Vrijednosti sinusa i kosinusa ϕ sin ϕ cos ϕ
0 0 1
π 6 1 √2 3 2
π √4 2 √2 2 2
π √3 3 2 1 2
Tablica derivacija
π 2
f (x)
f 0 (x)
f (x)
1 0
xa
axa−1
ln x
sin x
cos x
loga x
cos x
− sin x
sh x
f 0 (x) 1 x 1 x ln a ch x
ch x
sh x
Adicijski teoremi sin(x ± y) cos(x ± y)
= sin x cos y ± cos x sin y = cos x cos y ∓ sin x sin y
tg(x ± y)
=
tg x±tg y 1∓tg x tg y
ctg(x ± y)
=
ctg x ctg y∓1 ctg y±ctg x
Funkcije viˇ sestrukih argumenata sin 2x cos 2x
= 2 sin x cos x = cos2 x − sin2 x
tg 2x
=
ctg 2x
=
2 tg x 1−tg2 x ctg2 x−1 2 ctg x
1 cos2 x 1 ctg x − 2 sin x 1 √ arcsin x 1 − x2 1 arccos x − √ 1 − x2 1 arctgx 1 + x2 1 arcctgx − 1 + x2 tg x
ex x
sin x cos y = 12 (sin(x + y) + sin(x − y)) cos x cos y = 12 (cos(x + y) + cos(x − y)) sin x sin y = 12 (cos(x − y) − cos(x + y)) x−y sin x + sin y = 2 sin x+y 2 cos 2
sin x − sin y = 2 cos
sin
x−y 2
x−y cos x + cos y = 2 cos x+y 2 cos 2 x−y cos x − cos y = −2 sin x+y 2 sin 2
Funkcije poloviˇ cnih argumenata sin2
x 2 cos2 x2
= =
1−cos x 2 1+cos x 2
Neke vaˇ zne formule sin2 x
=
cos2 x = sin x
=
cos x
=
tg2 x 1+tg2 x 1 1+tg2 x 2 tg x 2 1+tg2 x 2 2 x 1−tg 2 1+tg2 x 2
cthx arshx archx arthx arcthx
x
a
Formule pretvorbe
x+y 2
ex
thx
a ln a
1 ch2 x 1 − 2 sh x 1 √ 1 + x2 1 √ x2 − 1 1 1 − x2 1 1 − x2
Tablica integrala R R R R R R R R R R R R R R R R
dx x
= ln |x| + C
xα dx =
xα+1 α+1 x
a ln a
ax dx =
+ C, α ∈ R \ {−1}
+C
ex dx = ex + C sin xdx = − cos x + C cos xdx = sin x + C dx sin2 x
= − ctg x + C
dx sin2 x
= tg x + C
dx x2 +a2 dx x2 −a2
1 a
arctg( xa ) + C, a > 0 ¯ ¯ ¯ ¯ 1 = 2a ln ¯ x−a x+a ¯ + C, a > 0
=
√ dx a2 −x2 √ dx x2 +A
= arcsin( xa ) + C, a > 0 √ = ln |x + x2 + A| + C, A 6= 0
sh xdx = ch x + C ch xdx = sh x + C dx sh2 x
= − cth x + C
dx ch2 x
= th x + C