Folha Pratica 3 A Ii

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Folha Pratica 3 A Ii as PDF for free.

More details

  • Words: 634
  • Pages: 3
Matemática II PRIMITIVAS IMEDIATAS E QUASE IMEDIATAS 20. Calcule as seguintes primitivas e verifique o resultado por diferenciação da função obtida: 20.1.

∫ (2 x )

20.3.



5

3

3

⋅ 10 x 4 ⋅ dx

20.2.



4− x 8x − x 2

⋅ dx

5 + x ⋅ dx

21. Determine a função f(x) tal que:

∫ f ( x) ⋅ dx = 2 ⋅ arctg (

x)

22. Determine pelo método de substituição os seguintes integrais indefinidos 22.1.

x ∫ x 2 + 2 dx

22.2.

2x

22.9.

∫ (x

∫ x ln x dx

22.10.

∫ x ln

22.3.

x2 ∫ 4 + x 6 dx

22.11.

x3 ∫ x 4 + 1 dx

22.4.

 2 3 ∫  3 x + x  dx

22.12.

∫a

22.5.



22.13.

∫x

22.14.

∫ sin

22.15.

ln x ∫ x dx

22.16.

∫ sin3xdx

1

2

22.6.



1

tgx + 1 cos 2 x x −1 dx x3

t3

22.7.



22.8.

∫ (x

MATEMÁTICA II

dt

5t 4 + 3 x +1 2

+ 2x

)

3

dx

dx

2006/2007

2

+4

1

2

)

3

dx

xdx

1 dx + x2

2

1 1 − ln 2 x

1 2

3x

dx

dx

2

8

ESCOLA SUPERIOR DE TECNOLOGIA

1

INFORMÁTICA PARA A SAÚDE

22.32.

∫ cos x(− sinx )dx

22.33.

∫ sin

22.34.

∫ cos

∫ 3 − x dx

22.35.

∫ sin

22.21.

2x ∫ e dx

22.36.

∫ cos

22.22.

u ∫ u − 2 du

22.37.



22.38.



22.39.

∫ 1+ x

22.17.



22.18.

∫ (2 x

22.19.

∫  x

22.20.

ax + b



dx

)(

2

)

3

+ 1 2 x 3 + 3 x dx x+

3

 dx 2x + 1  1

4

1

2

ex

3

cos x dx 2 x tgx 2

x

dx

cotgx dx 2 x 1 2

x tgx − 1

cos x 2 sinx + 1 arcsinx

dx

dx

22.23.



22.24.

∫2

22.25.

2 x ∫ x e dx

22.40.



arccos 2 x

22.26.

∫ sin(ax)dx

22.41.



arccotgx dx 1+ x2

22.27.

∫ sinx dx

22.42.

∫x

22.28.

∫ tg (2 x + 3)dx

22.43.

∫ 2sinx + 3 dx

22.29.

∫ cotg 3x dx

22.44

∫ x ln x dx

22.30.

∫ sec (3x + 1)dx

22.45

∫ (1 + x )arctgx dx

22.31.

∫ sin

22.46

∫ cos x(3tgx + 1) dx

MATEMÁTICA II

1− ex x

dx

dx

3

cos x

1

2

2

x cos xdx

2006/2007

1− x2 arctgx

dx

dx

2

1− x2

2

dx

x dx +1

cos x

1

1

2

1

2

9

ESCOLA SUPERIOR DE TECNOLOGIA

INFORMÁTICA PARA A SAÚDE

22.47.

cos 2 x ∫ 2 + 3sin2 x dx

22.58.

x3 ∫ 1 + x 8 dx

22.48.



cos(ln x ) dx x

22.59.

∫4+ x

22.49.

∫ cos(a + bx )dx

22.60.

∫ (2t − 1)

22.50.

∫e

sinx

cos xdx



tg

2

+4

t2

dx

22.63.

e x dx

22.64.



22.65.

∫1+ x

22.66.

∫ ( x − 2)

22.67.



22.68.

∫x

∫ xa

22.53.

∫3

22.54.

∫ (e

22.55.

∫ exp( x

dx x2

5x

x

)

+ a 5 x dx 2

+ 4 x + 3)( x + 2)dx

− bx a xb x

)

2

22.56.



22.57.

sec 2 x ∫ 4 + tg 2 x dx

dx

2006/2007

dx

2 t dx

cos x 2 ∫ x sinx 2 dx

22.52.

MATEMÁTICA II

2

sec 2 x ∫ 1 + tgx dx

∫e

(a

dx

2

22.62.

x a

22.51.

x

22.61.

1

x x +1 x

4

dx

dx

1

x +1 x

n

dx

dx

x − 1dx

10

Related Documents

Folha Pratica 3 A Ii
November 2019 12
Folha Pratica 4 A Ii
November 2019 16
Folha Pratica 6 A Ii
November 2019 7
Folha Pratica 5 A Ii
November 2019 14
Pratica Ii
November 2019 18