⃗⃗⃗⃗⃗ de un vector componentes 𝐴𝐵 𝑢 ⃗ ∙ 𝑣 = (𝑥, 𝑦, 𝑧) ⋅ (𝑥, 𝑦, 𝑧)
Modulo |𝑢, ⃗⃗⃗⃗⃗⃗𝑣 | = √(𝑥)2 + (𝑦)2 + (𝑧)2
; ⃗ ∙𝑣 ⃗ 𝑢
⃗ ∙𝑣 ⃗ 𝑢
∝= cos-1|𝑢⃗||𝑣⃗|
Angulo del vector 𝑐𝑜𝑠 ∝= |𝑢⃗||𝑣⃗| ; 𝑖̂ Producto vectorial 𝑢 ⃗ 𝑥𝑣 = |𝑥1 𝑥2
−𝑗̂ 𝑦1 𝑦2
Solución- ∑ 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑒𝑠 𝑒𝑛 𝑋
;
𝑨𝒙 = 𝐴𝑐𝑜𝑠𝜃
𝑘̂ 𝑧1| 𝑧2
;
Proy escalar 𝑝𝑟𝑜𝑦𝑉2 𝑉1 =
∑ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑒𝑠 𝑒𝑛 𝑌 𝐴𝑦 = 𝐴𝑠𝑒𝑛𝜃
𝐵𝑥 = 𝐵𝑐𝑜𝑠𝜃 𝐶𝑥 = 𝐶𝑐𝑜𝑠𝜃
𝐵𝑦 = 𝐵𝑠𝑒𝑛𝜃 𝐶𝑦 = 𝐶𝑠𝑒𝑛𝜃
∑ 𝐹𝒙 = 𝐴𝒙 + 𝐵𝒙 + 𝐶𝑥 𝐹𝑅 = √𝐹𝑥2 + 𝐹𝑦2
⃗⃗⃗⃗⃗ = (𝑥2 − 𝑥1 , 𝑦2 − 𝑦1 ) 𝐴𝐵
∑ 𝐹𝒚 = 𝐴𝑦 + 𝐵𝑦 + 𝐶𝑦 ∑ 𝐹𝑦
; 𝜃 = tan−1 ∑ 𝐹
𝒙
𝑉1 ∙𝑉2 |𝑉2 |
TORQUE.
⃗ 𝒐 = 𝒓 ⋅ ⃗𝑭 (𝑵 ⋅ 𝒎) ⃗𝑭 = 𝝉
⃗𝒐 𝝉 𝒓
𝑖̂ 𝜏𝑜 = 𝑟𝑥𝐹 = | 𝑥 𝐹𝑥
;
𝐹1 = 𝑢𝑥 (𝐹1 𝑐𝑜𝑠𝜃) + 𝑢𝑦 (𝐹2 𝑠𝑒𝑛𝜃) 𝐹2 = 𝑢𝑥 (𝐹2 𝑐𝑜𝑠𝜃) + 𝑢𝑦 (𝐹2 𝑠𝑒𝑛𝜃) 𝐹3 = 𝑢𝑥 (𝐹3 𝑐𝑜𝑠𝜃) + 𝑢𝑦 (𝐹3 𝑠𝑒𝑛𝜃) 𝐹4 = 𝑢𝑥 (𝐹4 𝑐𝑜𝑠𝜃) + 𝑢𝑦 (𝐹4 𝑠𝑒𝑛𝜃) La magnitud 𝐹𝑅 𝑅 = √𝐹𝑥2 + 𝐹𝑦2
𝑐𝑜
angulo 𝑡𝑔𝜃 = 𝑐 𝑎𝑑𝑦
𝐹𝑦
𝜃 = 𝑡𝑔−1 𝐹
𝑥
𝑗̂ 𝑦 𝐹𝑦
𝑘̂ 𝑧| 𝐹𝑧