Forecasting Supply Chain Requirements
Dr.Burcu Ozcam
LOG301
The Importance of Forecasting Governments forecast unemployment, interest rates, and expected revenues from income taxes for policy purposes Marketing executives forecast demand, sales, and consumer preferences for strategic planning College administrators forecast enrollments to plan for facilities and for faculty recruitment Retail stores forecast demand to control inventory levels, hire employees and provide training Dr.Burcu Ozcam
LOG301
What’s Forecasted in the Supply Chain?
•Demand, sales or requirements •Purchase prices •Replenishment and delivery lead times CR (2004) Prentice Hall, Inc. Dr.Burcu Ozcam
LOG301
Some Forecasting Method Choices •Historical projection Moving average Exponential smoothing •Causal or associative Regression analysis •Qualitative Surveys Expert systems or rule-based •Collaborative
Dr.Burcu Ozcam
LOG301
Forecasting We focus on using historical data for forecasting demand This should not diminish the importance of other sources of information and common sense Information consists of 1. Historical data on our time series 2. Insight/knowledge and common sense
Don’t confuse information with intuition Lets try a case study. Forecast a real time series from scratch using intuition! Dr.Burcu Ozcam
LOG301
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400 1200 1000 800 600 400 Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400 1200 1000 800
We’ll guess same as last month
600 400
Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400 1200 1000 800 600 400 Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Month
Dr.Burcu Ozcam
LOG301
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400 1200 1000
We’ll guess same as last month plus a little more for a possible trend
800 600 400
Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400 1200 1000
This is easy, who needs forecasting
800 600 400 Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400 1200 1000
Continue with our successful method: guess the same as last month plus a little more for a possible trend
800 600 400
Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400 1200 1000 800 600 400 Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400 1200 1000
Definitely looks like a trend
800 600 400 Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400 1200 1000 800 600 400 Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400 1200 1000
Trend might be a tad steeper than I thought
800 600 400
Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400 1200 1000
Opps
800 600 400 Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400 1200 1000
Momentary deviation, trend will continue
800 600 400
Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400 1200 1000
See, I told you this was easy!
800 600 400 Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400
Trend will continue
1200 1000 800 600 400
Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400 1200 1000
Opps, another momentary fluctuation:
800 600 400 Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Trend should continue
Sales ($1000)
1400 1200 1000 800 600 400
Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Oh oh!
Sales ($1000)
1400 1200 1000 800 600 400
Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400 1200
Sales has leveled off: Lets average last few points
1000 800 600 400
Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400 1200
Oh oh, maybe things are going down hill
1000 800 600 400
Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400 1200
Let’s be conservative and Assume a negative trend
1000 800 600 400
Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400 1200
Thank goodness, we are still basically level
1000 800 600 400
Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400 1200
We’ll guess same as last month
1000 800 600 400
Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
This stuff is easy
Sales ($1000)
1400 1200 1000 800 600 400
Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
We have for sure leveled off
Sales ($1000)
1400 1200 1000 800 600 400
Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800
Big trouble!!! Chief forecaster Smith and CEO Smothers fired!
1600
Sales ($1000)
1400 1200 1000 800 600 400
Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
New chief forecaster points out the obvious trend
Sales ($1000)
1400 1200 1000 800 600 400
Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Remarkable turnaround in sales. New CEO Smithers given credit
Sales ($1000)
1400 1200 1000 800 600 400
Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400
Still looks like a trend to me
1200 1000 800 600 400
Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400
Maybe not!
1200 1000 800 600 400
Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400
Level except for anomaly
1200 1000 800 600 400
Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400
Have things turned around?
1200 1000 800 600 400
Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400
I’ll hedge my bets
1200 1000 800 600 400 Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000
Things have turned around. Perhaps Smithers truly is a genius
1800 1600
Sales ($1000)
1400 1200 1000 800 600 400 Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800
Trend up!
1600
Sales ($1000)
1400 1200 1000 800 600 400 Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800
Not bad!
1600
Sales ($1000)
1400 1200 1000 800 600 400 Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800
Revise trend a tad
1600
Sales ($1000)
1400 1200 1000 800 600 400 Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000
Smithers makes cover of Fortune
1800 1600
Sales ($1000)
1400 1200 1000 800 600
Smithers
400
Smothers
200
Monthly Sales Forecast
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000
This is easy!!
