Fisdas.docx

  • Uploaded by: Fahrul
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Fisdas.docx as PDF for free.

More details

  • Words: 4,096
  • Pages: 20
Gerakan elektron tidak bebas, elektron terikat atom oleh gaya tarik dari inti dan mekanik akibatnya kuantum memprediksi bahwa energi total elektron terkuantisasi. Dan berikut ini adalah ulasan tentang kuantitasi energi semoga bermanfaat! Kuantisasi Energi Kuantisasi energi mengacu pada penyerapan atau emisi energi dalam paket bijaksana, atau kuanta. Sebagai intensitas meningkat energi elektromagnetik atau penurunan, itu langkah naik atau turun dari satu tingkat terkuantisasi yang lain, daripada mengikuti kurva mulus dan terus menerus. Kuantisasi energi, juga dikenal sebagai “teori kuantum,” menggambarkan bagaimana energi hanya dapat hilang atau diperoleh dalam kelipatan unit kemungkinan terkecil energi, yang disebut sebagai “kuantum.” Hipotesis kuantum pertama kali diperkenalkan oleh fisikawan Jerman, Max Planck, pada tahun 1900. Teorinya disajikan sebagai sarana menjelaskan mengapa tingkat perubahan energi yang dipancarkan dari permukaan tubuh dipanaskan tidak mengikuti kurva mulus relatif gelar perubahan suhu yang tubuh. Hal ini tidak bisa dijelaskan dengan hukum klasik fisika. Planck mengembangkan sebuah model matematika yang menggambarkan perubahan terkuantisasi emisi energi atau penyerapan yang didasarkan pada konstan sekarang dikenal sebagai “konstanta Planck.” Advertisement Pada tahun 1905, Albert Einstein digunakan konstanta Planck untuk mengembangkan formula, “E = hf,” untuk menentukan tingkat energi terkuantisasi dari foton bepergian di seberkas cahaya. Dalam rumus Einstein, “E” merupakan energi yang terkandung dalam foton tunggal, “h” adalah konstanta Planck dan “f” adalah frekuensi foton. Ketika Planck pertama kali diperkenalkan teori kuantum pada tahun 1900, ia tidak menyadari bahwa hal itu akan menyebabkan perubahan mendasar dalam cara bahwa energi dan dunia fisik yang dipahami oleh ilmu pengetahuan. Penerapan konstanta Planck juga menyebabkan perkembangan sirkuit terpadu dan transistor yang memainkan peran penting dalam teknologi modern.

Pengertian Gelombang, Macam-macam Gelombang, Sifat Gelombang, dan pemanfaatan gelombang merupakan poin-poin yang akan saya coba bahas pada postingan kali ini, semoga dapat membantu.

A. PENGERTIAN GELOMBANG Gelombang adalah gejala rambatan dari suatu getaran/usikan. Gelombang akan terus terjadi apabila sumber getaran ini bergetar terus menerus. Gelombang membawa energi dari satu tempat ke tempat lainnya. Contoh sederhana gelombang, apabila kita mengikatkan satu ujung tali ke tiang, dan satu ujung talinya lagi digoyangkan, maka akan terbentuk banyak bukit dan lembah di tali yang digoyangkan tadi, inilah yang disebut gelombang. Kesimpulan Gelombang = Gejala rambatan dari suatu getaran. B. MACAM-MACAM GELOMBANG 1. Berdasarkan Mediumnya Gelombang dibagi dua, yaitu :

a. Gelombang Mekanik Gelombang mekanik adalah gelombang yang dalam proses perambatannya memerlukan medium (zat perantara) . Artinya jika tidak ada medium, maka gelombang tidak akan terjadi. Contohnya adalah Gelombang Bunyi yang zat perantaranya udara, jadi jika tidak ada udara bunyi tidak akan terdengar.

b. Gelombang Elektromagnetik Gelombang Elektromagnetik adalah gelombang yang dalam proses perambatannya tidak memerlukan medium (zat perantara). Artinya gelombang ini bisa merambat dalam keadaan bagaimanapun tanpa memerlukan medium. Contohnya adalah gelombang cahaya yang terus ada dan tidak memerlukan zat perantara. Artikel Penunjang : Pengertian dan Fungsi Cahaya Artikel Penunjang : Sifat SifatCahaya 2. Berdasarkan Arah Getar dan Arah Rambatnya, Gelombang dibagi menjadi dua, yaitu : a. Gelombang Transversal Gelombang Transversal adalah gelombang yang arah getarnya tegak lurus dengan arah rambatannya. Bentuk Getarannya berupa lembah dan bukit (dapat dilihat pada gambar di bawah).

