Formulario Calculo1-2 (imprimir).docx

  • Uploaded by: Rafa Fonseca
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Formulario Calculo1-2 (imprimir).docx as PDF for free.

More details

  • Words: 787
  • Pages: 1
Identidades fundamentales 𝑠𝑒𝑛π‘₯ π‘π‘œπ‘ π‘₯ 𝑠𝑒𝑛π‘₯𝑐𝑠𝑐π‘₯ = 1 β”‚ π‘π‘œπ‘ π‘₯𝑠𝑒𝑐π‘₯ = 1 β”‚ π‘‘π‘Žπ‘›π‘₯π‘π‘œπ‘‘π‘₯ = 1 β”‚,π‘‘π‘Žπ‘› = β”‚π‘π‘œπ‘‘π‘₯ = │𝑠𝑒𝑛2 π‘₯ + π‘π‘œπ‘  2 π‘₯ = 1 π‘π‘œπ‘ π‘₯

𝑠𝑒𝑛π‘₯

1 + π‘‘π‘Žπ‘›2 π‘₯ = 𝑠𝑒𝑐 2 π‘₯ β”‚ 1 + π‘π‘œπ‘‘ 2 π‘₯ = 𝑐𝑠𝑐 2 π‘₯β”‚ π‘ π‘’π‘›π‘šπ‘₯π‘π‘œπ‘ π‘›π‘₯ = 1/2𝑠𝑒𝑛(π‘š βˆ’ 𝑛)π‘₯ + 1/2 π‘π‘œπ‘ (π‘š + 𝑛) π‘₯ Identidades para mΓΊltiplos y fracciones 𝑠𝑒𝑛2π‘₯ = 2𝑠𝑒𝑛π‘₯π‘π‘œπ‘ π‘₯ β”‚ π‘π‘œπ‘ 2π‘₯ = π‘π‘œπ‘  2 π‘₯ βˆ’ sen2 π‘₯ β”‚ π‘π‘œπ‘ 2π‘₯ = 1 βˆ’ 2sen2 π‘₯ β”‚ π‘π‘œπ‘ 2π‘₯ = 2cos2 π‘₯ βˆ’ 1 π‘‘π‘Žπ‘›2π‘₯ =

2π‘‘π‘Žπ‘›π‘₯ 1βˆ’tan2 π‘₯

β”‚ sen2 π‘₯ =

1βˆ’π‘π‘œπ‘ 2π‘₯ 2

β”‚ cos2 π‘₯ =

1+π‘π‘œπ‘ 2π‘₯ 2

β”‚ tan2 π‘₯ =

1βˆ’π‘π‘œπ‘ 2π‘₯ 1+π‘π‘œπ‘ 2π‘₯

-----------------------------------------------------------------------------------------------------------------------------------------------Identidades para sumas y diferencias π‘‘π‘Žπ‘›π‘’+π‘‘π‘Žπ‘›π‘£ 𝑠𝑒𝑛(𝑒 + 𝑣) = π‘ π‘’π‘›π‘’π‘π‘œπ‘ π‘£ + π‘ π‘’π‘›π‘£π‘π‘œπ‘ π‘’ │𝑠𝑒𝑛(𝑒 βˆ’ 𝑣) = π‘ π‘’π‘›π‘’π‘π‘œπ‘ π‘£ βˆ’ π‘ π‘’π‘›π‘£π‘π‘œπ‘ π‘’ β”‚ tan(𝑒 + 𝑣) = π‘π‘œπ‘ (𝑒 + 𝑣) = π‘π‘œπ‘ π‘’π‘π‘œπ‘ π‘£ βˆ’ 𝑠𝑒𝑛𝑣𝑠𝑒𝑛𝑒 β”‚ π‘π‘œπ‘ (𝑒 βˆ’ 𝑣) = π‘π‘œπ‘ π‘’π‘π‘œπ‘ π‘£ + 𝑠𝑒𝑛𝑣𝑠𝑒𝑛𝑒│ tan(u βˆ’ v) =