1800 1600
Sales ($1000)
1400 1200 1000 800 600 400 Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800
No big deal, trend continues
1600
Sales ($1000)
1400 1200 1000 800
(in an unrelated matter Smithers cashes out stock options)
600 400
Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400 1200 1000 800 600 400 Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400 1200 1000
Heads will surely roll soon
800 600 400
Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400 1200 1000
Let’s be cautiously optimistic
800 600 400
Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800
Smithers called before board
1600
Sales ($1000)
1400 1200 1000 800 600 400 Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400 1200 1000 800 600 400 Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000
Perhaps we over reacted
1800 1600
Sales ($1000)
1400 1200 1000 800 600 400 Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400 1200 1000 800
We will guess level
600 400
Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400 1200 1000 800
Back to normal!
600 400
Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000 1800 1600
Sales ($1000)
1400 1200 1000 800 600 400 Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
Monthly Sales and Forecast 2000
Smithers fired!
1800 1600
Sales ($1000)
1400 1200 1000 800 600 400 Monthly Sales Forecast
200 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Dr.Burcu Ozcam
LOG301
Month
What have we learned? Our Actual sales appears to be a great leading indicator of our forecast • It is supposed to work the other way around!!!!
If we add up the (absolute value of) our forecast errors, we get 226.2 If we had simply guessed “same as last month” we get 175.1 Our intuition (ability to recognize a pattern) was poor given almost no information or data. Never-the-less we saw patterns. For monthly data we can be tempted to “over think” forecasting. Now some additional information: • Source of data is monthly sales of Australian Red Wine • We also have a few years of data LOG301 Dr.Burcu Ozcam
M onthly S ales of A us tralian Red W ine 3500
clear seasonal behavior clear upward trend increase in amplitude
3000
Sales($1000)
2500 2000 1500 1000 500
Dr.Burcu Ozcam
M o n th
LOG301
141
134
127
120
113
106
99
92
85
78
71
64
57
50
43
36
29
22
15
8
1
0
Value of Data Given data, we can forecast this series quite accurately. This assumes stable behavior Recommend at least 4 - 5 seasons of data. Monthly demand thus prefers 4 to 5 years of data With 2 years of data, we are essentially forecasting on the basis of two points if there is seasonal behavior
Dr.Burcu Ozcam
LOG301
Laws of forecasting 1.We assume the future will behave like the past • In the real world, the future often does not behave like the past.
1. Even given that the future behaves like the past, there is a limit to how accurate forecasts can be (or nothing can be predicted with complete accuracy) • The key issue is: How close will the forecast be to the actual value? • It is crucial to attempt to quantify the expected accuracy of a forecast
1. The further into the future you attempt to forecast, the greater will be the forecast error. • Major decisions are often based on long term forecasts. e.g. building a new plant • Considering risk is even more important in these cases
1. Decisions will be based on the forecast (Otherwise there is no need to forecast!) • That is: forecasts have inherent error, thus the decisions based on forecasts have inherent risk
Dr.Burcu Ozcam
LOG301
P ast D ata and Future Fore casts 20 15
Now
10
Demand
5 0 -5
Future forecast
Past Data
-10 -15
Dr.Burcu Ozcam
P e rio d
LOG301
73
69
65
61
57
53
49
45
41
37
33
29
25
21
17
13
9
5
1
-20
Fore casts with 50% P re diction Inte rv als 20 15 10
Demand
5 0 -5 -10 -15
Dr.Burcu Ozcam
P e rio d
LOG301
73
69
65
61
57
53
49
45
41
37
33
29
25
21
17
13
9
5
1
-20
Fore casts with 95% P re diction Inte rv als 20 15 10
Demand
5 0 -5 -10 -15
Dr.Burcu Ozcam
P e rio d