Berdasarkan gambar di atas dapat saya jelaskan bahwa : Arah rambat gelombang di atas adalah ke kiri dan ke kanan, sedangkan arah getarnya adalah ke atas dan ke bawah. Jadi itulah yang dimaksud arah rambat tegak lurus dengan arah getarnya. Contohnya adalah gelombang pada tali yang saya contohkan di atas.

b. Gelombang Longitudinal Gelombang longitudinal adalah gelombang yang arah rambatnya sejajar dengan arah getarannya. Bentuk getarannya berupa rapatan dan renggangan (Dapat dilihat pada gambar di bawah).

Berdasarkan gambar kita ketahui bahwa : Arah rambat gelombangnya ke kiri dan ke kanan, dan arah getarnya ke kiri dan ke kanan pula. Oleh karena itu gelombang ini adalah gelombang longitudinal yang arah getar dan arah rambatnya sejajar. Contoh gelombang ini adalah Gelombang bunyi, di udara yang dirambati gelombang ini akan terjadi rapatan dan renggangan pada molekul-molekulnya, dan saat ada rambatan molekul-molekul ini juga

bergetar. Akan tetapi getaranya hanya sebatas gerak maju mundur dan tetap di titik keseimbang, sehingga tidak membentuk bukit dan lembah.

3. Berdasarkan Amplitudonya(simpangan terjauh) Gelombang juga dibagi menjadi dua : a. Gelombang Berjalan Gelombang berjalan adalah gelombang yang amplitudonya tetap pada setiap titik yang dilalui gelombang, misalnya gelombang pada tali.

b. Gelombang diam Gelombang diam adalah gelombang yang amplitudonya berubah, misalnya gelombang pada senar gitar yang dipetik.

C. SIFAT-SIFAT GELOMBANG

a. Dipantulkan (Refleksi) Tentunya sahabat sudah sangat mengerti tentang pemantulan ini, jadi secara garis besar saya rasa kita sudah sepaham. Dalam pemantulan gelombang berlaku hukum pemantulan gelombang, yaitu : Besar sudut datangnya gelombang sama dengan sudut pantul gelombang. Gelombang datang, gelombang pantul, dan garis normal terletak pada satu bidang datar.

b. Dibiaskan (refraksi) Pembiasan gelombang adalah pembelokan arah rambat gelombang karena melalui medium yang berbeda kerapatannya.

c. Dipadukan (interferensi) Perpaduan gelombang terjadi apabila terdapat gelombang dengan frekuensi dan beda fase saling bertemu. Hasil interferensi gelombang akan ada 2, yaitu konstruktif (saling menguatkan) dan destruktif (saling melemahkan). Interferensi Konstruktif terjadi saat 2 gelombang bertemu pada fase yang sama, sedangkan interferensi destruktif terjadi saat 2 gelombang bertemu pada fase yang berlawanan.

d. Dibelokkan/disebarkan (Difraksi)

Difraksi gelombang adalah pembelokkan/penyebaran gelombang jika gelombang tersebut melalui celah. Geja difraksi akan semakin tampak jelas apabila celah yang dilewati semakin sempit.

e. Dispersi Gelombang Dispersi adalah penyebaran bentuk gelombang ketika merambat melalui suatu medium. Dispersi tidak akan terjadi pada gelombang bunyi yang merambat melalui udara atau ruang hampa. Medium yang dapat mempertahankan bentuk gelombang tersebut disebut medium nondispersi.

f. Dispolarisasi (diserap arah getarnya) Polarisasi adalah peristiwa terserapnya sebagian arah getar gelombang sehingga hanya tinggal memiliki satu arah saja. Polarisasi hanya akan terjadi pada gelombang transversal, karena arah gelombang sesuai dengan arah polarisasi, dan sebaliknya, akan terserap jika arah gelombang tidak sesuai dengan arah polarisasi celah tersebut.

E. PEMANFAATAN GELOMBANG Sangat banyak pemanfaatan dari gelombang dengan mempertimbangkan berbagai sifat gelombang yang ada di sekitar kita. Beberapa diantaranya adalah Gelombang TV dan Radio untuk komunikasi. Gelombang Micro yang dimanfaatkan untuk memasak makanan atau yang kita kenal dengan microwave Gelombang bunyi yang sangat membantu bidang kesehatan, yaitu Ultrasonik pada peralatan USG untuk memeriksa ada tidaknya penyakit.

