Formulario Calculo Vectorial.docx

  • Uploaded by: Omar Chuquitarco
  • 0
  • 0
  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Formulario Calculo Vectorial.docx as PDF for free.

More details

  • Words: 989
  • Pages: 3
Formulario Unidad 3 Derivada Direccional Gradiente 𝐷𝑒 𝑓(π‘₯, 𝑦) = 𝑓π‘₯ (π‘₯, 𝑦)π‘π‘œπ‘ πœƒ + 𝑓𝑦 (π‘₯, 𝑦)π‘ π‘’π‘›πœƒ βˆ‡f(x, y) = 𝑓π‘₯ (π‘₯, 𝑦)𝑖 + 𝑓𝑦 (π‘₯, 𝑦)𝑗 βˆ‡f(x, y) βˆ— u Incremento Punto Critico Max β€–βˆ‡f(x, y)β€– 𝐹π‘₯ (π‘₯0 , 𝑦0 ) = 0 𝐹𝑦 (π‘₯0 , 𝑦0 ) = 0 Mim β€–βˆ‡f(x, y)β€– E. Plano Tangente 𝐹π‘₯ (π‘₯0 , 𝑦0 , 𝑧0 )(π‘₯ βˆ’ π‘₯0 ) + 𝐹𝑦 (π‘₯0 , 𝑦0 , 𝑧0 )(𝑦 βˆ’ 𝑦0 ) + 𝐹𝑧 (π‘₯0 , 𝑦0 , 𝑧0 )(𝑧 βˆ’ 𝑧0 ) = 0 E. Plano Tangente a la Superficie 𝑓π‘₯ (π‘₯0 , 𝑦0 , 𝑧0 )(π‘₯ βˆ’ π‘₯0 ) + 𝑓𝑦 (π‘₯0 , 𝑦0 , 𝑧0 )(𝑦 βˆ’ 𝑦0 ) βˆ’ (𝑧 βˆ’ 𝑧0 ) = 0 Max y Min relativos ∑ 𝑑𝑒 π‘–π‘›π‘π‘™π‘–π‘›π‘Žπ‘π‘–π‘œπ‘› 𝑑𝑒 𝑒𝑛 π‘π‘™π‘Žπ‘›π‘œ 2 |𝑛 βˆ™ π‘˜| |𝑛 βˆ™ π‘˜| 𝑑 = 𝑓 (π‘Ž, 𝑏)𝑓 (π‘Ž, 𝑏) βˆ’ [𝑓 (π‘Ž, 𝑏)] π‘₯π‘₯ 𝑦𝑦 π‘₯𝑦 π‘π‘œπ‘  πœƒ = = β€–π‘›β€–β€–π‘˜β€– ‖𝑛‖ Recta de RegresiΓ³n 𝑛 𝑛 𝑛 𝑛 𝑛 βˆ‘ βˆ‘ βˆ‘ 𝑛 𝑖=1 π‘₯𝑖 𝑦𝑖 βˆ’ 𝑖=1 π‘₯𝑖 𝑖=1 𝑦𝑖 1 π‘Ž= 𝑏 = (βˆ‘ 𝑦𝑖 βˆ’ π‘Ž βˆ‘ π‘₯𝑖 ) 𝑛 βˆ‘π‘›π‘–=1 π‘₯𝑖 2 βˆ’ (βˆ‘π‘›π‘–=1 π‘₯𝑖 )2 𝑛 𝑖=1

𝑖=1

Th. Lagrange βˆ‡f(xπ‘œ , yπ‘œ ) = Ξ»βˆ‡g(xπ‘œ , yπ‘œ ) βˆ‡f = Ξ»βˆ‡g + ΞΌβˆ‡h I. Iteradas β„Ž2 (𝑦)

∫

𝑔2 (𝑦)

𝑓π‘₯ (π‘₯, 𝑦)𝑑π‘₯ π‘…π‘’π‘ π‘π‘’π‘π‘‘π‘œ π‘Ž 𝑋

∫

β„Ž1 (𝑦)

𝑓𝑦 (π‘₯, 𝑦)𝑑𝑦 π‘…π‘’π‘ π‘π‘’π‘π‘‘π‘œ π‘Ž π‘Œ

𝑔1 (𝑦)

