Formula Sheet-probability And Random Processes

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Formula Sheet-probability And Random Processes as PDF for free.

More details

  • Words: 2,080
  • Pages: 2
Basics (Set theory, Axioms of Probability, Total Probability, Baye’s Theorem)                             

    0,           #$%

         …    , 

   

 ,  & 

|"  #%    

|(  ( 

       '       |     '  |   

( | 

|     '  |    ! !  ,  . &  -    ,!   ,! ,! Distribution and Density Functions (Single Random Variable) 23   4 5  23 ∞  1, 23 ∞  0, 23     ,  &   8

 )     *  =

< :3   1

 -



:3   ? ( @  ( 

B

23   < :3 A&A

-0 ,, 1

,

,  . & 

&23  & PQR, :3   S >TB ,  U 0

 9 4 5 *   23 *   23  

CDEFFGDH, :3  

1

B>MN > ON

:3  ;

>= √2KL * N >B >B N 1 1  K 4K * PQR, 23   1  >TB ,  U 0, V   ,   * WDXYPGCZ, :3   * *ON , 23   1  *ON ,  U 0, V   L[ ,   L S S L 2 2 1  ^GH_`GDY, :3   - - 1>- , V   ,   1   EHG], :3   ,  5  5 ^, 23   ,  5  5 ^, 1,  U ^ ^ ^ CP_`PaWGb H_ _] cPWH_EYYG aWGDYF EHaGY ]GWFa FEbbPFF,   ,  :3  S R_GFF_H,   ,  :3   >T , V     S 1 1 ,!  1 -> , V   ,   ,  * = 2B   2B g :B g :B | 23 d4 5 e4 f gh  , Ri] 

|4   

   < |4  :3  & 1  2 g 1  2B g :B  B >= One Function of Random Variable :3   :3   8 :3 , 8 2k ., m  2k> 23  .  8   '  8*  j :k .  l  ' l |8  | |8  | Expectations = = no4  ^mp  no4p  ^nomp Linearity of Expectation V   no4p  < :3 &  ? 4  4( 4(  no4|"p  < :3 |"&  ? 4  4( |"4(  >=

=

(

>=

no8p  < 8:3 &  ? 4  4( 84(  (

>=

no4p `DWs_t, 4 U g 5 g

r  no4  no4p

=

Φ  no |3 p  < |B :3 & >=

(

>=

qo4p  L3*  no4  no4p*  no4 * p  no4p*

L* bZPuXbZPt, |4  no4p| U v 5 * v

Φ}~ €‚ƒ„…~ƒ„ 0  no4  p  V

=

V  no4

p

=

 <   :3 & =

>=

w3 x  no yz3 p  < yzB :3 & >=

1 :3   < >yzB w3 x& 2K >=

Joint Distribution, Density and other relations(Functions of two random variables, Two functions of two random variables) = = = 23k ∞, .  23k , ∞=0 23   23k , ∞  :3   < :, .&. :† ‡  < :†ˆ ‡, x&x  < :3k d4‡, x, m‡, xh &x >=

 9 4 5 * , . 9 m 5 .*   2* , .*   2 , .*   2* , .   2 , .  ‹HiPR: :, .  :3 :k ., 2, .  23 2k .   CŽ,  j 2 ‡  <

Š‘’=

<

BŠ,

Š0>Š‘’> = >BŠ,‘’>=

:, .&&.

>=

>=

:, . 2, . B Š ‰ * 2, .  < < :, .&&.  ‰‰. >= >=

4 f , m f .  1  23   2kŠ  2, . no4  ^mp  no4p  ^nomp ” &  j • , •  no4mp “ no4pnomp     – ” & 

‰‡, x   CŽ, , —  ZŽ,  j 2‡, x  ˜ :3k , . &&. j :‡, x  :3k d4‡, x, m‡, xh š ‰‡ ‰.‡, x ™ ‰‡

œPGuHGa: 2 ‡  ž  :, ‡& j : ‡  Ÿ

¡ ¢£  ¡



¡Ÿ ¡

‰‡, x ‰x š  :3k 4‡, x, m‡, x ‰.‡, x ‰8, . ‰8, . ‰ ‰. ‰x š š ‰›, . ‰›, . ‰ ‰. Ÿ ¤¥B,Š ¡  wx , x*  :^‡, ‡  :‡, ‡  ž  &. ¡ ¤  w3 x wk x* ,  & 

= = = = BŠ 3k  n¦4  §B dm  §Š h¨ ©BŠ  wx , x*   < < :, . yzªB«zNŠ &&. < < :, .&&.  1 LB LŠ  no4mp  no4pnomp >= >= >= >= :.|: :.|: w3k x , x*   no yzª 3 yzN k p 1 :|.   = :3k , .  * ˜ >yzª B«yzNŠ w3k x , x* && :. 4K ž>= :.|:& yzª B«yzN Š ™ , ˜ :3k .&&. ™

= :3k , . n84|"  < 8:|"& :3  >= no8 48* m|p  no8 8* m|p no®4  no4p  m  nomp¯* p U 0

:k .|4   

Φ , *   no |ª3«|Nk p  ˜ |ªB«|NŠ :3k , .& ™

n¬no84, m|4p­  no84, mp

Sequences of Random Variables °± ²Fa. uX b_HFaDHa, &  nom  * p,  min x› 0 & j   nomp