Materi Gelombang Fisika Wednesday, February 19th 2014. | rumus fisika Gelombang Fisika – Setelah kemarin kita belajar banyak tentang getaran, kali ini kita akan membahas satu materi fisika yaitu gelombang. Kalau sobat ditanya apa beda getaran dan gelombang, apa jawaban yang akan sobat berikan? Gelombang dan getaran adalah dua hal yang berbeda, sobat bisa temukan perbedaannya dengan mengikuti ulasan berikut Apa itu Gelombang? Sobat bisa membayangkan gelombang adalah getaran yang ia bergerak dari satu tempat ke tempat yang lain dengan melalui media tertentu atau bahkan bisa tanpa melalui media (ruang hampa). Jadi gelombang adalah getaran yang berulang, ia merambat melalui media tertentu atau tanpa media, berpindah dari suatu tempat ke tempat yang lain. Medium sendiri adalah media atau zat yang membawa gelombang. Macam-macam Gelombang Macam gelombang sangat banyak ada gelombang bunyi, radio, elektromagnet, dan masih banyak lagi. Akan tetapi yang sering kita dengar ada namanya gelombang transversal dan longitudinal. Penggolongan gelombang menjadi dua kelompok tersebut didasarkan pada arah getaran dan arah rambatnya. a. Gelombang Transversal Yang dinamakan gelombang transversal adalah gelombang yang punya arah getaran yang tegak lurus terhadap arah perambatannya. Contoh gelombang transversal bisa sobat jumpai pada gelombang tali dan gelombang air. Karena arah rambatannya tegak lurus dengan arah getaran, bentuk gelombang ini adalah seperti gunung dan lembah yang berurutan. Berikut ini ilustrasi dan istilahistilah pada gelombang transversal :

Puncak Gelombang (Gunung) : titik-titik tertinggi pada gelombang Dasar Gelombang (Lembah) : titik-titik dasar terendah dari suatu gelombang Bukit Gelombang : bagian gelombang yang menyerupai gunung dengan titik tertingi –> puncak gelombang Lembah Gelombang : bagian gelombang yang menyerupai lembah dengan titik terendah –> dasar gelombang. Panjang Gelombang : jarak antara dua puncak atau dua lembah gelombang Amplitudo (A) : simpangan terjauh dari garis keseimbangan

Periode (T) : waktu yang diperlukan untuk menempuh jarak dua puncak atau dua lembah yang berurutan. Atau gampangnya sobat bisa bilang waktu yang diperlukan untuk membuat satu gelombang. b. Gelombang Longitudinal Gelombang longitudinal adalah gelombang yang getarannya punya arah yang sama dengan arah perambatannya. Pada gelombang ini gerakan dari medium gelombang searah dengan propagasi gelombang. Bunyi adalah salah satu contoh dari gelombang ini. Pada gelombang bunyi yang menjadi medium perantara adalah udara. Medium tersebut secara bergantian merapat dan merengang karena adanya pergeseran getaran (berpindah tempat). Istilah istilah dalam gelombang longitudinal.

Rapatan : daerah sepanjang gelombang yang mempunyai rapatan atau tekanan molekul lebih tinggi Renggangan : daerah sepangjang gelombang yang memiliki rapatan molekul yang lebih rendah Panjang 1 gelombang : jaraka atara dua rapatan atau antara dua renggangan yang saling berdekatan. Rumus Gelombang : Cepat Rambat, Frekuensi, Periode dan Panjang Gelombang Ada beberapa variabel yang dijumpai ketika belajar gelombang seperti cepat rambat, frekuensi, dan juga periode. Soal-soal fisika SMA tentang gelombang tidak akan jauh-jauh dati 3 variabel tersebut. Cepat rambat gelombang dilambangkan dengan (v) adalah jarak yang ditempuh gelombang dalam waktu 1 detik. Hubungan antara keempat besaran tersebut adalah “cepat rambat gelombang sama dengan perkalian panjang gelombang λ (baca lambda) dengan frekuensi” v=λ.f dari rumus di atas sobat bisa menurunkan beberapa rums λ=v/f karena frekuensi berbanding terbalik langsung dengan periode f = 1 / t maka v=λ/t λ=v.t Contoh Soal Jika ada sumber getaran bergetar dengan frekuensi 200 Hz, panjang gelombang yang terpancar adalah 4 m, coba tentukan cepat rambat gelombang tersebut! Pilihan jawabannya