1βˆ’π‘‘π‘Žπ‘›π‘’π‘‘π‘Žπ‘›π‘£ tanuβˆ’tanv 1+tanutanv

β”‚π‘π‘œπ‘ π‘’π‘π‘œπ‘ π‘£ = 1/2cos(𝑒 + 𝑣) + 1/2cos(𝑒 βˆ’ 𝑣) β”‚ 𝑠𝑒𝑛𝑒𝑠𝑒𝑛𝑣 = 1/2cos(𝑒 βˆ’ 𝑣) βˆ’ 1/2cos(𝑒 + 𝑣) β”‚ β”‚π‘ π‘’π‘›π‘’π‘π‘œπ‘ π‘£ = 1/2 sen(𝑒 + 𝑣) + 1/2sen(𝑒 βˆ’ 𝑣) β”‚ π‘π‘œπ‘ π‘’π‘ π‘’π‘›π‘£ = 1/2sen(𝑒 + 𝑣) βˆ’ 1/2sen(𝑒 βˆ’ 𝑣) β”‚ -----------------------------------------------------------------------------------------------------------------------------------------------Integrales π‘Žπ‘’

1

∫ π‘Žπ‘’ 𝑑𝑒 = π‘™π‘›π‘Ž + 𝑐 β”‚ ∫ 𝑒 𝑒 𝑑𝑒 = 𝑒 𝑒 + 𝑐│ ∫ 𝑠𝑒𝑛𝑒 𝑑𝑒 = βˆ’π‘π‘œπ‘ π‘’ + 𝑐 β”‚ ∫ π‘π‘œπ‘ π‘’ 𝑑𝑒 = 𝑠𝑒𝑛𝑒 + 𝑐│ ∫ 𝑒 𝑑𝑒 = 𝑙𝑛|𝑒| + 𝑐

∫ 𝑠𝑒𝑐 2 𝑒 𝑑𝑒 = π‘‘π‘Žπ‘›π‘’ + 𝑐 β”‚ ∫ 𝑐𝑠𝑐 2 𝑒 𝑑𝑒 = βˆ’π‘π‘œπ‘‘π‘’ + 𝑐 β”‚βˆ« π‘ π‘’π‘π‘’π‘‘π‘Žπ‘›π‘’ 𝑑𝑒 = 𝑠𝑒𝑐𝑒 + 𝑐 β”‚ ∫ π‘π‘ π‘π‘’π‘π‘œπ‘‘π‘’ 𝑑𝑒 = βˆ’π‘π‘ π‘π‘’ + 𝑐 ∫ π‘‘π‘Žπ‘›π‘’ 𝑑𝑒 = 𝑙𝑛|𝑠𝑒𝑐𝑒| + 𝑐 β”‚ ∫ π‘π‘œπ‘‘π‘’ 𝑑𝑒 = 𝑙𝑛|𝑠𝑒𝑛𝑒| + 𝑐 β”‚ ∫ 𝑠𝑒𝑐𝑒 𝑑𝑒 = 𝑙𝑛|𝑠𝑒𝑐𝑒 + π‘‘π‘Žπ‘›π‘’| + 𝑐 β”‚ 𝑑π‘₯

π‘₯

∫ 𝑐𝑠𝑐𝑒 𝑑𝑒 = 𝑙𝑛|𝑐𝑠𝑐𝑒 βˆ’ π‘π‘œπ‘‘π‘’| + 𝑐│ ∫ 𝑙𝑛𝑒 𝑑𝑒 = 𝑒𝑙𝑛𝑒 βˆ’ 𝑒 + 𝑐│ ∫ 𝑒 𝑑𝑣 = 𝑒𝑣 βˆ’ ∫ π‘£π‘‘π‘’β”‚βˆ« βˆšπ‘Ž2βˆ’π‘₯2 = π‘ π‘’π‘›βˆ’1 π‘Ž + 𝑐│ 𝑑π‘₯

1

π‘₯

𝑑π‘₯

1

π‘₯

∫ π‘Ž2 +π‘₯2 = π‘Ž π‘‘π‘Žπ‘›βˆ’1 π‘Ž + 𝑐 β”‚βˆ« π‘₯√π‘₯2βˆ’π‘Ž2 = π‘Ž 𝑠𝑒𝑐 βˆ’1 π‘Ž + 𝑐│ -----------------------------------------------------------------------------------------------------------------------------------------------Derivadas 1 𝐷π‘₯ (𝑒 𝑒 ) = 𝑒 𝑒 𝐷π‘₯ 𝑒 β”‚ 𝐷π‘₯ (π‘Žπ‘’ ) = π‘Žπ‘’ π‘™π‘›π‘Žπ·π‘₯ 𝑒 β”‚ 𝐷π‘₯ (𝑙𝑛𝑒) = 𝐷π‘₯ 𝑒││𝐷π‘₯ (π‘π‘œπ‘ π‘’) = βˆ’π‘ π‘’π‘›π‘’π·π‘₯ 𝑒 ││𝐷π‘₯ (𝑠𝑒𝑛𝑒) = π‘π‘œπ‘ π‘’π·π‘₯ 𝑒 𝑒

