Footing.pdf

  • Uploaded by: Cyrus Hong
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Footing.pdf as PDF for free.

More details

  • Words: 3,943
  • Pages: 21
1.0 INTRODUCTION Foundation is the substructure below ground that transfer and spread the load from a structure’s column and wall to the ground. Foundation is important for the overall stability of the structure. As earth under the foundation is the most variable of all the material that are considered in the design and engineering of an engineering structure, it is very critical that the safe bearing capacity of the soil must not be exceeded. If the safe bearing capacity of soil is exceeded, it can cause excessive settlement which results in damage to the building and water or gas pipelines. Therefore, it is necessary to conduct site investigation to survey the soil under a proposed structure to determine the soil properties in order to estimate its safe bearing pressure and calculate possible settlements of the structure. There are two types of foundation which includes shallow foundation (pad footing) and deep foundation (deep pile). This report only covers pad footing.

2.0 PROCEDURE Step 1. Determine the plan size of the footing (if not specified, skip to step 2 if size is specified) - Self-weight of the footing must be assumed first before starting if not given. - The size of the footing must be computed using serviceability limit, meaning that the loadings used are not factored using the following formula: Total axial load = 1.0 Gk + 1.0 Qk (in kN)

[Equation 1]

Gk = total axial load (permanent) = dead load from column + self-weight of footing Qk = total axial load (variable)

Required size of footing = Total axial load / safe bearing pressure on soil [Equation 2] -Usually the calculated required size of footing is slightly increased for safety.

Step 2. Compute the earth pressure (associated with the critical loading arrangement at ultimate limit state) exerted by the footing 𝑁𝐸𝐷 = 1.35Gk + 1.5Qk Earth pressure =

[Equation 3] 𝑁𝐸𝐷

𝑆𝑖𝑧𝑒 π‘œπ‘“ π‘“π‘œπ‘œπ‘‘π‘–π‘›π‘”

[Equation 4] 1

Step 3. Assume a height (h) and effective depth (d) taking account of compression anchorage requirements of starter bars and check the shear force at the face of the column - If height and effective depth is specified, use the specified dimension. 𝑓

𝑓

π‘π‘˜ π‘π‘˜ Shear force at the face of the column, 𝑉𝑅𝐷,π‘€π‘Žπ‘₯ = 0.5𝑒𝑑 [0.6 (1 βˆ’ 250 )] 1.5

[Equation 5]

𝑒 is the perimeter of the column.

Step 4. Check for punching shear - Find the basic control perimeter of punching shear. [Equation 6]

Punching shear control perimeter = perimeter of column + 4πœ‹π‘‘

- Find the area within the control perimeter. Shear force at the face of the column,

,

= 0.5 2

[0.6 (1 βˆ’ 250)] 1.5

Area within control perimeter (square) = (π‘Ž + 4𝑑) – (4 – πœ‹)2𝑑 is the perimeter of the column.

2

[Equation 5] [Equation 7]

or

Area within control perimeter (rectangle) = (a + 4d) (b + 4d) - (4 – πœ‹)2𝑑2

[Equation 6]

Figure 1 Area within control perimeter - Find punching shear force Punching shear force, 𝑉𝐸𝐷 = Earth pressure Γ— (Area of footing – Area within perimeter) [Equation 8]

Punching shear stress =

𝑉𝐸𝐷 π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ ×𝑑

[Equation 9] 2

- Find 𝑉𝑅𝐷,𝐢 and 𝑉𝑅𝐷,𝐢 π‘šπ‘–π‘› 1

𝑉𝑅𝐷,𝐢 = [0.12π‘˜(100 𝜌1 π‘“π‘π‘˜ )3 ](π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ Γ— 𝑑)

[Equation 10]

200

Where k = (1 + √ 𝜌1 =

) ≀ 2.0 with d in mm

𝑑

𝐴𝑠,π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ 𝑏𝑀 𝑑 3

≀ 0.02 1

𝑉𝑅𝐷,𝐢 π‘šπ‘–π‘› = [0.035π‘˜ 2 π‘“π‘π‘˜ 2 ](π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ Γ— 𝑑)

[Equation 11]

- Assume 𝜌1 to be 0.02 as the area of steel required is not known yet. - If 𝑉𝐸𝐷 <𝑉𝑅𝐷,𝐢 , h of the footing is adequate. - If 𝑉𝐸𝐷 >𝑉𝑅𝐷,𝐢 , h of the footing has to be increased.

Step 5. Find the reinforcement steel bar required to resist bending. - The moment has to be found from the face of the column.

Column

Face of the column

Footing

Figure 2. Cross section of footing and column 𝑀𝐸𝐷 = Earth Pressure Γ— β„Žπ‘“π‘œπ‘œπ‘‘π‘–π‘›π‘” Γ— K=

𝑀 π‘“π‘π‘˜ 𝑏𝑀 𝑑 2

2

Γ—

(π‘π‘“π‘œπ‘œπ‘‘π‘–π‘›π‘” βˆ’ π‘π‘π‘œπ‘™π‘’π‘šπ‘› ) 2

1

(2)

where K’= 0.167

Z = d (0.5 + √0.25 βˆ’ 𝐴𝑠 π‘…π‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ =

(π‘π‘“π‘œπ‘œπ‘‘π‘–π‘›π‘” βˆ’ π‘π‘π‘œπ‘™π‘’π‘šπ‘› )

𝐾 ) 1.134

where 0.82d < Z < 0.954d

𝑀 0.87π‘“π‘¦π‘˜ 𝑧

Number of Steel Bars Required =

𝐴𝑠 π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 π‘π‘Žπ‘Ÿ

𝐴𝑠 π‘ƒπ‘Ÿπ‘œπ‘£π‘–π‘‘π‘’π‘‘ = 𝑁 Γ— π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 π‘π‘Žπ‘Ÿ

3

Step 6. Repeat the check for punching shear (step 4) - The checking is done using the actual 𝜌1, where area of steel reinforcement required is found in step 5.