a. 550 m/s

d. 800 m/s

b. 600 m/s c. 200 m/s Jawab : v = λ . f = 4 . 200 = 800 m/s, jawaban d Diketahui sebuah gelombang longitudinal dari sebuah lonceng adalah 20 Hz. Jika cepat rambat gelombang di udara adalah 360 m/s, maka jarak antar dua rapatan yang saling berdekatan adalah? a. 10 m

d. 18 m

b. 11 m

e. 20 m

c. 14 m Jawab : jarak antara dua rapatan yang saling berdekatan sama dengan jarak 1 gelombang (λ). λ = v/f = 360/20 = 18 m, jawaban d

Foton Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Foton yang dipancarkan dalam berkas koheren laser Foton adalah partikel elementer dalam fenomena elektromagnetik. Biasanya foton dianggap sebagai pembawa radiasi elektromagnetik, seperti cahaya, gelombang radio, dan Sinar-X. Foton berbeda dengan partikel elementer lain seperti elektron dan quark, karena ia tidak bermassa dan dalam ruang vakum foton selalu bergerak dengan kecepatan cahaya, c. Foton memiliki baik sifat gelombang maupun partikel ("dualisme gelombang-partikel"). Sebagai gelombang, satu foton tunggal tersebar di seluruh ruang dan menunjukkan fenomena gelombang seperti pembiasan oleh lensa dan interferensi destruktif ketika gelombang terpantulkan saling memusnahkan satu sama lain. Sebagai partikel, foton hanya dapat berinteraksi dengan materi dengan memindahkan energi sejumlah: E = h c λ {\displaystyle E={\frac {hc}{\lambda }}}

di mana h {\displaystyle h} dan λ {\displaystyle \lambda }

,

adalah konstanta Planck, c {\displaystyle c}

adalah laju cahaya,

adalah panjang gelombangnya.

Selain energi partikel foton juga membawa momentum dan memiliki polarisasi. Foton mematuhi hukum mekanika kuantum, yang berarti kerap kali besaran-besaran tersebut tidak dapat diukur dengan cermat. Biasanya besaran-besaran tersebut didefinisikan sebagai probabilitas mengukur polarisasi, posisi, atau momentum tertentu. Sebagai contoh, meskipun sebuah foton dapat mengeksitasi satu molekul tertentu, sering tidak mungkin meramalkan sebelumnya molekul yang mana yang akan tereksitasi. Deskripsi foton sebagai pembawa radiasi elektromagnetik biasa digunakan oleh para fisikawan. Namun dalam fisika teoretis sebuah foton dapat dianggap sebagai mediator buat segala jenis interaksi elektromagnetik, seperti medan magnet dan gaya tolak-menolak antara muatan sejenis.

