Formulario Calculo I.docx

  • Uploaded by: Victor Cruz
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Formulario Calculo I.docx as PDF for free.

More details

  • Words: 371
  • Pages: 2
FORMULARIO CALCULO I CARRERA: ING. ELECTROMECANICA

AUTOR: CRUZ CERON VICTOR HUGO

FIGURAS Y CUERPOS GEOMETRICOS: 1.-CIRCULO: PERIMETRO= 2∏r, AREA=∏r2 3.- PIRAMIDE= (1/3)*Bh 4.-CILINDRO CIRCULO RECTO: VOLUMEN=∏r2h 5.-Cono circular recta: Volumen=(1/3)* ∏R2h 6.-Esfera: volumen=(4/3) ∏R3 8.-segmento de esfera: volumen=∏h2(r-h/3) 𝐵+𝑏 9.-trapecio: Área= 2 𝑎

2.-PRISMA: VOLUMEN=Bh Área lateral=2∏rh Área lateral=∏r h Área=4∏r2 Área lateral=2∏rh

Principales identidades de trigonometría: sen2x + cos2 x = 1 tan2 x + 1 = sec2 x 1 Cot 2x + 1 = csc2 x sen2x= 2 (1 − 𝑐𝑜𝑠2𝑥) 1

cos2x=2 (1 + 𝑐𝑜𝑠2𝑥)

sen 2x = 2 sen x cosx

𝑡𝑎𝑛𝑥 =

𝑐𝑜𝑡𝑎𝑛𝑥 = 𝑠𝑒𝑛𝑥

𝑠𝑒𝑛𝑥

𝑐𝑜𝑠𝑥

𝑐𝑜𝑠𝑥 1

1

𝑠𝑒𝑐𝑥 = 𝑐𝑜𝑠𝑥

𝑐𝑜𝑠𝑒𝑐𝑥 = 𝑠𝑒𝑛𝑥

GEOMETRIA PLANA:

Dy/dx=m LT//LR // m1=m2 Perpendicular=m1m2=-1 Ecuación plantilla de la tg.- (y-y1)=m(x-x1) Ecuación de presentación.- ax+by+c=0 Ecuación plantilla de la N.- (y-y1)= -1/m(x-x1) Ecuación de presentación.- ax+by+c=0 Longitudes: 𝑦 LT= √1 + (𝑦 ′ )² LN=𝑦√1 + (𝑦 ′ )² 𝑦′ 𝑌

LST=

LSN=y y’

𝑌′

Formula de derivadas: Exponente de ingeniería.- y=𝑢𝑣

Formula de devinovich.- f(x,y)=0

Formula de parámetros.- x=f (t) Y=f (t)

𝑣

y’=𝑢𝑣 (𝑣 ′ 𝑙𝑛𝑢 + 𝑢 𝑢′) 𝑑𝑦 𝑑𝑥

𝑑𝑦 𝑑𝑥

=−

=

𝑑𝑦 𝑑𝑡 𝑑𝑥 𝑑𝑡

𝑔 𝑓(𝑥,𝑦) 𝑔𝑥 𝑔 𝑓(𝑥,𝑦) 𝑔𝑦

Área=2∏r(r+h) Área=∏r(r+h)

Formulas trigonométricas: 𝑑(𝑠𝑒𝑛𝑣) 𝑑𝑥 𝑑(𝑡𝑔𝑣)

𝑑𝑣

𝑑(𝑐𝑜𝑠𝑣)

= 𝑐𝑜𝑠𝑣 𝑑𝑥

𝑑𝑥 𝑑(𝑐𝑡𝑔𝑣)

𝑑𝑣

= 𝑠𝑒𝑐²𝑣 𝑑𝑥

𝑑𝑥 𝑑(𝑠𝑒𝑐𝑣)

𝑑𝑣

1

𝑑𝑥 𝑑(𝑎𝑟𝑐𝑠𝑒𝑐𝑣) 𝑑𝑥

= =

1

𝑑𝑥 𝑑(𝑎𝑟𝑐𝑐𝑜𝑠𝑣)

