DMCT, Universidade do Minho C´alculo A e B / An´alise Matem´atica I
2007/2008 MIEEIC, MIECOM. MIEMAT, MIEPOL, MIEMEC / LEC
Primitivas Imediatas Na lista de primitivas que se segue, f : I −→ R ´e uma fun¸c˜ao deriv´avel no intervalo I e C denota uma constante real arbitr´ aria.
3. P
f0 f
= log |f | + C
5. P (f 0 cos f ) = sen f + C 7. P
f0 cos2 f
11. P
f0 cos f
p
15. P
1 = log + tg f + C cos f = arcsen f + C
1 − f2
f0 1 + f2
p
12. P
f0 sen f
p
= arctg f + C
16. P
= argsh f + C
20. P
1 = log − cotg f + C sen f ! = arccos f + C
1 − f2
= arccotg f + C
f0 sh2 f
p
24. P
= − coth f + C !
f0
22. P
= argth f + C
−f 0 1 + f2
!
f2 + 1
= − cotg f + C
18. P (f 0 sh f ) = ch f + C
= th f + C
−f 0
14. P
f0 1 − f2
f0 sen2 f
10. P (f 0 cotg f ) = log |sen f | + C
f0
21. P
23. P
f0 ch2 f
8. P
!
17. P (f 0 ch f ) = sh f + C 19. P
6. P (f 0 sen f ) = − cos f + C
= tg f + C
f0
13. P
af 4. P af f 0 = + C (a ∈ R+ \1) log a
9. P (f 0 tg f ) = − log |cos f | + C
f α+1 + C (α 6= −1) α+1
2. P (f 0 f α ) =
1. P (a) = ax + C
f2 − 1
f0 1 − f2
= argch f + C
= argcoth f + C