Formula Rio Area - Volumenes

  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Formula Rio Area - Volumenes as PDF for free.

More details

  • Words: 363
  • Pages: 1
FIGURAS PLANAS Y CUERPOS EN EL ESPACIO POLÍGONO

PERÍMETRO Y ÁREA DE POLÍGONOS Rectángulo Rombo Romboide

Triángulo

Cuadrado

P = a +b + c

P = 4⋅ a

P = 2 ⋅ (b + a )

A = a2

A =b⋅a

Trapecio

Trapezoide

P = B +c +b + d

P = a +b + c + d

Polígono regular

DIBUJO

PERÍMETRO ÁREA

NOMBRE

A=

b⋅ h 2

Circunferencia

Arco

P = 2 ⋅ (b + c )

P = 4⋅ a A=

D⋅d 2

A=

A =b⋅a

A = suma de las áreas de los dos triángulos

B +b ⋅a 2

LONGITUD Y ÁREA DE FIGURAS CIRCULARES Círculo Sector circular Segmento circular

P = n⋅ l n = nº de lados

Corona circular

P⋅a 2

A=

Trapecio circular

DIBUJO

LONGITUD

L = 2π ⋅ R

LA =

2π ⋅ R ⋅ nº 360 º

AS =

A = π ⋅ R2

ÁREA

πR 2 ⋅ nº 360 º

ASegmento = ASector − ATriángulo

ACorona = π ⋅ ( R 2 − r 2 )

AS =

π ⋅ (R 2 − r 2 ) ⋅ nº 360 º

ÁREA Y VOLUMEN DE CUERPOS EN EL ESPACIO NOMBRE

Cubo o hexaedro

Paralelepípedo u ortoedro

Prisma

Cilindro

Pirámide

Cono

Tronco de pirámide

Tronco de cono

Esfera

DIBUJO

No tiene desarrollo plano

DESARROLLO

AB = π ⋅ R AL = 2πRH AT = 2 AB + AL 2

ÁREA

VOLUMEN

A = 6a

2

V = a3

A = 2( ab + ac + bc )

V = a ⋅b ⋅c

AT = 2 AB + AL

V = AB ⋅ H

AB = π ⋅ R AL = πRG AT = AB + AL

AB1 = π ⋅ R 2

2

AT = AB + AL

V=

1 ⋅ AB ⋅ H 3

A = A B1 + A B2 + AL

AB2 = π ⋅ r 2 AL = π ( R + r) G

A = 4π ⋅ R 2

A = AB1 + AB 2 + AL

V=

1 ⋅ ( AB1 + AB2 + 3

AB1 ⋅ A B2 ) ⋅ H

V =

4 ⋅ π ⋅ R3 3

Related Documents

Formula Rio
May 2020 22
Formula Rio
November 2019 23
Formula Rio
June 2020 19
Formula Rio
May 2020 20
Formula Rio
December 2019 25