LOG301
73
69
65
61
57
53
49
45
41
37
33
29
25
21
17
13
9
5
1
-20
Time-Series Data Numerical data obtained at regular time intervals The time intervals can be annually, quarterly, daily, hourly, etc. Example:
Dr.Burcu Ozcam
Year:
1999 2000 2001 2002 2003
Sales:
75.3 74.2 78.5 79.7 80.2
LOG301
Time Series Plot A time-series plot is a two-dimensional plot of time series data the vertical axis measures the variable of interest
Dr.Burcu Ozcam
Year
2001
1999
1997
1995
1993
1991
1989
1987
LOG301
1985
1983
1981
1979
1977
16.00 14.00 12.00 10.00 8.00 6.00 4.00 2.00 0.00 1975
Inflation Rate (%)
the horizontal axis corresponds to the time periods
U.S. Inflation Rate
Time-Series Components Time-Series Trend Component
Dr.Burcu Ozcam
Seasonal Component
Cyclical Component
LOG301
Random Component
Trend Component Long-run increase or decrease over time (overall upward or downward movement)
Data taken over a long period of time Sales
Dr.Burcu Ozcam
U
LOG301
nd e r t d r pwa
Time
Trend Component
(continued)
Trend can be upward or downward Trend can be linear or non-linear
Sales
Sales
Time Downward linear trend Dr.Burcu Ozcam
Time Upward nonlinear trend LOG301
Seasonal Component Short-term regular wave-like patterns Observed within 1 year Often monthly or quarterly Sales Summer Winter Fall
Spring
Time (Quarterly) Dr.Burcu Ozcam
LOG301
Cyclical Component Long-term wave-like patterns Regularly occur but may vary in length Often measured peak to peak or trough to trough 1 Cycle Sales
Dr.Burcu Ozcam
LOG301
Year
Random Component Unpredictable, random, “residual” fluctuations Due to random variations of • Nature • Accidents or unusual events
“Noise” in the time series
Dr.Burcu Ozcam
LOG301
Trend-Based Forecasting Estimate a trend line using regression analysis
Year
Time Period (t)
1999 2000 2001 2002 2003 2004
1 2 3 4 5 6
Dr.Burcu Ozcam
Sales (y) 20 40 30 50 70 65
Use time (t) as the independent variable:
yˆ = b0 + b1t
LOG301
Trend-Based Forecasting The linear trend model is: Sales (y)
1999 2000 2001 2002 2003 2004
1 2 3 4 5 6
20 40 30 50 70 65
yˆ = 12.333 + 9.5714 t Sales trend
sales
Year
Time Period (t)
80 70 60 50 40 30 20 10 0 0
Dr.Burcu Ozcam
1
2 LOG301
3
4
Year
5
6
Trend-Based Forecasting
1999 2000 2001 2002 2003 2004 2005
1 2 3 4 5 6 7
20 40 30 50 70 65 ??
yˆ = 12.333 + 9.5714 (7) = 79.33Sales
sales
Time Year Period (t) Sales (y)
Forecast for time period 7:
80 70 60 50 40 30 20 10 0 0
Dr.Burcu Ozcam
1
2 LOG301
3
4
Year
5
6
7
Comparing Forecast Values to Actual Data The forecast error or residual is the difference between the actual value in time t and the forecast value in time t: Error in time t:
e t = y t − Ft
Dr.Burcu Ozcam
LOG301
Two common Measures of Fit Measures of fit are used to gauge how well the forecasts match the actual values MSE (mean squared error) • Average squared difference between yt and Ft
MAD (mean absolute deviation) • Average absolute value of difference between yt and Ft • Less sensitive to extreme values
Dr.Burcu Ozcam
LOG301
MSE vs. MAD Mean Absolute Deviation
Mean Square Error
(y ∑ MSE =
t
− Ft )
n
2
|y ∑ MAD =
n
where: yt = Actual value at time t Ft = Predicted value at time t n = Number of time periods Dr.Burcu Ozcam
t
LOG301
− Ft |
Moving Averages Used for smoothing Series of arithmetic means over time Result dependent upon choice of L (length of period for computing means) To smooth out seasonal variation, L should be equal to the number of seasons • For quarterly data, L = 4 • For monthly data, L = 12
Dr.Burcu Ozcam
LOG301
Moving Averages
(continued)
Example: Four-quarter moving average • First average:
Q1 + Q2 + Q3 + Q4 Moving average 1 = 4 • Second average:
Q2 + Q3 + Q4 + Q5 Moving average 2 = 4 • etc… Dr.Burcu Ozcam
LOG301
Seasonal Data Sales
1 2 3 4 5 6 7 8 9 10 11 etc…
23 40 25 27 32 48 33 37 37 50 40 etc…
Dr.Burcu Ozcam
Quarterly Sales 60
…
50 40 Sales
Quarter
30 20
…
10 0
1
2
3
4
5
6 Quarter
LOG301
7
8
9
10
11
Calculating Moving Averages Quarter
Sales