Konsep modern foton dikembangkan secara berangsur-angsur antara 1905-1917 oleh Albert Einstein[1][2][3][4] untuk menjelaskan pengamatan eksperimental yang tidak memenuhi model klasik untuk cahaya. Model foton khususnya memperhitungkan ketergantungan energi cahaya terhadap frekuensi, dan menjelaskan kemampuan materi dan radiasi elektromagnetik untuk berada dalam kesetimbangan termal. Fisikawan lain mencoba menjelaskan anomali pengamatan ini dengan model semiklasik, yang masih menggunakan persamaan Maxwell untuk mendeskripsikan cahaya. Namun dalam model ini objek material yang mengemisi dan menyerap cahaya dikuantisasi. Meskipun model-model semiklasik ini ikut menyumbang dalam pengembangan mekanika kuantum, percobaan-percobaan lebih lanjut membuktikan hipotesis Einstein bahwa cahaya itu sendirilah yang terkuantisasi. Kuantum cahaya adalah foton. Konsep foton telah membawa kemajuan berarti dalam fisika teoretis dan eksperimental, seperti laser, kondensasi Bose-Einstein, teori medan kuantum dan interpretasi probabilistik dari mekanika kuantum. Menurut model standar fisika partikel, foton bertanggung jawab dalam memproduksi semua medan listrik dan medan magnet dan foton sendiri merupakan hasil persyaratan bahwa hukum-hukum fisika memiliki kesetangkupan pada tiap titik pada ruang-waktu. Sifat-sifat intrinsik foton seperti muatan listrik, massa dan spin ditentukan dari kesetangkupan gauge ini. Konsep foton diterapkan dalam banyak area seperti fotokimia, mikroskopi resolusi tinggi dan pengukuran jarak molekuler. Baru-baru ini foton dipelajari sebagai unsur komputer kuantum dan untuk aplikasi canggih dalam komunikasi optik seperti kriptografi kuantum Nomenklatur Foton awalnya dinamakan sebagai kuantum cahaya (das Lichtquant) oleh Albert Einstein.[1]. Nama modern "photon" berasal dari kata Bahasa Yunani untuk cahaya φῶς, ditransliterasi sebagai phôs, dan ditelurkan oleh kimiawan fisik Gilbert N. Lewis, yang menerbitkan teori spekulatif[5] yang menyebutkan foton sebagai "tidak dapat diciptakan atau dimusnahkan". Meskipun teori Lewis ini tidak dapat diterima karena bertentangan dengan hasil banyak percobaan, nama barunya ini, photon, segera diadopsi oleh kebanyakan fisikawan. Isaac Asimov menyebut Arthur Compton sebagai orang yang pertama kali mendefinisikan kuantum cahaya sebagai foton pada tahun 1927 [[6][7] Dalam fisika, foton biasanya dilambangkan oleh simbol γ abjad Yunani gamma. Simbol ini kemungkinan berasal dari sinar gamma, yang ditemukan dan dinamakan oleh Villard[8][9], dan dibuktikan sebagai salah satu bentuk radiasi elektromagnetik pada 1914 oleh Ernest Rutherford dan Edward Andrade.[10] Dalam kimia dan rekayasa optik, foton biasanya dilambangkan oleh h ν {\displaystyle h\nu } energi foton, h {\displaystyle h}

adalah konstanta Planck dan abjad Yunani ν {\displaystyle \nu }

adalah frekuensi foton. Agak jarang ditemukan adalah foton disimbolkan sebagai hf, f di sini melambangkan frekuensi. Sifat-sifat fisik

,

Diagram Feynman pertukaran foton virtual (dilambangkan oleh garis gelombang dan gamma, γ {\displaystyle \gamma }

) antara sebutir positron dan elektron.

Foton tidak bermassa,[11] tidak memiliki muatan listrik,[12] dan tidak meluruh secara spontan di ruang hampa. Sebuah foton memiliki dua keadaan polarisasi yang dimungkinkan, dan dapat dideskripsikan dengn tiga parameter kontinu: komponen-komponen vektor gelombang, yang menentukan panjang gelombangnya ( λ {\displaystyle \lambda } ) dan arah perambatannya. Foton adalah boson gauge untuk elektromagnetisme, dan sebab itu semua bilangan kuantum lainnya seperti bilangan lepton, bilangan baryon atau strangeness bernilai persis nol. Foton diemisikan dalam banyak proses alamiah, contohnya ketika muatan dipercepat, saat transisi molekuler, atomik atau nuklir ke tingkat energi yang lebih rendah, atau ketika sebuah partikel dan antipartikel bertumbukan dan saling memusnahkan. Foton diserap dalam proses dengan waktu mundur (time-reversed) yang berkaitan dengan yang sudah disebut di atas: contohnya dalam produksi pasangan partikel-antipartikel, atau dalam transisi molekuler, atomik atau nuklir ke tingkat energi yang lebih tinggi. Dalam ruang hampa foton bergerak dengan laju c {\displaystyle c} {\displaystyle E} {\displaystyle E=pc}

dan momentum p {\displaystyle p} , di mana p {\displaystyle p}

(laju cahaya). Energinya E

dihubungkan dalam persamaan E = p c merupakan nilai momentum. Sebagai

perbandingan, persamaan terkait untuk partikel dengan massa m {\displaystyle m} c 2 p 2 + m 2 c 4 {\displaystyle E^{2}=c^{2}p^{2}+m^{2}c^{4}} khusus.

