πππππ£ππππ y= sin π₯ π¦Β΄ = cos π₯ y= cos π₯ π¦Β΄ = β sin π₯ y= tan x yΒ΄= sec 2 x y= cot x yΒ΄= βcsc 2 x y= sec x yΒ΄= sec x. tan x y= csc x yΒ΄= β csc x. cot x derivada de un producto π¦ = π(π₯). π(π₯) π¦Β΄ = πΒ΄(π₯). π(π₯) + π(π₯). πΒ΄(π₯) Derivada de un cociente π¦ = π(π₯)/π(π₯) πΒ΄(π₯). π(π₯) β π(π₯). πΒ΄(π₯) π¦= (π(π₯))2 Integrales β« sin π₯. ππ₯ = β cos π₯ + π
1 csc π₯ 1 tan π₯ = cot π₯ 1 csc π₯ = sin π₯ 1 sec π₯ = cos π₯ 1 cot π₯ = tan π₯ sin π₯ =
tan π₯ =
sin π₯ cos π₯
cot π₯ =
cos π₯ sin π₯
Formula por partes β« π. ππ£ = π. π£ β β« π£. ππ’
π’Β΄ 1 + π’2 βπ’Β΄ π¦ = cot β1 π’ π¦Β΄ = 1 + π’2 π’Β΄ π¦ = sec β1 π’ π¦Β΄ = |π’|βπ’2 β 1 βπ’Β΄ π¦ = csc β1 π’ π¦Β΄ = |π’|βπ’2 β 1 Integrales ππ’ π’ β« = sinβ1 + π π βπ2 β π’2 ππ’ 1 π’ β« 2 = tanβ1 + π 2 π +π’ π π |π’| ππ’ 1 β« = sec β1 +π π π’βπ’2 β π2 π π¦ = tanβ1 π’ π¦Β΄ =
INTEGRALES TRIGONOMETRICAS DE LA FORMA β« sin π₯ π . cos π₯ π . ππ₯
β« cos π₯. ππ₯ = sin π₯ + π 2
β« π ππ π₯. ππ₯ = tan π₯ + π β« ππ π 2 π₯. ππ₯ = β cot π₯ + π β« sec π₯. tan π₯. ππ₯ = sec π₯ + π β« csc π₯. cot π₯. ππ₯ = β csc π₯ + π β« tan π₯. ππ₯ = β ln|cos π₯| + π β« cot π₯. ππ₯ = ln|π πππ₯| + π β« sec π₯. ππ₯ = ln|sec π₯ + tan π₯| + π β« csc π₯. ππ₯ = β ln|csc π₯ + cot π₯| + π
Identidades trigonometricas β π ππ2 π₯ + πππ 2 π₯ = 1 π ππ2 π₯ = 1 β πππ 2 π₯ πππ 2 π₯ = 1 β π ππ2 π₯ 2
πΌ = π‘ππππππππππ‘ππππ πππ£πππ π πΏ = ππππππππ‘ππππ π΄ = π΄ππππππππππ π = ππππππππππ‘ππππ πΈ = ππ₯πππππππππππ Division sintetica π· π =π+ π π INTEGRALES EXPONENCIALES β« π π’ . ππ’ = π π’ + π ππ’ = ln π’ + π π’ 1 β« ππ’ . ππ’ = . ππ’ + π ln π Propiedades ln(π₯. π¦) = ln π₯ + ln π¦ π₯ ln ( ) = ln π₯ β ln π¦ π¦ ln π₯ π¦ = π¦. ln π₯ β«
2
β π‘ππ π₯ + 1 = π ππ π₯ π‘ππ2 π₯ = π ππ 2 π₯ β 1 π ππ 2 π₯ β π‘ππ2 π₯ = 1 β πππ‘ 2 π₯ + 1 = ππ π 2 π₯ πππ‘ 2 π₯ = ππ π 2 β 1 πππ‘ 2 π₯π β ππ π 2 π₯ = 1
FUNCIONES TRIGONOMETRICAS INVERSAS Derivadas π’Β΄ π¦ = sinβ1 π’ π¦Β΄ = β1 β π’2 βπ’Β΄ π¦ = cosβ1 π’ π¦Β΄ = β1 β π’2
Identidades sin2 π₯ + cos 2 π₯ = 1 1 β cos 2π₯ sin2 π₯ = 2 1 + cos 2π₯ cos2 π₯ = 2 Ecucaciones diferenciasles π£ππππππππ π πππππππππ π¦Β΄ =
ππ¦ ππ₯
π π πππππππ β β«
β πππ πππππ π¦
πΈπΆπ. π·πΌπΉπΈ πΏπΌππΈπ΄πΏπΈπ
π¦Β΄ + π(π₯)π¦ = π(π₯)
π = π β« π(π₯).ππ₯ π ππ = π. π¦ = β« π. π(π₯) πΈπΆπ. π·πΌπΉπΈ πΈππ΄πΆππ΄π (π₯ + π¦)ππ₯ + (π₯ + π¦)ππ¦ 1) ππ¦ =
ππ₯ =
2) πππ‘πππππ ππ₯ π ππ¦ ππ πππ πππππ
π(π₯, π¦) = resultado integral dx+g(y) π(π₯, π¦) = resultado integraldy=+g(x) 3)derivar respecto a g(y) o g(x) 4)ππ πππ π’ππ‘πππ π π πππ’πππ π ππ ππ‘ππ πππ’πππππ 5)πππ‘πππππ 6)π ππ = π(π₯, π¦) = πππ’πππππ = π