Step 7. Check the shear force at critical zone ( 𝑉𝐸𝐷 ) - Shear critical zone is 1.0d away from face of column. 1

𝑉𝑅𝐷,𝐢 = [0.12π‘˜(100 𝜌1 π‘“π‘π‘˜ )3 ](𝑏𝑀 Γ— 𝑑) 3

[Equation 12]

1

𝑉𝑅𝐷,𝐢 π‘šπ‘–π‘› = [0.035π‘˜ 2 π‘“π‘π‘˜ 2 ](𝑏𝑀 Γ— 𝑑)

𝑉𝐸𝐷 = Earth Pressure Γ— β„Žπ‘“π‘œπ‘œπ‘‘π‘–π‘›π‘” Γ— [

[Equation 13] (π‘π‘“π‘œπ‘œπ‘‘π‘–π‘›π‘” βˆ’ π‘π‘π‘œπ‘™π‘’π‘šπ‘› ) 2

βˆ’ 𝑑]

[Equation 14]

If 𝑉𝐸𝐷 <𝑉𝑅𝐷,𝐢 , no shear reinforcement required.

4

3.0 DATA & RESULT

B

A 6.069m

C 6.069m

D 6.069m

1 3.069m

2 3.069m

3 Figure 3. Plan View

b =2000mm

h =2000mm

Figure 4. Section of Footing - π‘“π‘π‘˜ = 30𝑁/π‘šπ‘š2; π‘“π‘¦π‘˜ = 500𝑁/π‘šπ‘š2 ; Diameter of main steel bar=16mm; Cover= 45mm - Assume that safe bearing pressure on soil = 200kN/π‘š2 - It can be seen that there are four footings to be designed: 1. Footing A1, A3, D1, D3 2. Footing B1, B3, C1, C3 3. Footing A2 and D2 4. Footing B2 and C2 5

3.1 Design of Footing A1, A3, D1, D3 Step 1. Compute the earth pressure (associated with the critical loading arrangement at ultimate limit state) exerted by the footing.

𝑁𝐸𝐷 = 161.78kN (found from progress report 5: Design of RC Column) 𝑁𝐸𝐷,π‘‘π‘œπ‘‘π‘Žπ‘™ = 161.78 + 𝑠𝑒𝑙𝑓 π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘π‘œπ‘™π‘’π‘šπ‘› = 161.78 + (2.4 Γ— 0.3 Γ— 0.3)(25) = 161.78 + 5.4 = 167.18kN

Density of Reinforced Concrete = 25kN/π‘š3

Assumptions: safe bearing pressure on soil = 200kN/π‘š2

Earth pressure = =

𝑁𝐸𝐷 𝑆𝑖𝑧𝑒 π‘œπ‘“ π‘“π‘œπ‘œπ‘‘π‘–π‘›π‘” 167.18 (2000 Γ—2000)Γ— 10βˆ’6

= 41.80kN/π’ŽπŸ

Step 3. Assume a height (h) and effective depth (d) taking account of compression anchorage requirements of starter bars and check the shear force at the face of the column Assume height of footing = 200mm d = thickness - cover - βˆ…/2 = 200 - 45 - 16/2 = 147mm 𝑓

𝑓

π‘π‘˜ π‘π‘˜ 𝑉𝑅𝐷,π‘€π‘Žπ‘₯ = 0.5𝑒𝑑 [0.6 (1 βˆ’ 250 )] 1.5

= 0.5(1200)(147) [0.6 (1 βˆ’

30 30 )] 250 1.5

Perimeter of the column, 𝑒 = 4 Γ— 300 = 1200mm

= 931.39kN > 167.18kN ∴ 𝑉𝑅𝐷,π‘€π‘Žπ‘₯ is adequate.

6

Step 4. Check for punching shear Punching shear control perimeter = perimeter of column + 4πœ‹π‘‘

= 4 Γ— 300 + 4πœ‹(147) = 3047.26mm Area within control perimeter (square) = (π‘Ž + 4𝑑)2 – (4 – πœ‹)2𝑑2 = (300 + 4 Γ— 147)2 – (4 – πœ‹)(2 Γ— 147)2 = 788544 – 74197.30 = 7.14 Γ— 105 π‘šπ‘š2 = 𝟎. πŸ•πŸπŸ’ π’ŽπŸ Punching shear force, 𝑉𝐸𝐷 = Earth pressure Γ— (Area of footing – Area within perimeter)

= 41.80 Γ— (2 Γ— 2 – 0.714) = 41.80 Γ— (3.345) = 137.35kN Punching shear stress =

137.35 Γ— 103

3047.26 Γ—147 = 0.307N/π’Žπ’ŽπŸ

3

1

𝑉𝑅𝐷,𝐢 π‘šπ‘–π‘› = [0.035π‘˜ 2 π‘“π‘π‘˜ 2 ](π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ Γ— 𝑑) 3 2

1 2

= [0.035(2) (30) ](3047.26 Γ— 147) = 242.88kN 1

𝑉𝑅𝐷,𝐢 = [0.12π‘˜(100 𝜌1 π‘“π‘π‘˜ )3 ](π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ Γ— 𝑑) 1 3

= [0.12(2)(100 Γ— 0.02 Γ— 30) ](3047.26 Γ— 147) = 420.88kN > 𝑉𝑅𝐷,𝐢 π‘šπ‘–π‘› = 242.88kN 𝛾𝑅𝐷,𝐢 =

=

200

k = (1 + √

𝑑

) <2

𝜌1 = 0.02

200

= (1 +√147 ) = 2.17 > 2 ∴k=2

𝑉𝑅𝐷,𝐢 π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘ŸΓ—π‘‘ 420.88Γ—103 3047.26 Γ—147

= 0.94N/π’Žπ’ŽπŸ > Punching shear stress = 0.307N/π‘šπ‘š2 ∴ h is adequate for punching shear.