Area de un Plano π‘Ž ≀ π‘₯ ≀ 𝑏 𝑦 𝑔1 (π‘₯) ≀ 𝑦 ≀ 𝑔2 (π‘₯) 𝑏

𝑔2 (π‘₯)

𝐴=∫ ∫ π‘Ž

Region Plana 𝑐 ≀ 𝑦 ≀ 𝑑 𝑦 β„Ž1 (𝑦) ≀ π‘₯ ≀ β„Ž2 (𝑦) 𝑑

𝑑𝑦 𝑑π‘₯

β„Ž2 (𝑦)

𝐴=∫ ∫

𝑔1 (π‘₯)

𝑐

𝑑π‘₯ 𝑑𝑦

β„Ž1 (𝑦)

TH. De Rubini π‘Ž ≀ π‘₯ ≀ 𝑏 𝑦 𝑔1 (π‘₯) ≀ 𝑦 ≀ 𝑔2 (π‘₯) 𝑏

𝑔2 (π‘₯)

𝑉 = ∬ 𝑓(π‘₯, 𝑦) 𝑑𝐴 = ∫ ∫ π‘Ž

𝑓(π‘₯, 𝑦) 𝑑𝑦 𝑑π‘₯

𝑐 ≀ 𝑦 ≀ 𝑑 𝑦 β„Ž1 (𝑦) ≀ π‘₯ ≀ β„Ž2 (𝑦) 𝑑

𝑔1 (π‘₯)

𝑐

Valor Promedio 1 ∬ 𝑓(π‘₯, 𝑦) 𝑑𝐴 𝐴

β„Ž2 (𝑦)

𝑉 = ∬ 𝑓(π‘₯, 𝑦) 𝑑𝐴 = ∫ ∫

𝑓(π‘₯, 𝑦)𝑑π‘₯ 𝑑𝑦

β„Ž1 (𝑦)

Coo. Polares (x, y) = (rcosΞΈ, rsenΞΈ)0 ≀ 𝑔1 (ΞΈ) ≀ π‘Ÿ ≀ 𝑔2 (ΞΈ) 𝛽

𝑔2 (πœƒ)

∬ 𝑓 𝑑𝐴 = ∫ ∫ 𝛼

Masa

𝑓(π‘Ÿπ‘π‘œπ‘ πœƒ, π‘Ÿπ‘ π‘’π‘›πœƒ)π‘Ÿ π‘‘π‘Ÿ π‘‘πœƒ

𝑔1 (πœƒ)

π‘š = ∬ 𝜌(π‘₯, 𝑦) 𝑑𝐴

Centro de masa 𝑀𝑦 𝑀π‘₯ (π‘₯Μ… , 𝑦̅) = ( , ) π‘š π‘š

𝑀π‘₯ = ∬ 𝑦 βˆ— 𝜌(π‘₯, 𝑦) 𝑑𝐴

𝑀𝑦 = ∬ π‘₯ βˆ— 𝜌(π‘₯, 𝑦) 𝑑𝐴

𝐼

Radio de Giro π‘ŸΜ… = βˆšπ‘š 𝐼π‘₯ = ∬ 𝑦 2 βˆ— 𝜌(π‘₯, 𝑦) 𝑑𝐴

𝐼𝑦 = ∬ π‘₯ 2 βˆ— 𝜌(π‘₯, 𝑦) 𝑑𝐴

Área de una superficie

π‘Ž ≀ π‘₯ ≀ 𝑏 , β„Ž1 (π‘₯) ≀ 𝑦 ≀ β„Ž2 (π‘₯) 𝑦 𝑔1 (π‘₯, 𝑦) ≀ 𝑧 ≀ 𝑔2 (π‘₯, 𝑦)

2

∬ √1 + [𝑓π‘₯ (π‘₯, 𝑦)]2 + [𝑓𝑦 (π‘₯, 𝑦)] 𝑑𝐴

β„Ž2 (π‘₯)

𝑏

𝐴=∫ ∫ π‘Ž

π‘š = ∭ 𝜌(π‘₯, 𝑦, 𝑧)𝑑𝑉

𝑔2 (π‘₯,𝑦)

∫

β„Ž1 (π‘₯)

