Formulas Calculo 3.docx

  • Uploaded by: Juan
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Formulas Calculo 3.docx as PDF for free.

More details

  • Words: 641
  • Pages: 1
π‘‘π‘’π‘Ÿπ‘–π‘£π‘Žπ‘‘π‘Žπ‘  y= sin π‘₯ 𝑦´ = cos π‘₯ y= cos π‘₯ 𝑦´ = βˆ’ sin π‘₯ y= tan x yΒ΄= sec 2 x y= cot x yΒ΄= βˆ’csc 2 x y= sec x yΒ΄= sec x. tan x y= csc x yΒ΄= βˆ’ csc x. cot x derivada de un producto 𝑦 = 𝑓(π‘₯). 𝑔(π‘₯) 𝑦´ = 𝑓´(π‘₯). 𝑔(π‘₯) + 𝑓(π‘₯). 𝑔´(π‘₯) Derivada de un cociente 𝑦 = 𝑓(π‘₯)/𝑔(π‘₯) 𝑓´(π‘₯). 𝑔(π‘₯) βˆ’ 𝑓(π‘₯). 𝑔´(π‘₯) 𝑦= (𝑔(π‘₯))2 Integrales ∫ sin π‘₯. 𝑑π‘₯ = βˆ’ cos π‘₯ + 𝑐

1 csc π‘₯ 1 tan π‘₯ = cot π‘₯ 1 csc π‘₯ = sin π‘₯ 1 sec π‘₯ = cos π‘₯ 1 cot π‘₯ = tan π‘₯ sin π‘₯ =

tan π‘₯ =

sin π‘₯ cos π‘₯

cot π‘₯ =

cos π‘₯ sin π‘₯

Formula por partes ∫ πœ‡. 𝑑𝑣 = πœ‡. 𝑣 βˆ’ ∫ 𝑣. 𝑑𝑒

𝑒´ 1 + 𝑒2 βˆ’π‘’Β΄ 𝑦 = cot βˆ’1 𝑒 𝑦´ = 1 + 𝑒2 𝑒´ 𝑦 = sec βˆ’1 𝑒 𝑦´ = |𝑒|βˆšπ‘’2 βˆ’ 1 βˆ’π‘’Β΄ 𝑦 = csc βˆ’1 𝑒 𝑦´ = |𝑒|βˆšπ‘’2 βˆ’ 1 Integrales 𝑑𝑒 𝑒 ∫ = sinβˆ’1 + 𝑐 π‘Ž βˆšπ‘Ž2 βˆ’ 𝑒2 𝑑𝑒 1 𝑒 ∫ 2 = tanβˆ’1 + 𝑐 2 π‘Ž +𝑒 π‘Ž π‘Ž |𝑒| 𝑑𝑒 1 ∫ = sec βˆ’1 +𝑐 π‘Ž π‘’βˆšπ‘’2 βˆ’ π‘Ž2 π‘Ž 𝑦 = tanβˆ’1 𝑒 𝑦´ =

INTEGRALES TRIGONOMETRICAS DE LA FORMA ∫ sin π‘₯ π‘š . cos π‘₯ 𝑛 . 𝑑π‘₯

∫ cos π‘₯. 𝑑π‘₯ = sin π‘₯ + 𝑐 2

∫ 𝑠𝑒𝑐 π‘₯. 𝑑π‘₯ = tan π‘₯ + 𝑐 ∫ 𝑐𝑠𝑐 2 π‘₯. 𝑑π‘₯ = βˆ’ cot π‘₯ + 𝑐 ∫ sec π‘₯. tan π‘₯. 𝑑π‘₯ = sec π‘₯ + 𝑐 ∫ csc π‘₯. cot π‘₯. 𝑑π‘₯ = βˆ’ csc π‘₯ + 𝑐 ∫ tan π‘₯. 𝑑π‘₯ = βˆ’ ln|cos π‘₯| + 𝑐 ∫ cot π‘₯. 𝑑π‘₯ = ln|𝑠𝑒𝑛π‘₯| + 𝑐 ∫ sec π‘₯. 𝑑π‘₯ = ln|sec π‘₯ + tan π‘₯| + 𝑐 ∫ csc π‘₯. 𝑑π‘₯ = βˆ’ ln|csc π‘₯ + cot π‘₯| + 𝑐

Identidades trigonometricas β†’ 𝑠𝑖𝑛2 π‘₯ + π‘π‘œπ‘  2 π‘₯ = 1 𝑠𝑖𝑛2 π‘₯ = 1 βˆ’ π‘π‘œπ‘  2 π‘₯ π‘π‘œπ‘  2 π‘₯ = 1 βˆ’ 𝑠𝑖𝑛2 π‘₯ 2

