Finite Wings Summary MAE 5510
W. F. Phillips
Spring 2007
For an arbitrary finite wing, the circulation distribution can be written as N
θ = cos −1 (− 2 z b)
Γ (θ ) = 2bV∞ ∑ An sin(nθ ); n =1
(1.8.3)
where the coefficients An are determined by forcing the following equation to be satisfied at N specific sections along the wing; N
⎡
⎤ 4b + n ⎥ sin( nθ ) = α (θ ) − α L 0 (θ ) ⎣ L ,α c(θ ) sin(θ ) ⎦
∑ An ⎢ C~
n =1
(1.8.4)
The lift coefficient and induced drag coefficient for a finite wing can be expressed as C L = π R A A1 ,
2 RA = b Sw
C L2 C L2 (1 + σ ) = , π RA π R A es
N
C Di = π R A ∑ n An2 = n =1
σ =
(1.8.5) N
⎛A ⎞
∑ n ⎜⎝ A1n ⎟⎠
n=2
2
, es =
1 1+ σ
(1.8.6)
The finite elliptic wing with no geometric and no aerodynamic twist will result in the minimum possible induced drag for a given lift coefficient and aspect ratio. The chord length, lift coefficient, and induced drag coefficient for a finite elliptic wing are, c( z ) =
4b 1 − (2 z b )2 , π RA
CL =
~ C L ,α (α − α L 0 ) , ~ 1 + C L ,α π R A
C Di =
C L2 π RA
For an arbitrary finite wing with geometric and/or aerodynamic twist, we can obtain the coefficients from An ≡ an (α − α L 0 )root − bn Ω
(1.8.19)
where ⎡
⎤ 4b + n ⎥ sin(nθ ) = 1 ⎣ L,α c(θ ) sin(θ ) ⎦
(1.8.20)
⎤ 4b + n ⎥ sin(nθ ) = ω (θ ) θ sin( ) ⎣ L ,α c(θ ) ⎦
(1.8.21)
N
∑ an ⎢ C~
n =1 N
⎡
∑ bn ⎢ C~
n =1
The lift coefficient and induced drag coefficient for a finite wing with geometric and/or aerodynamic twist can be expressed as
2 C L = C L ,α [(α − α L 0 )root − ε Ω Ω ] C Di =
(1.8.24)
C L2 (1 + κ D ) − κ DL C L C L ,α Ω + κ DΩ (C L ,α Ω ) 2 πR A
(1.8.25)
where C L,α = πR A a1 =
κL ≡
~ C L ,α ~ (1 + C L,α π R A )(1 + κ L )
(1.8.26)
~ 1 − (1 + π R A C L ,α )a1 ~ (1 + π R A C L ,α )a1
(1.8.27)
b1 a1
(1.8.28)
εΩ κD ≡
κ DL ≡ 2
b1 a1
N
a2
n=2
1
∑ n an2
N
a ⎛b
(1.8.29)
a ⎞
∑ n a1n ⎜⎝ b1n − a1n ⎟⎠
(1.8.30)
n=2
b1 ⎞ ⎟ ⎝ a1 ⎠
κ DΩ ≡ ⎛⎜
≡
2 N
a ⎞ ⎛b ∑ n⎜⎝ b1n − a1n ⎟⎠ n=2
2
(1.8.31)
For tapered wing with linear geometric and aerodynamic twist, the wing coefficients are plotted in the following figures.
0.04
RA=4 8 12
4 8
16 20
0.03
κL 0.02
0.01
0.00 0.0
0.2
0.4 0.6 Taper Ratio
0.8
1.0
3
0.48 0.46
RA=20 12
elliptic planform (εΩ = 4/3π)
8 4
0.44
εΩ
16
0.42 0.40 0.38 0.36 0.34 0.0
0.2
0.4
0.6
0.8
1.0
RT
0.20
RA=20 18 16
0.15
14
κD 0.10
12 10 8
0.05
6 4
0.00 0.0
0.2
0.4 0.6 Taper Ratio
0.8
1.0
4
RA=20 18 16 14 12
0.3 0.2
10 8 6 4
0.1
κDL
0.0 elliptic planform (κDL = 0)
-0.1 -0.2 -0.3 0.0
0.2
0.4
0.6
0.8
1.0
RT
RA=20 18 16 14
0.20
12 10
0.15
κDΩ
8 6
0.10
0.05 0.0
4
0.2
0.4
0.6 RT
0.8
1.0
5
Downwash The downwash angle aft of an unswept finite wing, can be estimated from
ε d ( x , y ,0) =
κ v κ p C Lw κ b R Aw
(4.5.5)
where ∞
An sin(n π 2) n = 2 A1
κ v = 1+ ∑ ∞
κb =
κp
π+ ∑ 4
n=2
nAn cos(nπ 2) (n 2 − 1) A1
(4.5.4)
∞
An sin(nπ 2) A n=2 1
1+ ∑
⎡ x ( x 2 + 2 y 2 + κ b2 ) ⎢1 + = 2 2 π ( y + κ b2 ) ⎢ ( x 2 + y 2 ) x 2 + y 2 + κ 2 b ⎣ 2 κ b2
x =
(4.5.3)
x , bw 2
y =
⎤ ⎥ ⎥ ⎦
y bw 2
Figure 4.5.1. Vortex model for estimating the downwash on an aft tail behind an unswept wing.
(4.5.6)
6
1.2 16
12
20
8
1.1
RAw=4
κv 1.0 4
elliptic wing (κv = 1.0)
8
0.9
12 16 20
0.8 0.0
0.2
0.4 0.6 Wing Taper Ratio
0.8
1.0
1.0 20 16
0.9
12 8
elliptic wing (κb = π/4)
4
κb 0.8
0.7
RAw=4 8 12
0.6 0.0
16 20
0.2
0.4 0.6 Wing Taper Ratio
0.8
1.0
7
0.70 0.65 0.60 0.55
y = 0.0 κbb/2 0.1 0.2
κp 0.50 0.45 0.40
0.3 0.4 0.5
0.35 0.30 0.4
0.6
0.8
1.0
1.2
1.4 1.6 x κbb/2
1.8
2.0
2.2
2.4