First Quarter Notes

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View First Quarter Notes as PDF for free.

More details

  • Words: 1,022
  • Pages: 29
Info Tech M$6 - 01

Stanley Switalski 9-6-06

Aim: How do we find trigonometric function values? Do Now: 2B + 4 = 4 – 2B +2B +2B 4B + 4 = 4 -4 -4 4B = 0 /4 /4 B=0 B 30 2 CM

2 CM H

A 60

D 2 CM

C 2 = B2 – A 2 4=H2–1 -1 - 1 3=H2 √3 = √H 2 √3 = H

C

1 CM 2 2 2 30 C = B2 – A 64 = B – 16 -16 - 16 48 = B 2 √48 = √B 2 4√3 = B

8

60 4

The ration of 30-60-90 is (30º) (60º) (90º) 1S √3S 2S

30 S√3

2S

60 S

So X - X√3 – 2X If X = 6 Then the ratio will be: 30

6 – 6 √3 – 2(6)

X

Y

60 6 (45º) (45º) (90º) 1 1 1√2 2 2 2√2 Ratio: X – X – X√2

45 1

45 1

45

9 – 9 – 9√2

C

D

9

Aim: What other trigonometric functions are there?

9-7-06

∆ ABC is a right triangle with measure of angle C = 90, AC = √3, BC = 1, and AB = 2 Write each trigonometric value as a fraction. Sin A = ½ SOHCAHTOA B Cos A= √3/2 Tan A= 1/√3 Sin B = √3/2 √3 Cos B= ½ 1 Tan B = √3/1 B C

A

2

Ø = theta (missing angle) Sin ø = cosecant (csc) = Hyp/opp Cos ø = secant (sec) = Hyp/adj Tan ø = contangent (cot) = Adj/opp

Ø C

4

A

Sin ø = 4/5 Csc ø = 5/4 Cos ø= 3/5 Sec ø = 5/3 Tan ø= 4/3 Cot ø = 3/4

5

Ø 3 Sin ø = 15/17 Csc ø = 17/15 Cos ø= 8/17 Sec ø = 17/8 Tan ø= 15/8 Cot ø = 8/15

Ø

8

17

15 (sin ø) · (tan ø) = (sin ø) / 1 · (sin ø) / (cos ø) = (sin 2 ø) / (cos ø)

Aim: How to find the values of reciprocal functions Reciprocal Trigonometric Functions CSC Ø = 1 / sin ø SEC Ø = 1 / cos ø *** TAN Ø = Sin ø / Cos ø

9/8/06 COT Ø = 1 / tan ø

Ø 30 60 90 To find these values sec ø of 30 = 1/ cos (30) Csc ø 2 1.2 1.4 Sec ø 1.2 2 1.4 Cot ø 1.7 .6 1 More Examples: 1.) sec 150° = 1 / cos (150) = -1.15 2.) cot 240° = 1 / tan (240) = .6 3.) cot 45 · csc 45 = 1 / tan (45) · 1 / sin (45) = 1.4 1 1.414 2 2 4.) cot 30° = 1/ tan (30) = 1 / (1.73)2 = 3 Write each expression in simplest form 1. Cot ø = Cos ø / sin ø 2. Cot ø · Sec ø = Cos ø / sin ø · 1 / cos ø = 1 / sin ø 3. Tan ø / Csc ø = Sin ø / Cos ø · Sin ø / 1 = Sin 2 ø / cos ø

Aim: How to use trigonometric identity to simplify expressions.

9/11/06

Do Now: Explain what it means to simplify a trigonometric expression. To put the trigonometric expression in the smallest possible radical form. Simplifying an expression that contains trigonometric functions means that the expression is written as a numerical value or in terms of a single trigonometric function if possible. Trigonometric identity – An equation that is true for all values of the variables.

Quotient Identities Reciprocal Identites

Basic Trigonometric Tan ø = sin ø / cos ø Cot ø = cos ø / sin ø CSC Ø = 1 / Sin ø Sec Ø = 1 / Cos ø Cot Ø = 1 / Tan ø

1.) (Csc ø) (Cos ø) (Tan ø) 1 / sin ø cos ø / 1 sin ø / cos ø = 1 2.) Cos ø · Csc ø cos ø / 1 1 / sin ø = cos ø / sin ø = cot ø 3.) Cot ø / Csc ø = (cos ø / sin ø) / 1 / sin ø Cos ø/ Sin ø · Sin ø / 1 = Cos ø 4.) Sec ø / Cot ø = 1 / (cos ø) / (cos ø / sin ø) 1 / (cos ø) · sin ø / cos ø = Sin ø / Cos 2 ø 1.) 2.) 3.) 4.) 5.)

Cot ø · Sec ø = (cos ø / sin ø) · 1 / (cos ø) = 1 / sin ø = csc ø Cot ø · Sin ø = (cos ø / sin ø) · sin ø / 1 = cos ø Cos ø / 1 · Sin ø / Cos ø = sin ø Sec ø · Csc ø = 1 / cos ø · 1 / sin ø Tan ø / Csc ø Sin ø / Cos ø · Sin ø / 1 = Sin 2 ø / Cos ø

Aim: Radian to angle.

9/22/06 510 – 360 = 150

510º

150/ 180 = X / π 5/6=X/π 5 π / 6 = 6X / 6 5 π/6 = X

Rewrite each in radians a) 240º 240/ 180 = X / π 4 / 3 = X / π 4 π = 3 X / 3 4 π / 3 = X b) 90º 90 / 180 = ½ ½ = x / π π = 2 X / 2 π / 2 = X c) – 90º = - π d) 135º = 135 / 180 = X / π 135 π = 180 X / 180 135 π / 180 = X To Change radians to degrees Radians · 180 / π Examples: 5 π / 8 · 180 / π = 5 / 2 · 45/ 1 = 225 / 2 = 112.5º 16 π / 5 = 180 / π = 16 · 36 = 576 º

3π/4=X

Related Documents