𝐷π‘₯ (π‘‘π‘Žπ‘›π‘’) = 𝑠𝑒𝑐 2 𝑒𝐷π‘₯ 𝑒 │𝐷π‘₯ (π‘π‘œπ‘‘π‘’) = βˆ’π‘π‘ π‘ 2 𝑒𝐷π‘₯ 𝑒│𝐷π‘₯ (𝑠𝑒𝑐𝑒) = π‘ π‘’π‘π‘’π‘‘π‘Žπ‘›π‘’π·π‘₯ 𝑒 │𝐷π‘₯ (𝑐𝑠𝑐𝑒) = βˆ’π‘π‘ π‘π‘’π‘π‘œπ‘‘π‘’π·π‘₯ 𝑒 1 βˆ’1 1 βˆ’1 (π‘π‘œπ‘‘ βˆ’1 𝑒) = 𝐷π‘₯ (π‘ π‘’π‘›βˆ’1 𝑒) = 𝐷π‘₯ 𝑒│𝐷π‘₯ (π‘π‘œπ‘  βˆ’1 𝑒) = 𝐷π‘₯ 𝑒│𝐷π‘₯ (π‘‘π‘Žπ‘›βˆ’1 𝑒) = 2 𝐷π‘₯ 𝑒│𝐷π‘₯ 2 𝐷π‘₯ 2 2 √1βˆ’π‘’ 1

│𝐷π‘₯ (𝑠𝑒𝑐 βˆ’1 𝑒) =

π‘’βˆšπ‘’2 βˆ’1

1+𝑒

√1βˆ’π‘’ βˆ’1

𝐷π‘₯ 𝑒│𝐷π‘₯ (𝑐𝑠𝑐 βˆ’1 𝑒) =

π‘’βˆšπ‘’2 βˆ’1

1+𝑒

𝐷π‘₯ 𝑒│𝐷π‘₯ (π‘ π‘’π‘›β„Žπ‘’) = π‘π‘œπ‘ β„Žπ·π‘₯ 𝑒│𝐷π‘₯ (π‘π‘œπ‘ β„Žπ‘’) = π‘ π‘’π‘›β„Žπ·π‘₯ 𝑒

│𝐷π‘₯ (π‘‘π‘Žπ‘›β„Žπ‘’) = π‘ π‘’π‘β„Ž2 𝑒𝐷π‘₯ 𝑒│𝐷π‘₯ (π‘π‘œπ‘‘β„Žπ‘’) = βˆ’π‘π‘ π‘β„Ž2 𝑒𝐷π‘₯ 𝑒│𝐷π‘₯ (π‘ π‘’π‘β„Žπ‘’) = βˆ’π‘ π‘’π‘β„Žπ‘’π‘‘π‘Žπ‘›β„Žπ‘’π·π‘₯ 𝑒 ------------------------------------------------------------------------------------------------------------------------------------------------Casos para integrales trigonomΓ©tricas sen & cos: ∫ 𝑠𝑒𝑛𝑒𝑛 𝑒 𝑑𝑒 & ∫ π‘π‘œπ‘  𝑛 𝑒 𝑑𝑒 n es impar: se expresa en potencias: sen2 x + cos2 x = 1 ∫ 𝑠𝑒𝑛𝑒𝑛 𝑒 𝑑𝑒 & ∫ π‘π‘œπ‘  𝑛 𝑒 𝑑𝑒 n es par: se expresa en potencias: sen2 π‘₯ =

