FORMULA SHEET FOR SPH4U Kinematics
Work and Energy π£=
π₯π π₯π‘
π=
π₯π£ π₯π‘
Work
π = - πΊ
π = πΉ β π₯π = πΉπ₯π cos π Work-Energy Principle:
Five Kinematics Equations 1 π₯π = π£) + π£, π₯π‘ 2
π = π₯πΈ
1 πΈH = ππ£ 2 1 π₯πΈH = π(π£,- -π£)- ) 2 Gravitational Potential Energy
π£, = π£) + ππ₯π‘ π£,-
=
π£)-
πΈK = ππβ
+ 2 π β π₯π
Dynamics
Coulombβs Law ππ π πNmπ = 9 β 10h πΆ Field Strength (Intensity) β° =
πΉ2 π = π - π π π
Electrical Potential
π₯πΈK = ππ(β, -β) )
π = - π
πΉ) = 0 )
πΈ = πΈH + πΈK
πΉ123 = ππ Newtonβs Third Law: πΉ:; = - πΉ;: Gravity and Friction πΉ= = ππ πΉ,? = ππ
Magnetic Force on a moving charge
Power
π£ = ππππ π‘
Newtonβs Second Law:
π π
Magnetic Field
Newtonβs First Law:
and
Electric Field
Mechanical Energy
πΉ123 =
π π
πΉ2 = π
Kinetic Energy
1 π₯π = π£) π₯π‘ + ππ₯π‘ 2 1 π₯π = π£, π₯π‘ β ππ₯π‘ 2
Gravitational Potential
π₯π =
π₯πΈ π = π₯π‘ π₯π‘
Gravitational Fields Newtonβs Law of Gravity ππ πΉ= = πΊ - π π Field Strength (Intensity) π’ =
πΉ= π = πΊ - π π π
(= π at the surface of the Earth) ]^^
πΊ = 6.67 β 10
Nmkg -
πΉk = π π£ Γπ΅ πΉk = ππ£π΅ sin π on a current πΉk = πΌ π Γπ΅ πΉk = πΌππ΅ sin π Magnetic Field of a Wire with Current πr πΌ π΅= 2π π Magnetic Field of a Solenoid π π΅ = πr πΌ π
Wave Nature of Light
Interference
π =πβπ π = 3.0 β 10w m/s π=
πr πr
πr = 8.854 β 10
πr = 4 π β 10]~
For distance d between the sources and the nth nodal line, sin πβ = π β
1
]^-
Special Theory of Relativity
1 π β 2 π
For light waves CN β mN A-
Wave equation π£ =πβπ
π₯β 1 π = π β β πΏ 2 π Youngβs Interference
π£^ π^ = π£- πRefraction π^ sin π^ π£^ = = π- sin π- π£-
π sin πk = π β , π = 0, 1, 2, β¦ π
sin πβ = π β
1 π β , π = 0, 1, 2, β¦ 2 π
Thin Film Interference Reflected rays Constructive
π π‘ = 2π β 1 4
Destructive
Snellβs Law
π‘=π
π^ sin π^ = π^ sin π-
π β₯1 π€ π is wavelength π€ is width of the opening or size of the obstacle
π 2
π = 0, 1, 2, β¦
Observable diffraction condition
Transmitted rays Constructive π‘=π Destructive
1β Time dilation
π£π-
Ξπ‘k = πΎ Ξπ‘β° Length contraction πΏβ° πΏk = πΎ Relativistic Mass πk = πΎ πβ° Relativistic Momentum π = πΎ ππ£
Bright fringes
Dark fringes
Transmission
1
πΎ=
π 2
π π‘ = 2π β 1 4 π = 0, 1, 2, β¦
Rest Energy πΈ?2β°3 = π?2β°3 π Total energy πΈ?2β°3 = πΎ π?2β°3 π Quantum Mechanics Planckβs Constant β = 6.626 β 10]βΉΕ J β s, or β = 4.136 β 10]^Ε½ eV β s Quantized energy πΈ = πβπ, π = 1, 2, 3, β¦ De Broglie Wavelength β β π=π= = π ππ£ Heisenberg Uncertainty Principle 1 Ξπ₯ β Ξπ β₯ β 2 β β= 2π