𝑑𝑣

𝑑𝑣

= −𝑐𝑠𝑒𝑐𝑣 ∗ 𝑐𝑡𝑔𝑣 𝑑𝑥

𝑑𝑥 𝑑(𝑎𝑟𝑐𝑐𝑡𝑔𝑣)

𝑑𝑣

= 1+𝑣² 𝑑𝑥

𝑑𝑥 𝑑(𝑎𝑟𝑐𝑠𝑒𝑛𝑣)

𝑑𝑣

= −𝑐𝑠𝑒𝑐²𝑣 𝑑𝑥

𝑑𝑥 𝑑(𝑐𝑠𝑒𝑐𝑣)

= 𝑠𝑒𝑐𝑣 ∗ 𝑡𝑔𝑣 𝑑𝑥

𝑑𝑥 𝑑(𝑎𝑟𝑐𝑡𝑔𝑣)

𝑑𝑣

= −𝑠𝑒𝑛𝑣 𝑑𝑥

1

𝑑𝑣

= − 1+𝑣² 𝑑𝑥 =−

√1−𝑣² 𝑑𝑥 1 𝑑𝑣

𝑑𝑥 𝑑(𝑎𝑟𝑐𝑐𝑜𝑠𝑒𝑐𝑣)

𝑣√𝑣²−1 𝑑𝑥

𝑑𝑥

1

𝑑𝑣

√1−𝑣² 𝑑𝑥 1 𝑑𝑣

=−

𝑣√𝑣²−1 𝑑𝑥

Funciones hiperbólica: 𝑑(𝑠𝑒𝑛ℎ𝑣) 𝑑𝑥 𝑑(𝑡𝑔ℎ𝑣)

𝑑(𝑐𝑜𝑠ℎ𝑣)

𝑑𝑣

𝑑𝑥 𝑑(𝑐𝑡𝑔ℎ𝑣)

= 𝑠𝑒𝑐ℎ²𝑣 𝑑𝑥

𝑑𝑥 𝑑(𝑠𝑒𝑐ℎ𝑣)

𝑑𝑣

= −𝑠𝑒𝑐ℎ𝑣 ∗ 𝑡𝑔ℎ𝑣 𝑑𝑥

𝑑𝑥 𝑑(𝑎𝑟𝑐𝑡𝑔ℎ𝑣)

1

𝑑𝑣

= 1−𝑣² 𝑑𝑥

𝑑𝑥 𝑑(𝑎𝑟𝑐𝑠𝑒𝑛ℎ𝑣) 𝑑𝑥 𝑑(𝑎𝑟𝑐𝑠𝑒𝑐ℎ𝑣) 𝑑𝑥

𝑑𝑣

= 𝑐𝑜𝑠ℎ𝑣 𝑑𝑥

= =

1

𝑑𝑣

√1+𝑣² 𝑑𝑥 −1 𝑑𝑣 𝑣√1−𝑣² 𝑑𝑥

𝑑𝑣

= 𝑠𝑒𝑛ℎ𝑣 𝑑𝑥

𝑑𝑣

= −𝑐𝑠𝑒𝑐ℎ²𝑣 𝑑𝑥

𝑑𝑥 𝑑(𝑐𝑠𝑒𝑐ℎ𝑣)

𝑑𝑥 𝑑(𝑎𝑟𝑐𝑐𝑜𝑠ℎ𝑣)

1

𝑑𝑣

= 1−𝑣² 𝑑𝑥 =

1

𝑑𝑣

𝑑𝑥 √𝑣²−1 𝑑𝑥 𝑑(𝑎𝑟𝑐𝑐𝑜𝑠𝑒𝑐ℎ𝑣) −1 𝑑𝑣 𝑑𝑥

𝑑𝑣

= −𝑐𝑠𝑒𝑐ℎ𝑣 ∗ 𝑐𝑡𝑔ℎ𝑣 𝑑𝑥

𝑑𝑥 𝑑(𝑎𝑟𝑐𝑐𝑡𝑔ℎ𝑣)

=

𝑣√1+𝑣² 𝑑𝑥

Related Documents


More Documents from "Miguel Montenegro"