adalah E 2 =

, sesuai dengan teori relativitas

eori Dasar X-Ray Diffraction (XRD) Proses analisis menggunakan X-ray diffraction (XRD) merupakan salah satu metoda karakterisasi material yang paling tua dan paling sering digunakan hingga sekarang. Teknik ini digunakan untuk mengidentifikasi fasa kristalin dalam material dengan cara menentukan parameter struktur kisi serta untuk mendapatkan ukuran partikel. Sinar X merupakan radiasi elektromagnetik yang memiliki energi tinggi sekitar 200 eV sampai 1 MeV. Sinar X dihasilkan oleh interaksi antara berkas elektron eksternal dengan elektron pada kulit atom. Spektrum sinar X memilki panjang gelombang 10-10 s/d 5-10 nm, berfrekuensi 1017-1020 Hz dan memiliki energi 103-106 eV. Panjang gelombang sinar X memiliki orde yang sama dengan jarak antar atom sehingga dapat digunakan sebagai sumber difraksi kristal. SinarX dihasilkan dari tumbukan elektron berkecepatan tinggi dengan logam sasaran. Olehk arena itu, suatu tabung sinar X harus mempunyai suatu sumber elektron, voltase tinggi, dan logam sasaran. Selanjutnya elektron elektron yang ditumbukan ini mengalami pengurangan kecepatan dengan cepat dan energinya diubah menjadi foton. Sinar X ditemukan pertama kali oleh Wilhelm Conrad Rontgen pada tahun 1895, di Universitas Wurtzburg, Jerman. Karena asalnya tidak diketahui waktu itu maka disebut sinar X. Untuk penemuan ini Rontgen mendapat hadiah nobel pada tahun 1901, yang merupakan hadiah nobel pertama di bidang fisika. Sejak ditemukannya, sinar-X telah umum digunakan untuk tujuan pemeriksaan tidak merusak pada material maupun manusia. Disamping itu, sinar-X dapat juga digunakan untuk menghasilkan pola difraksi tertentu yang dapat digunakan dalam analisis kualitatif dan kuantitatif material. Pengujian dengan menggunakan sinar X disebut dengan pengujian XRD (X-Ray Diffraction). XRD digunakan untuk analisis komposisi fasa atau senyawa pada material dan juga karakterisasi kristal. Prinsip dasar XRD adalah mendifraksi cahaya yang melalui celah kristal. Difraksi cahaya oleh kisi-kisi atau kristal ini dapat terjadi apabila difraksi tersebut berasal dari radius yang memiliki panjang gelombang yang setara dengan jarak antar atom, yaitu sekitar 1 Angstrom. Radiasi yang digunakan berupa radiasi sinar-X, elektron, dan neutron. Sinar-X merupakan foton dengan energi tinggi yang memiliki panjang gelombang berkisar antara 0.5 sampai 2.5 Angstrom. Ketika berkas sinar-X berinteraksi dengan suatu material, maka sebagian berkas akan diabsorbsi, ditransmisikan, dan sebagian lagi dihamburkan terdifraksi. Hamburan terdifraksi inilah yang dideteksi oleh XRD. Berkas sinar X yang dihamburkan tersebut ada yang saling menghilangkan karena fasanya berbeda dan ada juga yang saling menguatkan karena fasanya sama. Berkas sinar X yang saling menguatkan itulah yang disebut sebagai berkas difraksi. Hukum Bragg merumuskan tentang persyaratan yang harus dipenuhi agar berkas sinar X yang dihamburkan tersebut merupakan berkas difraksi. Ilustrasi difraksi sinar-X pada XRD dapat dilihat pada Gambar 1 dan Gambar 2.

Gambar 1 : Ilustrasi difraksi sinar-X pada XRD [1]

Gambar 2 : Ilustrasi difraksi sinar-X pada XRD [2] Dari Gambar 2 dapat dideskripsikan sebagai berikut. Sinar datang yang menumbuk pada titik pada bidang pertama dan dihamburkan oleh atom P. Sinar datang yang kedua menumbuk bidang berikutnya dan dihamburkan oleh atom Q, sinar ini menempuh jarak SQ + QT bila dua sinar tersebut paralel dan satu fasa (saling menguatkan). Jarak tempuh ini merupakan kelipatan (n) panjang gelombang (λ), sehingga persamaan menjadi :

Persamaan diatas dikenal juga sebagai Bragg’s law, dimana, berdasarkan persamaan diatas, maka kita dapat mengetahui panjang gelombang sinar X (λ) dan sudut datang pada bidang kisi (θ), maka

dengan ita kita akan dapat mengestimasi jarak antara dua bidang planar kristal (d001). Skema alat uji XRD dapat dilihat pada Gamnbar 3 dibawah ini.