𝑓(π‘₯, 𝑦, 𝑧)𝑑𝑧 𝑑𝑦 𝑑π‘₯

𝑔1 (π‘₯,𝑦)

𝑀𝑦𝑧 = ∭ π‘₯𝜌(π‘₯, 𝑦, 𝑧)𝑑𝑉 𝑀π‘₯𝑧 = ∭ π‘¦πœŒ(π‘₯, 𝑦, 𝑧)𝑑𝑉 𝑀𝑦𝑧 𝑀π‘₯𝑦 = ∭ π‘§πœŒ(π‘₯, 𝑦, 𝑧)𝑑𝑉

𝐼π‘₯ = ∬ ∫(𝑦 2 + π‘₯ 2 ) βˆ— 𝜌(π‘₯, 𝑦) 𝑑𝑉

𝐼π‘₯𝑦 = ∬ ∫ 𝑧 2 βˆ— 𝜌(π‘₯, 𝑦) 𝑑𝑉

𝐼𝑦 = ∬ ∫(π‘₯ 2 + 𝑧 2 ) βˆ— 𝜌(π‘₯, 𝑦) 𝑑𝑉

𝐼π‘₯𝑧 = ∬ ∫ 𝑦 2 βˆ— 𝜌(π‘₯, 𝑦)𝑑𝑉

𝐼𝑧 = ∬ ∫(π‘₯ 2 + 𝑦 2 ) βˆ— 𝜌(π‘₯, 𝑦) 𝑑𝑉

𝐼𝑦𝑧 = ∬ ∫ π‘₯ 2 βˆ— 𝜌(π‘₯, 𝑦) 𝑑𝑉

𝐼π‘₯ = 𝐼π‘₯𝑦 + 𝐼π‘₯𝑧 𝐼𝑦 = 𝐼π‘₯𝑦 + 𝐼𝑦𝑧 𝐼𝑧 = 𝐼π‘₯𝑧 + 𝐼𝑦𝑧 Integrales triples en coordenadas cilΓ­ndricas ΞΈ2 𝑔2(ΞΈ) β„Ž2(π‘Ÿπ‘π‘œπ‘ ΞΈ,rsenΞΈ)

∭ 𝑓𝑑𝑉 = ∫ 𝑄

∫

∫

𝑓(π‘Ÿπ‘π‘œπ‘ ΞΈ, rsenΞΈ, z)π‘‘π‘§π‘‘π‘Ÿπ‘‘ΞΈ

ΞΈ1 𝑔1(ΞΈ) β„Ž1(π‘Ÿπ‘π‘œπ‘ ΞΈ,rsenΞΈ)

Integrales triples en coordenadas esfΓ©ricas ΞΈ2 πœ™2 𝑝2

∭ 𝑓(π‘₯, 𝑦, 𝑧)𝑑𝑉 = ∫ ∫ ∫ 𝑓(π‘π‘ π‘’π‘›πœ™π‘π‘œπ‘  ΞΈ, π‘π‘ π‘’π‘›πœ™π‘ π‘’π‘› ΞΈ, π‘π‘π‘œπ‘ πœ™)𝑝2 π‘ π‘’π‘›πœ™ π‘‘π‘π‘‘πœ™π‘‘ΞΈ 𝑄

ΞΈ1 πœ™1 p1

π‘₯ = π‘π‘ π‘’π‘›πœ™π‘π‘œπ‘  ΞΈ 𝑦 = π‘π‘ π‘’π‘›πœ™π‘ π‘’π‘› ΞΈ 𝑧 = π‘π‘π‘œπ‘ πœ™ Jacobianos

Cambio de variables en integrales dobles 𝑑π‘₯ 𝑑𝑒

𝑑(π‘₯, 𝑦) | = 𝑑(𝑒, 𝑣) | 𝑑𝑦

𝑑π‘₯ 𝑑𝑣

∫ ∫ 𝑓(π‘₯, 𝑦)𝑑π‘₯𝑑𝑦

𝑑𝑣

𝑑(π‘₯, 𝑦) = ∫ ∫ 𝑓(𝑔(𝑒, 𝑣), β„Ž(𝑒, 𝑣)) | | 𝑑𝑒𝑑𝑣 𝑑(𝑒, 𝑣) 𝑠

| 𝑑π‘₯ 𝑑𝑦 𝑑𝑦 𝑑π‘₯ = βˆ— βˆ’ βˆ— 𝑑𝑦 | 𝑑𝑒 𝑑𝑣 𝑑𝑒 𝑑𝑣

𝑑𝑒

𝑅

Campo CuadrΓ‘tico Inverso

Criterio para Campos Vectoriales Conservativos en el plano πœ•π‘ πœ•π‘€ = πœ•π‘₯ πœ•π‘¦