𝐼 = π‘‘π‘Ÿπ‘–π‘”π‘œπ‘›π‘›π‘œπ‘šπ‘’π‘‘π‘Ÿπ‘–π‘π‘Ž π‘–π‘›π‘£π‘’π‘Ÿπ‘ π‘Ž 𝐿 = π‘™π‘œπ‘›π‘”π‘Žπ‘Ÿπ‘–π‘‘π‘šπ‘–π‘π‘Ž 𝐴 = π΄π‘™π‘’π‘”π‘’π‘π‘Ÿπ‘Žπ‘–π‘π‘Ž 𝑇 = π‘‡π‘Ÿπ‘–π‘”π‘œπ‘›π‘œπ‘šπ‘’π‘‘π‘Ÿπ‘–π‘π‘Ž 𝐸 = 𝑒π‘₯π‘π‘œπ‘›π‘’π‘›π‘π‘–π‘Žπ‘™π‘’π‘  Division sintetica 𝐷 π‘Ÿ =𝑐+ 𝑑 𝑑 INTEGRALES EXPONENCIALES ∫ 𝑒 𝑒 . 𝑑𝑒 = 𝑒 𝑒 + 𝑐 𝑑𝑒 = ln 𝑒 + 𝑐 𝑒 1 ∫ π‘Žπ‘’ . 𝑑𝑒 = . π‘Žπ‘’ + 𝑐 ln π‘Ž Propiedades ln(π‘₯. 𝑦) = ln π‘₯ + ln 𝑦 π‘₯ ln ( ) = ln π‘₯ βˆ’ ln 𝑦 𝑦 ln π‘₯ 𝑦 = 𝑦. ln π‘₯ ∫

2

β†’ π‘‘π‘Žπ‘› π‘₯ + 1 = 𝑠𝑒𝑐 π‘₯ π‘‘π‘Žπ‘›2 π‘₯ = 𝑠𝑒𝑐 2 π‘₯ βˆ’ 1 𝑠𝑒𝑐 2 π‘₯ βˆ’ π‘‘π‘Žπ‘›2 π‘₯ = 1 β†’ π‘π‘œπ‘‘ 2 π‘₯ + 1 = 𝑐𝑠𝑐 2 π‘₯ π‘π‘œπ‘‘ 2 π‘₯ = 𝑐𝑠𝑐 2 βˆ’ 1 π‘π‘œπ‘‘ 2 π‘₯𝑐 βˆ’ 𝑐𝑠𝑐 2 π‘₯ = 1

FUNCIONES TRIGONOMETRICAS INVERSAS Derivadas 𝑒´ 𝑦 = sinβˆ’1 𝑒 𝑦´ = √1 βˆ’ 𝑒2 βˆ’π‘’Β΄ 𝑦 = cosβˆ’1 𝑒 𝑦´ = √1 βˆ’ 𝑒2

Identidades sin2 π‘₯ + cos 2 π‘₯ = 1 1 βˆ’ cos 2π‘₯ sin2 π‘₯ = 2 1 + cos 2π‘₯ cos2 π‘₯ = 2 Ecucaciones diferenciasles π‘£π‘Žπ‘Ÿπ‘–π‘Žπ‘π‘™π‘’π‘  π‘ π‘’π‘π‘Žπ‘Ÿπ‘Žπ‘π‘™π‘’π‘  𝑦´ =

𝑑𝑦 𝑑π‘₯

𝑠𝑒 π‘Žπ‘π‘œπ‘šπ‘œπ‘‘π‘Ž β†’ ∫

β†’ π‘‘π‘’π‘ π‘π‘’π‘—π‘Žπ‘Ÿ 𝑦

πΈπΆπ‘ˆ. 𝐷𝐼𝐹𝐸 𝐿𝐼𝑁𝐸𝐴𝐿𝐸𝑆

𝑦´ + 𝑝(π‘₯)𝑦 = π‘ž(π‘₯)

πœ‡ = 𝑒 ∫ 𝑝(π‘₯).𝑑π‘₯ π‘ π‘œπ‘™ = πœ‡. 𝑦 = ∫ πœ‡. π‘ž(π‘₯) πΈπΆπ‘ˆ. 𝐷𝐼𝐹𝐸 𝐸𝑋𝐴𝐢𝑇𝐴𝑆 (π‘₯ + 𝑦)𝑑π‘₯ + (π‘₯ + 𝑦)𝑑𝑦 1) π‘šπ‘¦ =

𝑛π‘₯ =

2) π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘Ÿ 𝑑π‘₯ π‘œ 𝑑𝑦 π‘™π‘Ž π‘šπ‘Žπ‘  π‘“π‘Žπ‘π‘–π‘™

𝑓(π‘₯, 𝑦) = resultado integral dx+g(y) 𝑓(π‘₯, 𝑦) = resultado integraldy=+g(x) 3)derivar respecto a g(y) o g(x) 4)𝑒𝑙 π‘Ÿπ‘’π‘ π‘’π‘™π‘‘π‘Žπ‘‘π‘œ 𝑠𝑒 π‘–π‘”π‘’π‘Žπ‘™π‘Ž π‘Ž π‘™π‘Ž π‘œπ‘‘π‘Ÿπ‘Ž π‘’π‘π‘’π‘Žπ‘π‘–π‘œπ‘› 5)π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘Ÿ 6)π‘ π‘œπ‘™ = 𝑓(π‘₯, 𝑦) = π‘’π‘π‘’π‘Žπ‘π‘–π‘œπ‘› = 𝑐

Related Documents

Formulas Calculo 3.docx
November 2019 28
Formulas
May 2020 26
Formulas
December 2019 37
Formulas
June 2020 24
Formulas
May 2020 16

More Documents from "Nick Hershman"