7

Step 5. Find the reinforcement steel bar required to resist bending.

𝑀𝐸𝐷 = Earth Pressure Γ— β„Žπ‘“π‘œπ‘œπ‘‘π‘–π‘›π‘” Γ— (2βˆ’ 0.3)

= 41.8 Γ— 2 Γ—

2

Γ—

(2βˆ’ 0.3) 2

(π‘π‘“π‘œπ‘œπ‘‘π‘–π‘›π‘” βˆ’ π‘π‘π‘œπ‘™π‘’π‘šπ‘› ) 1

2

Γ—

(π‘π‘“π‘œπ‘œπ‘‘π‘–π‘›π‘” βˆ’ π‘π‘π‘œπ‘™π‘’π‘šπ‘› ) 2

1

(2)

(2)

= 30.20kNm

K= =

𝑀

where K’= 0.167

π‘“π‘π‘˜ 𝑏𝑀 𝑑 2 30.20 Γ—106

(30)(2000)(147)2

= 0.023 ∴ section is singly reinforced.

Z = d (0.5 + √0.25 βˆ’ = d (0.5 + √0.25 βˆ’

𝐾 ) 1.134 0.023 1.134

where 0.82d < Z < 0.954d

)

= 0.979d >0.954d

∴ Z = 0.954d

𝐴𝑠 π‘…π‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ =

=

𝑀 0.87π‘“π‘¦π‘˜ 𝑧 30.20 Γ—106 0.87(500)(0.954 Γ—147)

= 495.05π’Žπ’ŽπŸ Number of Steel Bars Required =

=

𝐴𝑠 π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 π‘π‘Žπ‘Ÿ

495.05 πœ‹162 /4

= 2.46 β‰ˆ3 𝐴𝑠 π‘ƒπ‘Ÿπ‘œπ‘£π‘–π‘‘π‘’π‘‘ = 𝑁 Γ— π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 π‘π‘Žπ‘Ÿ

= 3 Γ— πœ‹162 /4 = 603.19π’Žπ’ŽπŸ

8

Step 6. Repeat the check for punching shear 3

1

𝑉𝑅𝐷,𝐢 π‘šπ‘–π‘› = [0.035π‘˜ 2 π‘“π‘π‘˜ 2 ](π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ Γ— 𝑑) 3 2

200

k = (1 + √

1 2

= [0.035(2) (30) ](3047.26 Γ— 147) = 242.88kN

𝑑

200

) <2

𝜌1 =

𝐴𝑠,π‘π‘Ÿπ‘œπ‘£π‘–π‘‘π‘’π‘‘ 𝑏𝑀𝑑 πŸ”πŸŽπŸ‘.πŸπŸ—

= (1 +√147 )

=

= 2.17 > 2

= 0.002

1 3

𝑉𝑅𝐷,𝐢 = [0.12π‘˜(100 𝜌1 π‘“π‘π‘˜ ) ](π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ Γ— 𝑑)

(2000)(147)

1

= [0.12(2)(100 Γ— 0.002 Γ— 30)3 ](3047.26 Γ— 147) = 195.35kN < 𝑉𝑅𝐷,𝐢 π‘šπ‘–π‘› = 242.88kN

∴ k =2

∴ 𝑉𝑅𝐷,𝐢 = 242.88kN > 𝑉𝐸𝐷 = 137.35kN ∴ h is adequate. Step 7. Check the shear force at critical zone ( 𝑉𝐸𝐷 ) 𝑉𝐸𝐷 = Earth Pressure Γ— β„Žπ‘“π‘œπ‘œπ‘‘π‘–π‘›π‘” Γ— [ = 41.8 Γ— 2 Γ— [

(2βˆ’ 0.3) 2

(π‘π‘“π‘œπ‘œπ‘‘π‘–π‘›π‘” βˆ’ π‘π‘π‘œπ‘™π‘’π‘šπ‘› ) 2

βˆ’ 𝑑]

βˆ’ 0.147]

= 58.77kN 3

1

𝑉𝑅𝐷,𝐢 π‘šπ‘–π‘› = [0.035π‘˜ 2 π‘“π‘π‘˜ 2 ](𝑏𝑀 Γ— 𝑑) 3

1

= [0.035(2)2 (30)2 ](2000 Γ— 147) = 159.41kN 1

𝑉𝑅𝐷,𝐢 = [0.12π‘˜(100 𝜌1 π‘“π‘π‘˜ )3 ](𝑏𝑀 Γ— 𝑑) 1

= [0.12(2)(100 Γ— 0.002 Γ— 30)3 ](2000 Γ— 147) = 128.22kN < 𝑉𝑅𝐷,𝐢 π‘šπ‘–π‘› = 159.41kN

∴ 𝑉𝑅𝐷,𝐢 = 159.41kN > 𝑉𝐸𝐷 = 58.77kN ∴ No shear reinforcement is required.