π‘˜ 𝑒 β€–π‘Ÿβ€–2 Rotacional de un campo vectorial F(x, y, z) =

πœ•π‘ƒ

Rot F(x,y,z)=𝛻 π‘₯ 𝐹(π‘₯, 𝑦, 𝑧) = (πœ•π‘¦ βˆ’

πœ•π‘ )𝑖 πœ•π‘§

πœ•π‘ƒ

βˆ’ (πœ•π‘₯ βˆ’

Criterio para Campos Vectoriales Conservativos en el espacio πœ•π‘ƒ πœ•π‘ πœ•π‘ƒ πœ•π‘€ πœ•π‘ πœ•π‘€ = , = , = πœ•π‘¦ πœ•π‘§ πœ•π‘₯ πœ•π‘§ πœ•π‘₯ πœ•π‘¦ Integral de LΓ­nea

πœ•π‘€ )𝑗 πœ•π‘§

πœ•π‘

+ ( πœ•π‘₯ βˆ’

πœ•π‘€ )π‘˜ πœ•π‘¦

Divergencia de un campo vectorial 𝑑𝑖𝑣 𝐹 = 𝛻 βˆ™ 𝐹(π‘₯, 𝑦, 𝑧) =

πœ•π‘€ πœ•π‘ πœ•π‘ƒ + + πœ•π‘₯ πœ•π‘¦ πœ•π‘§

𝑏

βˆ«π‘“(π‘₯, 𝑦, 𝑧) = ∫ 𝑓(π‘₯(𝑑), 𝑦(𝑑), 𝑧(𝑑))√[π‘₯Β΄(𝑑)]2 + [𝑦´(𝑑)]2 + [𝑧´(𝑑)]2 𝑑𝑑 π‘Ž

β„‚

Integral de LΓ­nea de un campo vectorial 𝑏

∫𝐹 βˆ™ π‘‘π‘Ÿ = ∫𝐹 βˆ™ 𝑇 𝑑𝑠 = ∫ 𝐹(π‘₯(𝑑), 𝑦(𝑑), 𝑧(𝑑)) βˆ™ π‘ŸΒ΄(𝑑) 𝑑𝑑 𝑐

π‘Ž

𝑐

Integrales de lΓ­nea en forma diferencial ∫𝐹 βˆ™ 𝑐

π‘‘π‘Ÿ 𝑑𝑑 = ∫(𝑀 𝑑π‘₯ + 𝑁 𝑑𝑦) 𝑑𝑑 𝑐

Formulas de integraciΓ³n 𝑣 π‘Ž2 𝑣 βˆšπ‘Ž 2 βˆ’ 𝑣 2 + π‘†π‘’π‘›βˆ’1 + 𝐢 2 2 π‘Ž 2 𝑣 π‘Ž ∫ βˆšπ‘£ 2 Β± π‘Ž2 𝑑𝑣 = βˆšπ‘£ 2 Β± π‘Ž2 Β± 𝑙𝑛(𝑣 + βˆšπ‘£ 2 Β± π‘Ž2 ) + 𝐢 2 2 βˆšπ‘Ž2 + 𝑣 2 β†’ π‘₯ = π‘Ž π‘‘π‘Žπ‘›π‘”πœƒ βˆšπ‘Ž2 βˆ’ 𝑣 2 β†’ π‘₯ = π‘Ž π‘ π‘’π‘›πœƒ βˆšπ‘£ 2 βˆ’ π‘Ž2 β†’ π‘₯ = π‘Ž π‘ π‘’π‘πœƒ ∫ βˆšπ‘Ž2 βˆ’ 𝑣 2 𝑑𝑣 =

Related Documents


More Documents from "Miguel Montenegro"

El Electromagnetismo.docx
October 2019 1
October 2019 4
Teorico.docx
October 2019 1
June 2020 56
June 2020 59