Fismat Santi L14.docx

  • Uploaded by: Santi Sasmita
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Fismat Santi L14.docx as PDF for free.

More details

  • Words: 1,089
  • Pages: 4
l14 e pt cos bt 

Y  L( y )  F ( P)   e  pt f (t )dt 0 

e

 pt



f (t )dt   e  at cos bt.e  pt dt

0 

e

0 (  a  p )t

cos btdt  .....

0

misal : u  e(  a  p )t du  (a  p)e(  a  p ) dt dv  cos btdt 1 v  sin btdt b 

e

(  a  p )t

cos btdt  e

0

(  a  p )t



1 1 sin bt   sin bt (a  p )e(  a  p )t dt b b 0 

 a  p  (  a  p )t  1  e(  a  p )t sin bt   e sin btdt   b  b 0 o misal : u  e(  a  p )t

du  (a  p)e(  a  p ) dt dv  sin btdt 1 v   cos btdt b



 a  p  (  a  p )t  1 (  a  p )t  e .cos bt   e cos btdt   b  b 0 0 Maka, 

e



(  a  p )t

0

 a  p  (  a  p )t  1 cos btdt  e(  a  p ) t sin bt   e sin btdt   b  b 0 0

 a  p  1 (  a  p ) t  a  p  (  a  p )t    1 (  a  p )t (  a  p )t e cos btdt  e sin bt   e cos bt  e cos btdt      0  b  b 0     b  b





e e 0

0 

(  a  p )t

0 



 ae(  a  p )t cos bt  pe(  a  p )t cos bt a  a  p  (  a  p )t  p  a  p  (  a  p )t   1 (  a  p )t cos btdt  e sin bt    e cos btdt  e cos btdt      b b2 b  b 0   b b 0  0



(  a  p )t

 ae(  a  p )t cos bt  pe(  a  p )t cos bt  a 2  ap  (  a  p ) t   ap  p 2  (  a  p )t   1 (  a  p )t cos btdt  e sin bt    e cos b tdt  e cos btdt     2 2 0 0 b b2   b   b  0 

 (a  p)e(  a  p )t cos bt  a 2  ap  p 2  (  a  p ) t   1 (  a  p )t (  a  p )t e cos btdt  e sin bt   e cos btdt    0 0 b b2 b2    0



Sehingga,



e



(  a  p )t

0



e

 a 2  ap  p 2  (  a  p ) t  1 (  a p )t  (a  p )e (  a  p )t cos bt  cos btdt   cos btdt   e sin bt    0 e b2 b2  0   b 

(  a  p )t

0

 a 2  ap  p 2  1 (  a  p ) t  (a  p )e(  a  p ) t cos bt  cos btdt 1   e sin bt     b2 b2   b  0 



e

(  a  p )t

cos btdt 

 (a  p )e(  a  p )t cos bt  1 (  a  p )t e sin bt    b b2  0

cos btdt 

 (a  p)e(  a  p )t cos bt  1 (  a  p )t e sin bt    b b2  0

0



 a 2  ap  p 2  1   b2  0





e

(  a  p )t

0



 b 2  a 2  ap  p 2    b2  0

 (a  p )e  cos b()  1 0  (a  p)e0 cos b(0)  1  e sin b (  )   e sin b (0)       b b2 b2   b   (  a  p )t e cos btdt  0  b 2  a 2  ap  p 2   b 2  a 2  ap  p 2      b2 b2      (a  p)  0 2  b  (  a  p )t e cos btdt  0  0  b 2  a 2  ap  p 2    b2  





 b2 a  p  (  a  p )t e cos btdt   0  b 2   b 2  a 2  ap  p 2   

Maka dihasilkan



e

(  a  p )t

0



e 0

(  a  p )t

  ab cos btdt   2 2 2  b  a  ap  p  cos btdt 

ab (a  p ) 2  b 2

Related Documents

Fismat Santi L14.docx
May 2020 29
Santi
November 2019 32
Santi Boo
May 2020 28
Essere Santi
June 2020 18
Aaaaaaaaa Lp Apendik Santi
October 2019 52

More Documents from "santi"

Uts 2018.docx
May 2020 5
Contoh Piagam.docx
May 2020 6
Fismat Santi L14.docx
May 2020 29
Surat Izin.docx
May 2020 3
General Problems.pdf
November 2019 34