9

3.2 Design of Footing B1, B3, C1, C3 Step 1. Compute the earth pressure (associated with the critical loading arrangement at ultimate limit state) exerted by the footing.

𝑁𝐸𝐷 = 291.63kN (found from progress report 5: Design of RC Column) 𝑁𝐸𝐷,π‘‘π‘œπ‘‘π‘Žπ‘™ = 291.63 + 𝑠𝑒𝑙𝑓 π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘π‘œπ‘™π‘’π‘šπ‘› = 291.63 + (2.4 Γ— 0.3 Γ— 0.3)(25) = 291.63 + 5.4 = 297.03kN

Density of Reinforced Concrete = 25kN/π‘š3

Assumptions: safe bearing pressure on soil = 200kN/π‘š2

Earth pressure = =

𝑁𝐸𝐷 𝑆𝑖𝑧𝑒 π‘œπ‘“ π‘“π‘œπ‘œπ‘‘π‘–π‘›π‘” 297.03 (2000 Γ—2000)Γ— 10βˆ’6

= 74.26kN/π’ŽπŸ < safe bearing pressure on soil = 200kN/π‘š2 ∴ Earth pressure exerted is safe.

Step 3. Assume a height (h) and effective depth (d) taking account of compression anchorage requirements of starter bars and check the shear force at the face of the column Assume height of footing = 300mm d = thickness - cover - βˆ…/2 = 300 - 45 - 16/2 = 247mm 𝑓

𝑓

π‘π‘˜ π‘π‘˜ 𝑉𝑅𝐷,π‘€π‘Žπ‘₯ = 0.5𝑒𝑑 [0.6 (1 βˆ’ 250 )] 1.5

= 0.5(1200)(247) [0.6 (1 βˆ’

30 30 )] 250 1.5

Perimeter of the column, 𝑒 = 4 Γ— 300 = 1200mm

= 1564.99kN > 297.03kN ∴ 𝑉𝑅𝐷,π‘€π‘Žπ‘₯ is adequate.

10

Step 4. Check for punching shear Punching shear control perimeter = perimeter of column + 4πœ‹π‘‘

= 4 Γ— 300 + 4πœ‹(247) = 4303.89mm Area within control perimeter (square) = (π‘Ž + 4𝑑)2 – (4 – πœ‹)2𝑑2 = (300 + 4 Γ— 247)2 – (4 – πœ‹)(2 Γ— 247)2 = 1658944 – 209482.3 = 1.45 Γ— 106 π‘šπ‘š2 = 𝟏. πŸ’πŸ“π’ŽπŸ Punching shear force, 𝑉𝐸𝐷 = Earth pressure Γ— (Area of footing – Area within perimeter)

= 74.26 Γ— (2 Γ— 2 – 1.45) = 74.26 Γ— (2.55) = 189.36kN Punching shear stress =

189.36 Γ— 103

4303.89 Γ—247 = 0.178N/π’Žπ’ŽπŸ

3

1

𝑉𝑅𝐷,𝐢 π‘šπ‘–π‘› = [0.035π‘˜ 2 π‘“π‘π‘˜ 2 ](π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ Γ— 𝑑) 3 2

1 2

= [0.035(1.9) (30) ](4303.89 Γ— 247) = 533.72kN 1

𝑉𝑅𝐷,𝐢 = [0.12π‘˜(100 𝜌1 π‘“π‘π‘˜ )3 ](π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ Γ— 𝑑)

200

k = (1 + √

𝑑

) <2

𝜌1 = 0.02

200

= (1 +√247 ) = 1.9 < 2

1 3

= [0.12(1.9)(100 Γ— 0.02 Γ— 30) ](4303.89 Γ— 247) = 948.88kN > 𝑉𝑅𝐷,𝐢 π‘šπ‘–π‘› = 242.88kN 𝛾𝑅𝐷,𝐢 =

=

𝑉𝑅𝐷,𝐢 π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘ŸΓ—π‘‘ 948.88Γ—103 4303.89 Γ—247

= 0.89N/mπ’ŽπŸ > Punching shear stress = 0.178N/π‘šπ‘š2 ∴ h is adequate for punching shear.

11

Step 5. Find the reinforcement steel bar required to resist bending.

𝑀𝐸𝐷 = Earth Pressure Γ— β„Žπ‘“π‘œπ‘œπ‘‘π‘–π‘›π‘” Γ— (2βˆ’ 0.3)

= 74.26 Γ— 2 Γ—

2

(π‘π‘“π‘œπ‘œπ‘‘π‘–π‘›π‘” βˆ’ π‘π‘π‘œπ‘™π‘’π‘šπ‘› )

(2βˆ’ 0.3)

Γ—

2

1

2

Γ—

(π‘π‘“π‘œπ‘œπ‘‘π‘–π‘›π‘” βˆ’ π‘π‘π‘œπ‘™π‘’π‘šπ‘› ) 2

1

(2)

(2)

= 53.65kNm

K= =

𝑀

where K’= 0.167

π‘“π‘π‘˜ 𝑏𝑀 𝑑 2 53.65 Γ—106

(30)(2000)(247)2

= 0.015 ∴ section is singly reinforced.