Average 4-Quarter Period Moving Average 2.5 28.75 3.5 31.00 4.5 33.00 5.5 35.00 6.5 37.50 7.5 38.75 8.5 39.25 9.5 41.00
2.5 =
1+ 2 + 3 + 4 4
1
23
2
40
3
25
4
27
5
32
6
48
7
33
8
37
9
37
Each moving average is for a consecutive block of 4 quarters
10
50
LOG301
Dr.Burcu Ozcam
etc…
28.75 =
23 + 40 + 25 + 27 4
Single Exponential Smoothing A weighted moving average • Weights decline exponentially • Most recent observation weighted most
Used for smoothing and short term forecasting
Dr.Burcu Ozcam
LOG301
Single Exponential Smoothing(continued) The weighting factor is α • Subjectively chosen • Range from 0 to 1 • Smaller α gives more smoothing, larger α gives less smoothing
The weight is: • Close to 0 for smoothing out unwanted cyclical and irregular components • Close to 1 for forecasting
Dr.Burcu Ozcam
LOG301
Exponential Smoothing Model Single exponential smoothing model
Ft +1 = Ft + α( y t − Ft ) or:
Ft +1 = αy t + (1 − α )Ft where: Ft+1 = forecast value for period t + 1 yt = actual value for period t Ft = forecast value for period t α = alpha (smoothing constant) Dr.Burcu Ozcam
LOG301
Exponential Smoothing Example Suppose we use weight α = .2 Quarter (t)
1 2 3 4 5 6 7 8 9 10 etc…
Dr.Burcu Ozcam
Sales (yt) 23 40 25 27 32 48 33 37 37 50 etc…
Forecast from prior period
Forecast for next period (Ft+1 )
NA 23 26.4 26.12 26.296 27.437 31.549 31.840 32.872 33.697 etc…
23 (.2)(40)+(.8)(23)=26.4 (.2)(25)+(.8)(26.4)=26.12 (.2)(27)+(.8)(26.12)=26.296 (.2)(32)+(.8)(26.296)=27.437 (.2)(48)+(.8)(27.437)=31.549 (.2)(48)+(.8)(31.549)=31.840 (.2)(33)+(.8)(31.840)=32.872 (.2)(37)+(.8)(32.872)=33.697 (.2)(50)+(.8)(33.697)=36.958 etc…
LOG301
F1 = y1 since no prior information exists
Ft +1 = αy t + (1 − α)Ft
Sales vs. Smoothed Sales 60 50 40
Sales
Seasonal fluctuations have been smoothed NOTE: the smoothed value in this case is generally a little low, since the trend is upward sloping and the weighting factor is only .2
30 20 10 0 1
2
3
4
5
Sales Dr.Burcu Ozcam
LOG301
6
7
Quarter
8
Smoothed
9
10
Double Exponential Smoothing Double exponential smoothing is sometimes called exponential smoothing with trend If trend exists, single exponential smoothing may need adjustment Add a second smoothing constant to account for trend
Dr.Burcu Ozcam
LOG301
Double Exponential Smoothing Model
C t = αy t + (1 − α )(C t −1 + Tt −1 )
Tt = β(C t − C t −1 ) + (1 − β)Tt −1 Ft +1 = C t + Tt where: yt = actual value in time t α = constant-process smoothing constant β = trend-smoothing constant Ct = smoothed constant-process value for period t Tt = smoothed trend value for period t Ft+1 = forecast value for period t + 1 Dr.Burcu Ozcam
t = current time period
LOG301
Double Exponential Smoothing Double exponential smoothing is generally done by computer Use larger smoothing constants α and β when less smoothing is desired Use smaller smoothing constants α and β when more smoothing is desired
Dr.Burcu Ozcam
LOG301
Exponential Smoothing in Excel Use tools / data analysis / exponential smoothing • The “damping factor” is (1 - α )
Dr.Burcu Ozcam
LOG301
Types of Regression Models Positive Linear Relationship
Relationship NOT Linear
Negative Linear Relationship
Dr.Burcu Ozcam
No Relationship
LOG301
Simple Linear Regression Model Only one independent variable, x Relationship between x and y is described by a linear function Changes in y are assumed to be caused by changes in x
Dr.Burcu Ozcam
LOG301
Linear Regression The regression model: y intercept Dependent Variable
Slope Coefficient
Independent Variable
y = b 0 + b1x + ε Linear component
Dr.Burcu Ozcam
LOG301
Random Error term, or residual
Random Error component
Linear Regression y
y = b 0 + b1x + ε
(continued)
Observed Value of y for xi
εi
Predicted Value of y for xi
Slope = b1 Random Error for this x value
Intercept = b0
x
xi Dr.Burcu Ozcam
LOG301
Least Squares Criterion b0 and b1 are obtained by finding the values of b0 and b1 that minimize the sum of the squared residuals 2 ˆ ∑ e = ∑ (y −y) 2
=
Dr.Burcu Ozcam