Gambar 3: Skema alat uji XRD [3] Dari metode difraksi kita dapat mengetahui secara langsung mengenai jarak rata-rata antar bidang atom. Kemudian kita juga dapat menentukan orientasi dari kristal tunggal. Secara langsung mendeteksi struktur kristal dari suatu material yang belum diketahui komposisinya. Kemudian secara tidak langsung mengukur ukuran, bentuk dan internal stres dari suatu kristal. Prinsip dari difraksi terjadi sebagai akibat dari pantulan elastis yang terjadi ketika sebuah sinar berinteraksi dengan sebuah target. Pantulan yang tidak terjadi kehilangan energi disebut pantulan elastis (elastic scatering). Ada dua karakteristik utama dari difraksi yaitu geometri dan intensitas. Geometri dari difraksi secara sederhana dijelaskan oleh Bragg’s Law (Lihat persamaan 2). Misalkan ada dua pantulan sinar α dan β. Secara matematis sinar β tertinggal dari sinar α sejauh SQ+QT yang sama dengan 2d sin θ secara geometris. Agar dua sinar ini dalam fasa yang sama maka jarak ini harus berupa kelipatan bilangan bulat dari panjang gelombang sinar λ. Maka didapatkanlah Hukum Bragg: 2d sin θ = nλ. Secara matematis, difraksi hanya terjadi ketika Hukum Bragg dipenuhi. Secara fisis jika kita mengetahui panjang gelombang dari sinar yang membentur kemudian kita bisa mengontrol sudut dari benturan maka kita bisa menentukan jarak antar atom (geometri dari latis). Persamaan ini adalah persamaan utama dalam difraksi. Secara praktis sebenarnya nilai n pada persamaan Bragg diatas nilainya 1. Sehingga cukup dengan persamaan 2d sin θ = λ . Dengan menghitung d dari rumus Bragg serta mengetahui nilai h, k, l dari masing-masing nilai d, dengan rumus-rumus yang telah ditentukan tiap-tiap bidang kristal kita bisa menentukan latis parameter (a, b dan c) sesuai dengan bentuk kristalnya.

Estimasi Crystallite Size dan Strain Menggunakan XRD

Elektron dan Neutron memiliki panjang gelombang yang sebanding dengan dimensi atomik sehingga radiasi sinar X dapat digunakan untuk menginvestigasi material kristalin. Teknik difraksi memanfaatkan radiasi yang terpantul dari berbagai sumber seperti atom dan kelompok atom dalam kristal. Ada beberapa macam difraksi yang dipakai dalam studi material yaitu: difraksi sinar X, difraksi neutron dan difraksi elektron. Namun yang sekarang umum dipakai adalah difraksi sinar X dan

elektron. Metode yang sering digunakan untuk menganalisa struktur kristal adalah metode Scherrer. Ukuran kristallin ditentukan berdasarkan pelebaran puncak difraksi sinar X yang muncul. Metode ini sebenarnya memprediksi ukuran kristallin dalam material, bukan ukuran partikel. Jika satu partikel mengandung sejumlah kritallites yang kecil-kecil maka informasi yang diberikan metiode Schrerrer adalah ukuran kristallin tersebut, bukan ukuran partikel. Untuk partikel berukuran nanometer, biasanya satu partikel hanya mengandung satu kristallites. Dengan demikian, ukuran kristallinitas yang diprediksi dengan metode Schreer juga merupakan ukuran partikel. Berdasarkan metode ini, makin kecil ukuran kristallites maka makin lebar puncak difraksi yang dihasilkan, seperti diilustrasikan pada Gambar 4. Kristal yang berukuran besar dengan satu orientasi menghasilkan puncak difraksi yang mendekati sebuah garis vertikal. Kristallites yang sangat kecil menghasilkan puncak difraksi yang sangat lebar. Lebar puncak difraksi tersebut memberikan informasi tentang ukuran kristallites. Hubungan antara ukuran ksirtallites dengan lebar puncal difraksi sinar X dapat diproksimasi dengan persamaan Schrerer [5-9].