Z = d (0.5 + √0.25 βˆ’ = d (0.5 + √0.25 βˆ’

𝐾 ) 1.134 0.015 1.134

where 0.82d < Z < 0.954d

)

= 0.987d >0.954d

∴ Z = 0.954d

𝐴𝑠 π‘…π‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ =

=

𝑀 0.87π‘“π‘¦π‘˜ 𝑧 53.65 Γ—106 0.87(500)(0.954 Γ—247)

= 523.40π’Žπ’ŽπŸ Number of Steel Bars Required =

=

𝐴𝑠 π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 π‘π‘Žπ‘Ÿ

523.4 πœ‹162 /4

= 2.6 β‰ˆ3 𝐴𝑠 π‘ƒπ‘Ÿπ‘œπ‘£π‘–π‘‘π‘’π‘‘ = 𝑁 Γ— π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 π‘π‘Žπ‘Ÿ

= 3 Γ— πœ‹162 /4 = 603.19π’Žπ’ŽπŸ

12

Step 6. Repeat the check for punching shear 3

1

𝑉𝑅𝐷,𝐢 π‘šπ‘–π‘› = [0.035π‘˜ 2 π‘“π‘π‘˜ 2 ](π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ Γ— 𝑑) 3 2

200

k = (1 + √

1 2

= [0.035(1.9) (30) ](4303.89 Γ— 247) = 533.72kN

𝑑

200

) <2

𝜌1 =

𝐴𝑠,π‘π‘Ÿπ‘œπ‘£π‘–π‘‘π‘’π‘‘ 𝑏𝑀𝑑 πŸ”πŸŽπŸ‘.πŸπŸ—

= (1 +√247 )

=

= 1.9 < 2

= 0.001

1 3

𝑉𝑅𝐷,𝐢 = [0.12π‘˜(100 𝜌1 π‘“π‘π‘˜ ) ](π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ Γ— 𝑑)

(2000)(247)

1

= [0.12(1.9)(100 Γ— 0.001 Γ— 30)3 ](4303.89 Γ— 247) = 349.57kN < 𝑉𝑅𝐷,𝐢 π‘šπ‘–π‘› = 533.72kN

∴ 𝑉𝑅𝐷,𝐢 = 533.72kN > 𝑉𝐸𝐷 = 189.36kN ∴ h is adequate. Step 7. Check the shear force at critical zone ( 𝑉𝐸𝐷 ) 𝑉𝐸𝐷 = Earth Pressure Γ— β„Žπ‘“π‘œπ‘œπ‘‘π‘–π‘›π‘” Γ— [ = 74.26 Γ— 2 Γ— [

(2βˆ’ 0.3) 2

(π‘π‘“π‘œπ‘œπ‘‘π‘–π‘›π‘” βˆ’ π‘π‘π‘œπ‘™π‘’π‘šπ‘› ) 2

βˆ’ 𝑑]

βˆ’ 0.247]

= 89.56kN 3

1

𝑉𝑅𝐷,𝐢 π‘šπ‘–π‘› = [0.035π‘˜ 2 π‘“π‘π‘˜ 2 ](𝑏𝑀 Γ— 𝑑) 3

1

= [0.035(1.9)2 (30)2 ](2000 Γ— 247) = 248.02kN 1

𝑉𝑅𝐷,𝐢 = [0.12π‘˜(100 𝜌1 π‘“π‘π‘˜ )3 ](𝑏𝑀 Γ— 𝑑) 1

= [0.12(1.9)(100 Γ— 0.001 Γ— 30)3 ](2000 Γ— 247) = 162.44kN < 𝑉𝑅𝐷,𝐢 π‘šπ‘–π‘› = 248.02kN

∴ 𝑉𝑅𝐷,𝐢 = 248.02kN > 𝑉𝐸𝐷 = 89.56kN ∴ No shear reinforcement is required.

13

3.3 Design of Footing A2 and D2 Step 1. Compute the earth pressure (associated with the critical loading arrangement at ultimate limit state) exerted by the footing.

𝑁𝐸𝐷 = 311.78kN (found from progress report 5: Design of RC Column) 𝑁𝐸𝐷,π‘‘π‘œπ‘‘π‘Žπ‘™ = 311.78 + 𝑠𝑒𝑙𝑓 π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘π‘œπ‘™π‘’π‘šπ‘› = 311.78 + (2.4 Γ— 0.3 Γ— 0.3)(25) = 311.78 + 5.4 = 317.18kN

Density of Reinforced Concrete = 25kN/π‘š3

Assumptions: safe bearing pressure on soil = 200kN/π‘š2

Earth pressure = =

𝑁𝐸𝐷 𝑆𝑖𝑧𝑒 π‘œπ‘“ π‘“π‘œπ‘œπ‘‘π‘–π‘›π‘” 317.18 (2000 Γ—2000)Γ— 10βˆ’6

= 79.30kN/π’ŽπŸ < safe bearing pressure on soil = 200kN/π‘š2 ∴ Earth pressure exerted is safe.

Step 3. Assume a height (h) and effective depth (d) taking account of compression anchorage requirements of starter bars and check the shear force at the face of the column Assume height of footing = 300mm d = thickness - cover - βˆ…/2 = 300 - 45 - 16/2 = 247mm 𝑓

𝑓

π‘π‘˜ π‘π‘˜ 𝑉𝑅𝐷,π‘€π‘Žπ‘₯ = 0.5𝑒𝑑 [0.6 (1 βˆ’ 250 )] 1.5

= 0.5(1200)(247) [0.6 (1 βˆ’

30 30 )] 250 1.5

Perimeter of the column, 𝑒 = 4 Γ— 300 = 1200mm

= 1564.99kN > 317.18kN ∴ 𝑉𝑅𝐷,π‘€π‘Žπ‘₯ is adequate.