∑ (y − (b
+ b1x))
2
0
LOG301
The Least Squares Equation The formulas for b1 and b0 are:
b1
( x − x )( y − y ) ∑ = ∑ (x − x) 2
algebraic equivalent:
b1 =
Dr.Burcu Ozcam
and
x∑ y ∑ ∑ xy − n 2 ( x ) ∑ 2 x − ∑ n
b0 = y − b1 x LOG301
Interpretation of the Slope and the Intercept b0 is the estimated average value of y when the value of x is zero b1 is the estimated change in the average value of y as a result of a one-unit change in x
Dr.Burcu Ozcam
LOG301
Finding the Least Squares Equation The coefficients b0 and b1 will usually be found using computer software, such as Excel or Minitab Other regression measures will also be computed as part of computer-based regression analysis
Dr.Burcu Ozcam
LOG301
Simple Linear Regression Example A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet) A random sample of 10 houses is selected • Dependent variable (y) = house price in $1000s
• Independent variable (x) = square feet
Dr.Burcu Ozcam
LOG301
Sample Data for House Price Model
Dr.Burcu Ozcam
House Price in $1000s (y)
Square Feet (x)
245
1400
312
1600
279
1700
308
1875
199
1100
219
1550
405
2350
324
2450
319
1425
255
1700 LOG301
Regression Using Excel Tools / Data Analysis / Regression
Dr.Burcu Ozcam
LOG301
Excel Output Regression Statistics Multiple R
0.76211
R Square
0.58082
Adjusted R Square
0.52842
Standard Error
house price = 98.24833 + 0.10977 (square feet)
41.33032
Observations
ANOVA
The regression equation is:
10 df
SS
MS
Regression
1
18934.9348
18934.9348
Residual
8
13665.5652
1708.1957
Total
9
32600.5000
Coefficients Intercept Square Feet
Dr.Burcu Ozcam
Standard Error
t Stat
F 11.0848
P-value
Significance F 0.01039
Lower 95%
Upper 95%
98.24833
58.03348
1.69296
0.12892
-35.57720
232.07386
0.10977
0.03297
3.32938
0.01039
0.03374
0.18580
LOG301
Graphical Presentation House price model: scatter plot and regression line 450
Intercept = 98.248
House Price ($1000s)
400
Slope = 0.10977
350 300 250 200 150 100 50 0 0
500
1000
1500
2000
Square Feet
2500
3000
house price = 98.24833 + 0.10977 (square feet) Dr.Burcu Ozcam
LOG301
Actions When Forecasting is Not Appropriate • Seek information directly from customers •Collaborate with other channel members • Apply forecasting methods with caution (may work where forecast accuracy is not critical)
• Delay supply response until demand becomes clear
• Shift demand to other periods for better supply response
• Develop quick response and flexible supply systems
CR (2004) Prentice Hall, Inc. Dr.Burcu Ozcam
LOG301
Collaborative Forecasting
• Demand is lumpy or highly uncertain • Involves multiple participants each with • •
a unique perspective—“two heads are better than one” Goal is to reduce forecast error The forecasting process is inherently unstable
CR (2004) Prentice Hall, Inc. Dr.Burcu Ozcam
LOG301
Collaborative Forecasting: Key Steps • Establish a process champion • Identify the needed Information and collection processes • Establish methods for processing information from multiple
sources and the weights assigned to multiple forecasts • Create methods for translating forecast into form needed by each party • Establish process for revising and updating forecast in real time • Create methods for appraising the forecast • Show that the benefits of collaborative forecasting are obvious and real CR (2004) Prentice Hall, Inc. Dr.Burcu Ozcam
LOG301
Managing Highly Uncertain Demand •Delay forecasting as long as possible •Prioritize supply by product’s degree of uncertainty (supply to the more certain products first)
•Apply the principle of postponement to the most
uncertain products (delay committing to a final product form until an order is received)
•Create flexible supply to changing demand (alter
capacity and output rates through subcontracting, computer technology, multi-purpose processes, etc.)
•Be able to respond quickly to uncertain demand levels CR (2004) Prentice Hall, Inc. Dr.Burcu Ozcam
LOG301
Ch 2, Problems 1,4,8,9,10 Due 8-12 Oct.
Dr.Burcu Ozcam
LOG301