1βˆ’π‘π‘œπ‘ 2π‘₯

2 cos2 x

β”‚ cos2 π‘₯ =

=1 ∫ 𝑠𝑒𝑛𝑒𝑛 𝑒 π‘π‘œπ‘  π‘š 𝑒𝑑𝑒 n o m es impar : se expresa en potencias: sen2 x + 1βˆ’π‘π‘œπ‘ 2π‘₯ 1+π‘π‘œπ‘ 2π‘₯ 𝑛 π‘š 2 β”‚ cos2 π‘₯ = ∫ 𝑠𝑒𝑛𝑒 𝑒 π‘π‘œπ‘  𝑒𝑑𝑒 n es par: se expresa en potencias: sen π‘₯ = 2

1+π‘π‘œπ‘ 2π‘₯ 2

2

∫ π‘‘π‘Žπ‘›π‘’π‘› 𝑒 𝑑𝑒 n es par: π‘‘π‘Žπ‘›π‘› = π‘‘π‘Žπ‘›2 π‘‘π‘Žπ‘›π‘›βˆ’2 = π‘‘π‘Žπ‘›π‘›βˆ’2 (𝑠𝑒𝑐 2 βˆ’ 1) lo mismo cot , sec ,csc , ∫ 𝑠𝑒𝑐𝑒𝑛 𝑒𝑑𝑒 n impar por partes u=secu ∫ π‘‘π‘Žπ‘›π‘š 𝑒 𝑠𝑒𝑐 𝑛 𝑒𝑑𝑒 ∫ π‘π‘œπ‘‘ π‘š 𝑒 𝑐𝑠𝑐 𝑛 𝑒𝑑𝑒 n: par positivo ,ej: ∫ π‘‘π‘Žπ‘›5 𝑒 𝑠𝑒𝑐 4 𝑒𝑑𝑒 = ∫ π‘‘π‘Žπ‘›5 𝑒 (π‘‘π‘Žπ‘›2 𝑒 + 1)𝑠𝑒𝑐 2 𝑒𝑑𝑒 Dis y U ∫ π‘‘π‘Žπ‘›π‘š 𝑒 𝑠𝑒𝑐 𝑛 𝑒𝑑𝑒 ∫ π‘π‘œπ‘‘ π‘š 𝑒 𝑐𝑠𝑐 𝑛 𝑒𝑑𝑒 n: impar ,ej: ∫ π‘‘π‘Žπ‘›5 𝑒 𝑠𝑒𝑐 7 𝑒𝑑𝑒 = ∫(𝑠𝑒𝑐 2 + 1)2 𝑠𝑒𝑐 6 𝑒(π‘ π‘’π‘π‘’π‘‘π‘Žπ‘›π‘’) 𝑑𝑒 Dis y mantener (π‘ π‘’π‘π‘’π‘‘π‘Žπ‘›π‘’)---∫ π‘‘π‘Žπ‘›π‘š 𝑒 𝑠𝑒𝑐 𝑛 𝑒𝑑𝑒; m=par y n=impar , ∫ π‘‘π‘Žπ‘›2 𝑒 𝑠𝑒𝑐 3 𝑒𝑑𝑒 𝑒𝑗: ∫(𝑠𝑒𝑐 2 βˆ’ 1) 𝑠𝑒𝑐 3 𝑒𝑑𝑒 (partes) ----------------------------------------------------------------------------------------------------------------------------------------------SustituciΓ³n trigonomΓ©trica π‘Ž π‘Ž π‘Ž βˆšπ‘Ž2 βˆ’ 𝑏 2 π‘₯ 2 x = sen(t) , βˆšπ‘Ž2 + 𝑏 2 π‘₯ 2 x = tan(t) , βˆšπ‘ 2 π‘₯ 2 βˆ’ π‘Ž2 x = sec(t) 𝑏

π‘ π‘’π‘›πœƒ = π‘Ž/𝑐

𝑏

𝑏

, π‘π‘œπ‘ πœƒ = 𝑏/𝑐 , π‘‘π‘Žπ‘›πœƒ = π‘Ž/𝑏 , π‘π‘œπ‘‘πœƒ = 𝑏/π‘Ž, π‘ π‘’π‘πœƒ = 𝑐/𝑏 , π‘π‘ π‘πœƒ = 𝑐/π‘Ž

Related Documents

Formulario
April 2020 50
Formulario
May 2020 49
Formulario
August 2019 61
Formulario
July 2020 29
Formulario
November 2019 52
Formulario
June 2020 31

More Documents from ""