14

Step 4. Check for punching shear Punching shear control perimeter = perimeter of column + 4πœ‹π‘‘

= 4 Γ— 300 + 4πœ‹(247) = 4303.89mm Area within control perimeter (square) = (π‘Ž + 4𝑑)2 – (4 – πœ‹)2𝑑2 = (300 + 4 Γ— 247)2 – (4 – πœ‹)(2 Γ— 247)2 = 1658944 – 209482.3 = 1.45 Γ— 106 π‘šπ‘š2 = 𝟏. πŸ’πŸ“π’ŽπŸ Punching shear force, 𝑉𝐸𝐷 = Earth pressure Γ— (Area of footing – Area within perimeter)

= 79.3 Γ— (2 Γ— 2 – 1.45) = 79.3 Γ— (2.55) = 202.22kN Punching shear stress =

202.22 Γ— 103

4303.89 Γ—247 = 0.19N/π’Žπ’ŽπŸ

3

1

𝑉𝑅𝐷,𝐢 π‘šπ‘–π‘› = [0.035π‘˜ 2 π‘“π‘π‘˜ 2 ](π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ Γ— 𝑑) 3 2

1 2

= [0.035(1.9) (30) ](4303.89 Γ— 247) = 533.72kN

200

k = (1 + √

1

𝑉𝑅𝐷,𝐢 = [0.12π‘˜(100 𝜌1 π‘“π‘π‘˜ )3 ](π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ Γ— 𝑑)

𝑑

) <2

𝜌1 = 0.02

200

= (1 +√247 ) = 1.9 < 2

1 3

= [0.12(1.9)(100 Γ— 0.02 Γ— 30) ](4303.89 Γ— 247) = 948.88kN > 𝑉𝑅𝐷,𝐢 π‘šπ‘–π‘› = 242.88kN 𝛾𝑅𝐷,𝐢 =

=

𝑉𝑅𝐷,𝐢 π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘ŸΓ—π‘‘ 948.88Γ—103 4303.89 Γ—247

= 0.89N/mπ’ŽπŸ > Punching shear stress = 0.19N/π‘šπ‘š2 ∴ h is adequate for punching shear.

15

Step 5. Find the reinforcement steel bar required to resist bending.

𝑀𝐸𝐷 = Earth Pressure Γ— β„Žπ‘“π‘œπ‘œπ‘‘π‘–π‘›π‘” Γ— (2βˆ’ 0.3)

= 79.3 Γ— 2 Γ—

2

Γ—

(2βˆ’ 0.3) 2

(π‘π‘“π‘œπ‘œπ‘‘π‘–π‘›π‘” βˆ’ π‘π‘π‘œπ‘™π‘’π‘šπ‘› ) 1

2

Γ—

(π‘π‘“π‘œπ‘œπ‘‘π‘–π‘›π‘” βˆ’ π‘π‘π‘œπ‘™π‘’π‘šπ‘› ) 2

1

(2)

(2)

= 57.29kNm

K= =

𝑀

where K’= 0.167

π‘“π‘π‘˜ 𝑏𝑀 𝑑 2 57.29 Γ—106

(30)(2000)(247)2

= 0.016 ∴ section is singly reinforced.

Z = d (0.5 + √0.25 βˆ’ = d (0.5 + √0.25 βˆ’

𝐾 ) 1.134 0.016 1.134

where 0.82d < Z < 0.954d

)

= 0.986d >0.954d

∴ Z = 0.954d

𝐴𝑠 π‘…π‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ =

=

𝑀 0.87π‘“π‘¦π‘˜ 𝑧 57.29 Γ—106 0.87(500)(0.954 Γ—247)

= 558.91π’Žπ’ŽπŸ Number of Steel Bars Required =

=

𝐴𝑠 π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 π‘π‘Žπ‘Ÿ

558.91 πœ‹162 /4

= 2.78 β‰ˆ3 𝐴𝑠 π‘ƒπ‘Ÿπ‘œπ‘£π‘–π‘‘π‘’π‘‘ = 𝑁 Γ— π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 π‘π‘Žπ‘Ÿ

= 3 Γ— πœ‹162 /4 = 603.19π’Žπ’ŽπŸ

16

Step 6. Repeat the check for punching shear 3

1

𝑉𝑅𝐷,𝐢 π‘šπ‘–π‘› = [0.035π‘˜ 2 π‘“π‘π‘˜ 2 ](π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ Γ— 𝑑) 3 2

200

k = (1 + √

1 2

= [0.035(1.9) (30) ](4303.89 Γ— 247) = 533.72kN

𝑑

200

) <2

𝜌1 =

𝐴𝑠,π‘π‘Ÿπ‘œπ‘£π‘–π‘‘π‘’π‘‘ 𝑏𝑀𝑑 πŸ”πŸŽπŸ‘.πŸπŸ—

= (1 +√247 )

=

= 1.9 < 2

= 0.001

1 3

𝑉𝑅𝐷,𝐢 = [0.12π‘˜(100 𝜌1 π‘“π‘π‘˜ ) ](π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ Γ— 𝑑)

(2000)(247)

1

= [0.12(1.9)(100 Γ— 0.001 Γ— 30)3 ](4303.89 Γ— 247) = 349.57kN < 𝑉𝑅𝐷,𝐢 π‘šπ‘–π‘› = 533.72kN