œGHPDW °± ²Fa,  no®m  4  ^¯* p,  min x›  rk 

2 , ¸   2 , ∞, ¸ , ∞

4  4  '  4 j 23ª,…,3·  , … ,  

3k r L3* 3

=

=

nomp  n3 onk om|4pp

:, .|‡ 

‰ ‰ 3k  0 &  0 j   * ,^ ‰ ‰^ L3

º^ " ›& ” &  &  4, m  &   & ¾  4m j L†* =L3*  Lk*

: , ¸   < < : , * , ¸ , ¹ &* &¹ >= >=

! . »  ’ » 5 ' . »  ’ » j , &   j :- .  2 -> .o1  2B .p>- :B . ,  1!   ,! B PtPWX¿ZPWP

¼½

à ∞ j |4  4| 9 v, : 

Stochastic Convergence 4 ÀÁÁÁÁÁÁÁÂ 4,  °± ±PHFP

4 ÀÁÁÁÁÁÂ 4,  ÇGFaWGuEaG_H

à ∞ j no|4  4| p à 0,  *

f

̰

Ä

DY`_Fa PtPWX¿ZPWP _W ¿GaZ Å0Æ

4 ÀÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÂ 4, 

ÅW_uDuGYGaX

4 ÀÁÁÁÁÁÁÁÂ 4,  ÇPHFGaX

à ∞ j ®|4  4| 9 v¯  1

à ∞ j ®|4  4| f v¯ à 0, 

̰

" j ^

4 ÀÁÁÁÁ 4,  à ∞ j :  à :3 ,  à ∞ 4 ÀÁÁÁÁÁÁÁÁ 4,  à ∞ j 2  à 23 ,  à ∞ ÅW_uDuGYGaX DP 1 È4ÈÈÈ  4  '  4 , x›  4(  & x› V  r, ¿PDs YD¿ j4È ÀÁÁÁÁÁÁÁ r, FaW_HC YD¿, j4È à r,  à ∞ bPHaWDY YG`Ga, ¾  Stochastic Processes

1

4  '  4 , x› V   r,   L * 9 ∞ j ¾ à ¾~Êr, L * 

HaZ _WiPW , 2ŽaÆ …ŽaH  Æ , … ,  ; Æ , … ,    ®4  5  , … , 4  5  , :ŽaÆ …ŽaH  Æ , … ,  ; Æ , … ,    2 ;    2 , ∞;  , * 

=

: ;    < : , * ;  , *  &* >= =

=

 , * 

>= >=

=

r3   n4p  < :; &

DEa_b_WW, Ì , *   no4 4* p  < <  * : , * ;  , * & *

:3k† , ., ‡ :† ‡

>=

¤· ¢Žda h…Ža  BÆ ,…,B· ;¼Æ ,…,¼· H Æ ¤Bª …¤B·

no4 * p  Ì, 

DEa_b_tDW,  , *   Ì , *   r3  r3 * 

bW_FF b_tDW,  , *   Ì3k  , *  Í,  *, *   r3  rk *  ¿ZGaP H_GFP, ˆˆ  , *   0,  “ * , r  0, Î  1@Î ±±±, :ŽaÆ …ŽaH  Æ , … ,  ; Æ , … ,    :ŽaÆ …ŽaH  Æ , … ,  ; Æ  b, … ,    Î —±±, V    , no4 4* p  Ì  *   ÌÎ, no4 * p  Ì0, Î  ÌÎ  |r|* , Î  , ÌÎ  ÌÎ, Ì0 U ÌÎ 0 Ï_GHaYX —±±, no4 4* p  Ì3k   *   Ì3k Î, 3k Î  Ì3k Î  r3 rk Systems with Stochastic Inputs m  , 4    `P`_WXYPFF, m &  &  4 )    V V.    j    b_WW b_P]],  , *  

bW_FF b_WW, Ì3k  , *   no4 m* p

=

YGHPDW, m  Ðo4p  4 Ñ ›  < 4  g›g&g, x›  ›  Ðo@p, n¬Ðo4p­  Ьno4p­, 4  m   >=

=

YGHPDW, 4Ò › mÒ, œÓ‹, 48 m8 , YGHPDW, nomp  no4p Ñ ›  r3 < ›g&g =

YGHPDW, Ì3k  , *   < Ì33  , *  g›g&g , Ìkk ? >=

=

R_¿PW FRPb, Õ  ÖÌÎ < ÌÎ >=

>y×Ø

>=

&Î j ÌÎ 

1 = < Õ y×¼ &Õ 2K >=

ÙÚ Û ±Ü, @Î Û 1,1 Û 2K@Õ, yÝØ Û 2K@Õ  Þ Integration (all integrals are w.r.t x) 1  B 1 1 >B«Š  « < sin  cos  < cos    < ß B 

<   || < ß B«Š 

<   ß  ß 1 1 ß B«Ÿ 1 1 < tan  ln || < ß B«Ÿ  ß <  l    < A

<    > « ß    1 Differentiation   & &. &. & &  & ß B &    &  l  A > ß B Bç      l  A         ß æ

B æ ç & & & & & & & * &  * & & sin   cos  cos     & & Matrix Operations 1  *  ^ > è è  &  ^   é ê ,     :   ë  & || * ** (y Prepared by: Hammad Munawar (Institute of Avionics and Aeronautics, Islamabad, Pakistan) [email protected]

(COPYRIGHT STATEMENT: May be used / distributed / edited freely, as long as the name of the original author is included)

Related Documents