1
πΎπ 2.51 β π β π· β π = β2logβ‘( + ) 3.71 β π· 4 β π β βπ βπ
1 βπ
+ β2 log (
πΎπ 2.51 β π β π· β π + )=0 3.71 β π· 4 β π β βπ
π
8 β π β πΏ β π2 Ξπ» = β( 2 ) π β π β π·5 π=1
1
πΎπ 2.51 β π β π·π β π = β2logβ‘( + ) 3.71 β π·π 4 β ππ β βππ βππ
π
Ξπ» = β( π=1
Ξπ» =
π=
8 β ππ β πΏπ β ππ 2 π 2 β π β π·π 5
8 β π β πΏ β π2 π 2 β π β π·5
Ξπ» β π 2 β π β π· 5 8 β πΏ β π2
1 1 2/3 2 π = π΄π
π π
1 2/3 1 π = π
π2 π
)
SECCION TRAPEZOIDAL T = b + 2Zy p = b + 2yβ1 + z 2 A=
(T + b) β y = (b + zy)y 2
A by + zy 2 R= = p b + 2yβ1 + z 2
SECCION RECTANGULAR T=b p = b + 2y A = by R=
by b + 2y
SECCION TRIANGULAR T = 2zyβ‘ p = 2yβ1 + z 2 β‘β‘ Ty = Zy 2 β‘β‘ 2 zy R= β‘ 2β1 + z 2 β‘ A=
SECCION CIRCULAR Ξ± Ξ± T = 2rsen = Dsen β‘β‘β‘β‘(ΞΈ + Ξ± = Ο)β‘ 2 2 ΞΈD p = ΞΈr = β‘β‘β‘ (πβ‘ππβ‘πππ)β‘β‘ 2 1 A = (ΞΈ β senΞΈ) β D2 β‘β‘ 8 p 1 senΞΈ R = = (1 β ) β Dβ‘β‘ A 4 ΞΈ SECCION PARABOLICA π=
3A β‘β‘β‘ 2y
8y 2 p=T+ β‘β‘β‘ 3T 2 A = Tyβ‘β‘ 3 p 2T 2 y R= = 2 A 3T + 8y 2