 3
2
−1
2 d) 5
2 3
1 3 1 6 i) = 2 2
3
1 1 : = = 22 2 2
(5 ) h)
4
−2
3
f)
3 3 3 3 g) − ⋅ − = − = 2 2 2 2
5
1 b) 2
=
55 = 52 53
2 2 = 6 = −2−5 3 (−4) −2 −2
5 −3 5 −2 5 6 5 −2 5 8 l) : = : = 3 3 3 3 3
4. Aplica las propiedades de las potencias y simplifica todo lo que puedas:
−32 −9 a) = = −1 2 (−3) 9 b)
2 −5 ⋅ 42 ⋅ 32 2−5 ⋅ 24 ⋅ 32 34 81 −4 4 = = 2 ⋅ 3 = = 23 ⋅ 9−1 23 ⋅ 3−2 2 4 16
5
3º ESO Fracciones y potencias – Soluciones y resueltos
1 c) 3
3
Pedro Castro Ortega Profesor del IES “Fernando de Mena”
2
1 1 42 16 1 : = 3 : 2 = 3 = 3 27 4 3 4
d)
3 ⋅ (−3)2 ⋅ 42 3 ⋅ 32 ⋅ 24 33 ⋅ 24 2 2 = = = 2 ⋅ 3−4 = 4 = 3 2 3 4 3 3 4 6 ⋅9 (2 ⋅ 3) ⋅ 3 2 ⋅3 ⋅3 3 81
e)
23 ⋅ (−3) 2 ⋅ 42 23 ⋅ 32 ⋅ 24 32 ⋅ 27 23 8 3 −5 = = = 2 ⋅ 3 = = 3 2 3 4 3 3 4 5 6 ⋅9 (2 ⋅ 3) ⋅ 3 2 ⋅3 ⋅3 3 243
f)
2 −4 ⋅ 42 ⋅ 3 ⋅ 9−1 2−4 ⋅ 24 ⋅ 3 ⋅ 3−2 20 ⋅ 3−1 22 4 2 −5 = −5 3 2 2 = −2 4 = 2 ⋅ 3 = 5 = −5 2 2 ⋅8 ⋅9 ⋅ 3 2 ⋅ 2 ⋅3 ⋅3 2 ⋅3 3 243
2 g) 3
5
−4
0
1
2 2 2 2 ⋅ ⋅ = = 3 3 3 3 −2
5 −3 5 −2 5 6 5 −2 5 8 58 390625 h) : = : = = 8 = 6561 3 3 3 3 3 3 2
2
i)
1 3 1 3 1 6 1 6 1 1 − 1 = − = − = = 6 = 64 2 2 2 2 2
j)
(−1)3 ⋅ 23 ⋅ 84 −1⋅ 23 ⋅ 212 −215 = −2 6 = 4 = −211 = −2048 −2 6 2 ⋅2 2 ⋅2 2
k)
(2
l)
1 2 −1 1 4 −1 3 −1 1 −1 − = − = − = − = 6 6 3 6 6 2
4
⋅ 2 −5 ) : 2 3 = 2 −4 =
1 1 = 4 2 16
−5
−5
−5
−5
5
1 1 1 = − = − 5 = − 2 32 2
34 ⋅ 3−5 3−1 1 1 = 3 = 3−4 = 4 = m) 2 3⋅3 3 3 81 2
2 52 54 54 ⋅ 24 ⋅ 52 ⋅ 7 2 25 2 2 4 2 2 ⋅ 2 ⋅ 5 ⋅ 7 = ⋅ 2 ⋅ 5 ⋅ 7 = = n) ⋅ 202 ⋅ 7 2 = ( ) 22 ⋅ 7 2 22 ⋅ 7 2 14 2⋅7 2
= 56 ⋅ 22 ⋅ 7 0 = 62500
(3 ⋅ 2 ) ( −2 ⋅ 3 ) −2
o)
−4
4 −1 2 2
32 ⋅ 2−4 24 16 −2 4 3 2 = ⋅ = = 2 −8 ⋅ 34 32 9
=
3−2 ⋅ ( −7 2 ⋅ 32 )
3
p)
(−3)2 ⋅ 73
2
=
3−6 ⋅ ( −76 ⋅ 36 ) 34 ⋅ 7 6
=
−30 ⋅ 7 6 1 1 = −3−4 = − 4 = − 4 6 3 ⋅7 3 81
6
3º ESO Fracciones y potencias – Soluciones y resueltos −2
−1
Pedro Castro Ortega Profesor del IES “Fernando de Mena” −2
−1
−2
−1
3 3 1 7 6 3 3 7 3 4 q) − ⋅ − = − ⋅ − = ⋅ − = 2 4 3 9 4 4 9 9 4 9 4 = 3
2
1
9 16 9 ⋅ − = ⋅ − = −4 9 4 4 −4
r)
s)
4 2 2 2 −3 2 ⋅ 4 5 5 16 5 2 = = = − 2 0 2 −1 2 2 5 625 : 5 5 5
2 2 2 ⋅ 3 3
3 9
2 5 32 3 2 = = = 4 5 3 2 2 2 2 3 243 3 : 3 3
5. Simplifica: 2
2
1 3 3 3 9 3 6 3 a) 1 + − = − = − = = 2 4 2 4 4 4 4 2 2
2
2
1 4 1 5 1 1 2 1 1 b) 4 − + 1 = 4 − + 1 = 4 + 1 = 4 + 1 = + 1 = + 1 = 16 16 4 4 2 4 4 4 4 4 1 −1 8 1 1 64 1 1 64 1 256 45 301 + = + = c) 4 − ⋅ + = ⋅ + = ⋅ + = 3 5 2 3 5 4 9 5 4 45 4 180 180 180 2
2
2
2
3
2
9 9 32 23 1 1 1 3 3 d) : − + = − 23 = − 8 = − =− 4 4 4 4 2 3 2 2 2 1 1 e) − 3 6
2
2
1 1 2 1 : − = − 6 3 6 6 2
f)
2
2
1 2 1 : − = 6 6 6
2
2
2
1 1 :− = 6 6
2
1 1 1 2 1 4 9 20 29 + 1 − + + + 5 3 5 3 5 9 45 45 = 45 = 1044 = 116 = = = 2 2 25 72 25 97 4365 485 1 5 2+ + 2 + − 1 2+− 36 36 36 36 6 6
7
2
1 : =1 6