Gambar 4 : XRD Peaks [4] Gambar 4 mengindikasikan bahwa makin lebar puncak difraksi sinar X maka semakin kecil ukuran kristallites. Ukuran kristallites yangmenghasilkan pola difraksi pada gambar bawah lebih kecil dari pada ukuran kristallites yang menghasilkan pola diffraksi atas. Puncak diffraksi dihasilkan oleh interferensi secara kontrukstif cahaya yang dipantulkan oleh bidang-bidang kristal. Hubungan antara ukuran ksirtallites dengan lebar puncal difraksi sinar X dapat diproksimasi dengan persamaan Schrerer [5-7]. Scherrer Formula

Dimana : Crystallite size (satuan: nm) dinotasikan dengan symbol (D)

FWHM (Line broadening at half the maximum intensity), Nilai yang dipakai adalah nilai FWHM setelah dikurangi oleh “the instrumental line broadening” (satuan: radian) dinotasikan dengan symbol (B) Bragg’s Angle dinotasikan dengan symbol (θ) X-Ray wave length dinotasikan dengan symbol (λ) K Adalah nilai konstantata “Shape Factor” (0.8-1) dinotasikan dengan symbol (K) Perlu diingan disini adalah: Untuk memperoleh hasil estimasi ukuran kristal dengan lebih akurat maka, nilai FWHM harus dikoreksi oleh "Instrumental Line Broadening" berdasarkan persamaan berikut [4-9].

Dimana : FWHMsample adalah lebar puncak difraksi puncak pada setengah maksimum dari sampel benda uji dan FWHMstandard adalah lebar puncak difraksi material standard yang sangat besar puncaknya berada di sekitar lokasi puncak sample yang akan kita hitung. Contoh Estimasi Crystallite size menggunakan X-Ray Diffraction Analysis

Gambar 5: Penulis sedang melakukan sampel analisis menggunakan XRD Bruker 8 Advance Setelah data hasil uji sampel menggunakan XRD diperoleh, Data hasil analisa yang diperoleh tersimpan dalam format RAW.data, yang kemudian data tersebut dianalisa menggunakan Software EVA, data hasil uji sampel yang diperoleh adalah berupa peak seperti gambar dibawah ini.

Gambar 6: XRD Peak untuk sampel Fe powder yang diuji penulis.

Sekilas Tentang Struktur Atom Suatu Unsur

Setiap atom terdiri dari inti yang sangat kecil yang terdiri dari proton dan neutron, dan di kelilingi oleh elektron yang bergerak. Elektron dan proton mempunyai muatan listrik yang besarnya 1,60 x 10-19 C dengan tanda negatif untuk elektron dan positif untuk proton sedangkan neutron tidak

bermuatan listrik. Massa partikel-partikel subatom ini sangat kecil: proton dan neutron mempunyai massa kira-kira sama yaitu 1,67 x 10-27 kg, dan lebih besar dari elektron yang massanya 9,11 x 10-31 kg. Setiap unsur kimia dibedakan oleh jumlah proton di dalam inti, atau nomor atom (Z). Untuk atom yang bermuatan listrik netral atau atom yang lengkap, nomor atom adalah sama dengan jumlah elektron. Nomor atom merupakan bilangan bulat dan mempunyai jangkauan dari 1 untuk hidrogen hingga 94 untuk plutonium yang merupakan nomor atom yang paling tinggi untuk unsur yang terbentuk secara alami. Massa atom (A) dari sebuah atom tertentu bisa dinyatakan sebagai jumlah massa proton dan neutron di dalam inti. Walaupun jumlah proton sama untuk semua atom pada sebuah unsur tertentu, namun jumlah neutron (N) bisa bervariasi. Karena itu atom dari sebuah unsur bisa mempunyai dua atau lebih massa atom yang disebut isotop. Berat atom berkaitan dengan berat rata-rata massa atom dari isotop yang terjadi secara alami. Satuan massa atom (sma) bisa digunakan untuk perhitungan berat atom. Suatu skala sudah ditentukan dimana 1 sma didefinisikan sebagai 1/12 massa atom dari isotop karbon yang paling umum, karbon 12 (12 C) (A = 12,00000). Dengan teori tersebut, massa proton dan neutron sedikit lebih besar dari satu, dan, A≅Z+N Berat atom dari unsur atau berat molekul dari senyawa bisa dijelaskan berdasarkan sma per atom (molekul) atau massa per mol material. Satu mol zat terdiri dari 6,023 x 1023 atom atau molekul (bilangan Avogadro). Kedua teori berat atom ini dikaitkan dengan persamaan berikut: 1 sma/atom (molekul) = 1 g/mol Sebagai contoh, berat atom besi adalah 55,85 sma/atom, atau 55,85 g/mol. Kadang-kadang penggunaan sma per atom atau molekul lebih disukai; pada kesempatan lain g/mol (atau kg/mol) juga digunakan.

More Documents from "Fahrul"