1. Zgjidhni π ππ2π₯ = π πππ₯ + πππ π₯ cos 2 π₯ β sin2 π₯ β (π πππ₯ + πππ π₯) = 0 => (π πππ₯ + πππ π₯)(πππ π₯ β π πππ₯π₯) β (π πππ₯ + πππ π₯) = 0 (π πππ₯ + πππ π₯)(πππ π₯ β π πππ₯ β 1) = 0 3π π πππ₯ + πππ π₯ = 0 => π‘πππ₯ = β1 => π₯ = ππ + 4 1 1 1 πππ π₯ β π πππ₯ β 1 = 0 => πππ π₯ β π πππ₯ = β1 => πππ π₯ β π πππ₯ = β2 β2 β2 π π 1 cos πππ π₯ β sin π πππ₯ = 4 4 β2 π 1 cos (π₯ + ) = 4 β2 π π π₯ + = 2ππ Β± 4 4 2. gjeni siperfaqen e trekendeshit BED.
3. ABCDEF 6- kendesh I rregullt . AK=KF; BC=LC; AB=x dhe KL=9-x. Gjeni 5x=?
4. Zgjidhni |π₯ β 3| < π₯ + 1; 5. zgjidhni ne R.
]1; +β[ ] β β; β3] βͺ] β 1; 2[βͺ [3,5] 3π₯ β 9 β€0 π(π₯)
6. zgjidhni ne R. β
π(π₯) <0 π₯2 β 9
7. Trekendeshi EBC barabrinjes. Gjeni kendin a.
8. ABCD drejtekendesh. EF=FB=2cm, FC=4cm. Gjeni siperfaqen e ABCD=?
9. Gjeni AB=x
π΄π΅π·:
π π₯ = ; π ππ90 π ππ72
π 12 π₯π ππ36 12π ππ18π ππ72 = ; π ππ18 = => π₯ = π ππ18 π ππ36 12π ππ72 π ππ36 1 12 β 2 [πππ 54 β πππ 90] = 6ππ. π ππ36
π·πΈπΆ:
1. Gjeni kendin a.
2. Gjeni kendin a.
3. Gjeni gjatesine BE.