∴ 𝑉𝑅𝐷,𝐢 = 533.72kN > 𝑉𝐸𝐷 = 202.22kN ∴ h is adequate. Step 7. Check the shear force at critical zone ( 𝑉𝐸𝐷 ) 𝑉𝐸𝐷 = Earth Pressure Γ— β„Žπ‘“π‘œπ‘œπ‘‘π‘–π‘›π‘” Γ— [ = 79.3 Γ— 2 Γ— [

(2βˆ’ 0.3) 2

(π‘π‘“π‘œπ‘œπ‘‘π‘–π‘›π‘” βˆ’ π‘π‘π‘œπ‘™π‘’π‘šπ‘› ) 2

βˆ’ 𝑑]

βˆ’ 0.247]

= 95.64kN 3

1

𝑉𝑅𝐷,𝐢 π‘šπ‘–π‘› = [0.035π‘˜ 2 π‘“π‘π‘˜ 2 ](𝑏𝑀 Γ— 𝑑) 3

1

= [0.035(1.9)2 (30)2 ](2000 Γ— 247) = 248.02kN 1

𝑉𝑅𝐷,𝐢 = [0.12π‘˜(100 𝜌1 π‘“π‘π‘˜ )3 ](𝑏𝑀 Γ— 𝑑) 1

= [0.12(1.9)(100 Γ— 0.001 Γ— 30)3 ](2000 Γ— 247) = 162.44kN < 𝑉𝑅𝐷,𝐢 π‘šπ‘–π‘› = 248.02kN

∴ 𝑉𝑅𝐷,𝐢 = 248.02kN > 𝑉𝐸𝐷 = 95.64kN ∴ No shear reinforcement is required.

17

3.4 Design of Footing B2 and C2 Step 1. Compute the earth pressure (associated with the critical loading arrangement at ultimate limit state) exerted by the footing.

𝑁𝐸𝐷 = 559.63kN (found from progress report 5: Design of RC Column) 𝑁𝐸𝐷,π‘‘π‘œπ‘‘π‘Žπ‘™ = 559.63 + 𝑠𝑒𝑙𝑓 π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘π‘œπ‘™π‘’π‘šπ‘› = 559.63 + (2.4 Γ— 0.3 Γ— 0.3)(25) = 559.63 + 5.4 = 565.03kN

Density of Reinforced Concrete = 25kN/π‘š3

Assumptions: safe bearing pressure on soil = 200kN/π‘š2

Earth pressure = =

𝑁𝐸𝐷 𝑆𝑖𝑧𝑒 π‘œπ‘“ π‘“π‘œπ‘œπ‘‘π‘–π‘›π‘” 565.03 (2000 Γ—2000)Γ— 10βˆ’6

= 141.26kN/π’ŽπŸ < safe bearing pressure on soil = 200kN/π‘š2 ∴ Earth pressure exerted is safe.

Step 3. Assume a height (h) and effective depth (d) taking account of compression anchorage requirements of starter bars and check the shear force at the face of the column Assume height of footing = 300mm d = thickness - cover - βˆ…/2 = 300 - 45 - 16/2 = 247mm 𝑓

𝑓

π‘π‘˜ π‘π‘˜ 𝑉𝑅𝐷,π‘€π‘Žπ‘₯ = 0.5𝑒𝑑 [0.6 (1 βˆ’ 250 )] 1.5

= 0.5(1200)(247) [0.6 (1 βˆ’

30 30 )] 250 1.5

Perimeter of the column, 𝑒 = 4 Γ— 300 = 1200mm

= 1564.99kN > 565.03kN ∴ 𝑉𝑅𝐷,π‘€π‘Žπ‘₯ is adequate.

18

Step 4. Check for punching shear Punching shear control perimeter = perimeter of column + 4πœ‹π‘‘

= 4 Γ— 300 + 4πœ‹(247) = 4303.89mm Area within control perimeter (square) = (π‘Ž + 4𝑑)2 – (4 – πœ‹)2𝑑2 = (300 + 4 Γ— 247)2 – (4 – πœ‹)(2 Γ— 247)2 = 1658944 – 209482.3 = 1.45 Γ— 106 π‘šπ‘š2 = 𝟏. πŸ’πŸ“π’ŽπŸ Punching shear force, 𝑉𝐸𝐷 = Earth pressure Γ— (Area of footing – Area within perimeter)

= 141.26 Γ— (2 Γ— 2 – 1.45) = 141.26 Γ— (2.55) = 360.21kN Punching shear stress =

360.21 Γ— 103

4303.89 Γ—247 = 0.34N/π’Žπ’ŽπŸ

3

1

𝑉𝑅𝐷,𝐢 π‘šπ‘–π‘› = [0.035π‘˜ 2 π‘“π‘π‘˜ 2 ](π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ Γ— 𝑑) 3 2

1 2

= [0.035(1.9) (30) ](4303.89 Γ— 247) = 533.72kN

200

k = (1 + √

1

𝑉𝑅𝐷,𝐢 = [0.12π‘˜(100 𝜌1 π‘“π‘π‘˜ )3 ](π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ Γ— 𝑑)

𝑑

) <2

𝜌1 = 0.02

200

= (1 +√247 ) = 1.9 < 2

1 3

= [0.12(1.9)(100 Γ— 0.02 Γ— 30) ](4303.89 Γ— 247) = 948.88kN > 𝑉𝑅𝐷,𝐢 π‘šπ‘–π‘› = 242.88kN 𝛾𝑅𝐷,𝐢 =

=

𝑉𝑅𝐷,𝐢 π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘ŸΓ—π‘‘ 948.88Γ—103 4303.89 Γ—247

= 0.89N/mπ’ŽπŸ > Punching shear stress = 0.34N/π‘šπ‘š2 ∴ h is adequate for punching shear.

19

Step 5. Find the reinforcement steel bar required to resist bending.

𝑀𝐸𝐷 = Earth Pressure Γ— β„Žπ‘“π‘œπ‘œπ‘‘π‘–π‘›π‘” Γ— = 141.26 Γ— 2 Γ—

(2βˆ’ 0.3) 2

Γ—

(π‘π‘“π‘œπ‘œπ‘‘π‘–π‘›π‘” βˆ’ π‘π‘π‘œπ‘™π‘’π‘šπ‘› )

(2βˆ’ 0.3) 2

1

2

Γ—

(π‘π‘“π‘œπ‘œπ‘‘π‘–π‘›π‘” βˆ’ π‘π‘π‘œπ‘™π‘’π‘šπ‘› ) 2

1

(2)

(2)

= 102.06kNm

K= =

𝑀

where K’= 0.167

π‘“π‘π‘˜ 𝑏𝑀 𝑑 2 102.06 Γ—106

(30)(2000)(247)2

= 0.028 ∴ section is singly reinforced.

Z = d (0.5 + √0.25 βˆ’ = d (0.5 + √0.25 βˆ’

𝐾 ) 1.134 0.028 1.134

where 0.82d < Z < 0.954d

)

= 0.975d >0.954d

∴ Z = 0.954d

𝐴𝑠 π‘…π‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ =

=

𝑀 0.87π‘“π‘¦π‘˜ 𝑧 102.06 Γ—106 0.87(500)(0.954 Γ—247)

= 995.68π’Žπ’ŽπŸ Number of Steel Bars Required =

=

𝐴𝑠 π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 π‘π‘Žπ‘Ÿ

995.68 πœ‹162 /4

= 4.95 β‰ˆ5 𝐴𝑠 π‘ƒπ‘Ÿπ‘œπ‘£π‘–π‘‘π‘’π‘‘ = 𝑁 Γ— π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 π‘π‘Žπ‘Ÿ

= 5 Γ— πœ‹162 /4 = 1005.31π’Žπ’ŽπŸ

20

Step 6. Repeat the check for punching shear 3

1

𝑉𝑅𝐷,𝐢 π‘šπ‘–π‘› = [0.035π‘˜ 2 π‘“π‘π‘˜ 2 ](π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ Γ— 𝑑) 3 2

200

k = (1 + √

1 2

= [0.035(1.9) (30) ](4303.89 Γ— 247) = 533.72kN

𝑑

200

) <2

𝜌1 =

𝐴𝑠,π‘π‘Ÿπ‘œπ‘£π‘–π‘‘π‘’π‘‘ 𝑏𝑀𝑑 πŸπŸŽπŸŽπŸ“.πŸ‘πŸ

= (1 +√247 )

=

= 1.9 < 2

= 0.002

1 3

𝑉𝑅𝐷,𝐢 = [0.12π‘˜(100 𝜌1 π‘“π‘π‘˜ ) ](π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ Γ— 𝑑)

(2000)(247)

1

= [0.12(1.9)(100 Γ— 0.002 Γ— 30)3 ](4303.89 Γ— 247) = 440.43kN < 𝑉𝑅𝐷,𝐢 π‘šπ‘–π‘› = 533.72kN

∴ 𝑉𝑅𝐷,𝐢 = 533.72kN > 𝑉𝐸𝐷 = 360.21kN ∴ h is adequate. Step 7. Check the shear force at critical zone ( 𝑉𝐸𝐷 ) 𝑉𝐸𝐷 = Earth Pressure Γ— β„Žπ‘“π‘œπ‘œπ‘‘π‘–π‘›π‘” Γ— [ = 141.26 Γ— 2 Γ— [

(2βˆ’ 0.3) 2

(π‘π‘“π‘œπ‘œπ‘‘π‘–π‘›π‘” βˆ’ π‘π‘π‘œπ‘™π‘’π‘šπ‘› ) 2

βˆ’ 𝑑]

βˆ’ 0.247]

= 170.36kN 3

1

𝑉𝑅𝐷,𝐢 π‘šπ‘–π‘› = [0.035π‘˜ 2 π‘“π‘π‘˜ 2 ](𝑏𝑀 Γ— 𝑑) 3

1

= [0.035(1.9)2 (30)2 ](2000 Γ— 247) = 248.02kN 1

𝑉𝑅𝐷,𝐢 = [0.12π‘˜(100 𝜌1 π‘“π‘π‘˜ )3 ](𝑏𝑀 Γ— 𝑑) 1

= [0.12(1.9)(100 Γ— 0.002 Γ— 30)3 ](2000 Γ— 247) = 204.67kN < 𝑉𝑅𝐷,𝐢 π‘šπ‘–π‘› = 248.02kN

∴ 𝑉𝑅𝐷,𝐢 = 248.02kN > 𝑉𝐸𝐷 = 170.36kN ∴ No shear reinforcement is required.

4.0 CONCLUSION In this report, 4 footings were designed: 1. Footing A1, A3, D1, D3

2. Footing n B1, B3, C1, C3

3. Footing A2 and D2

4. Footing B2 and C2

The design of these footing is done using Eurocode 2. All the footing is singly reinforced.

21

More Documents from "Cyrus Hong"

Column.pdf
November 2019 21
Footing.pdf
November 2019 25
Rc Waler.pdf
November 2019 31
200a Excela 10ene19 Xml
August 2019 31
Daily Tribune Template.docx
December 2019 24