Design of Prestressed Concrete Bridge along Tanza and General Trias, Cavite, Connecting Tanza – Trece Martires and General Trias Dr. Roads
1
TECHNOLOGICAL INSTITUTE OF THE PHILIPPINES 938 Aurora Boulevard, Cubao, Quezon City
COLLEGE OF ENGINEERING AND ARCHITECTURE Civil Engineering Department
CE 513 Prestressed Concrete Design
DESIGN OF PRESTRESSED CONCRETE BRIDGE ALONG TANZA AND GENERAL TRIAS, CAVITE, CONNECTING TANZA-TRECE MARTIRES AND GENERAL TRIAS DR. ROADS
PREPARED BY: Dalisay, Jayson B. De Guzman, John Alexander Jr. D. Dela Cruz, Beatrice Ann O. Elido, Ruel Uson, Jaela G. CE52FA2
SUBMITTED TO: Engr. Debbie-lyn Cabacungan Instructor
March , 2019
2
TABLE OF CONTENTS Chapter 1 : PROJECT BACKGROUND ....................................................................................................... 8 1.1 The Project......................................................................................................................................... 8 1.2 Project Objectives .............................................................................................................................. 9 1.3 Project Scope and Limitations............................................................................................................ 9 1.4 Project Development .......................................................................................................................... 9 Chapter 2 : LOCATION .............................................................................................................................. 10 2.1 Project Location ............................................................................................................................... 10 Chapter 3 : DESIGN COMPUTATION ....................................................................................................... 11 3.1 Description of the Structure.............................................................................................................. 11 3.2 Material Description ......................................................................................................................... 11 3.3 Material Properties ........................................................................................................................... 11 3.3.1 Material Specifications .............................................................................................................. 12 3.3.2 Geometrical and Cross-Sectional Specifications ...................................................................... 13 3.3.3 Design Loads ............................................................................................................................ 14 3.4 I-Beam Description ...................................................................................................................... 15 3.5 Design Methodology ........................................................................................................................ 17 3.6 Geometric Cross-Section of I-Beam ................................................................................................ 18 3.7 Geometric Modeling ......................................................................................................................... 19 3.8 Load Diagrams................................................................................................................................. 19 3.9 Load Combinations .......................................................................................................................... 20 3.9.1 Strength I [1.25DC + 1.50 DW + 1.75(LL + IM)] ........................................................................ 21 3.9.2 Strength IV (1.25DC + 1.50 DW) ............................................................................................... 22 3.9.3 Service I [1.00DC + 1.00 DW + 1.00(LL + IM)].......................................................................... 22 3.9.4 Service III [1.00DC + 1.00DW + 0.80(LL + IM)]......................................................................... 23 3.9.5 Fatigue [0.75(LL + IM)] .............................................................................................................. 23 3.10 Structural Analysis ......................................................................................................................... 24 3.10.1 Strength I Load Combination .................................................................................................. 24 3.10.2 Strength IV Load Combination ................................................................................................ 25 3.10.3 Service I Load Combination .................................................................................................... 26 3.10.4 Service III Load Combination .................................................................................................. 27
3
3.10.5 Fatigue Load Combination ...................................................................................................... 28 3.10.6 Maximum Shear and Maximum Moment................................................................................. 29 3.11 Design of Concrete I-Beam ............................................................................................................ 30 3.11.1 Computation of Moment of Inertia ........................................................................................... 30 3.11.2 Stresses at Transfer and Service Load ................................................................................... 33 3.11.3 Fatigue Check ......................................................................................................................... 37 3.11.4 Strength Limit State Check ..................................................................................................... 38 3.11.5 Shear Design .......................................................................................................................... 40 Chapter 4 : FINAL DESIGN ....................................................................................................................... 47 4.1 Beam Schedule................................................................................................................................ 47 4.2 Prestressing and Non-Prestressing Steel Schedule ........................................................................ 48 Chapter 5 : ACTUAL PHOTOS .................................................................................................................. 49 5.1 Existing Cast-in-place Bridge ........................................................................................................... 49 5.2 Proposed Prestressed Concrete Bridge ........................................................................................... 50
4
LIST OF FIGURES Figure 1-1. Perspective View of the Superstructure Prestressed Concrete Bridge ...................................... 8 Figure 3-1. Prestressed Concrete Bridge Cross-Sectional View ................................................................ 11 Figure 3-2. HS-20 Truck Loading ............................................................................................................... 15 Figure 3-3. HS-20 Truck Lane Loading ...................................................................................................... 15 Figure 4-1. Final Geometric Cross-Section of the I-Beam.......................................................................... 47
5
LIST OF TABLES Table 3-1. Properties of Prestressing Concrete ......................................................................................... 12 Table 3-2. Properties of Prestressing Steel................................................................................................ 12 Table 3-3. Properties of Non-Prestressing Steel ........................................................................................ 13 Table 3-4. Geometrical Properties of the Bridge ........................................................................................ 13 Table 3-5. Geometrical and Cross-Sectional Properties of I-Beam Concrete ............................................ 13 Table 3-6. Design Dead Loads .................................................................................................................. 14 Table 4-1. Prestressing and Non-Prestressing Steel Details ..................................................................... 48
6
LIST OF ACRONYMS AASHTO – American Association of State Highway and Transportation Officials NSCP – National Structural Code of the Philippines DPWH – Department of Public Works and Highways LRFD – Load and Resistance Factor Design DC – Dead Load due to Structural Components and Non-Structural Attachments DW – Dead Load due to Wearing Surfaces and Utilities LL – Vehicular Live Load IM – Vehicular Dynamic Load Allowance
7
CHAPTER 1 : PROJECT BACKGROUND 1.1 The Project The project is the modification of the cast in place bridge into a pre-stressed concrete bridge located in Cavite connecting the roads of Trece Martires and General Trias. The bridge lets the travelers have another route from Trece Martires to General Trias and vice versa instead of circling around Antero Soriano Highway, making the travel time lesser. It attracts businessman to start their business around the area because the project is located in undeveloped lands, which in turn will boost tourism and economic status of the area. The new superstructure bridge will span about 100 meters with 25 meters in each span of beam used. The bridge will have 4 lanes, with each lane 3 meters in width. The material to be used in the project is prestressed concrete and its specifications conform to the standards in the AASHTO Bridge Design Specifications. The design process conforms to the standards designated in the National Structural Code of the Philippines – Volume II: Bridges.
Figure 1-1. Perspective View of the Superstructure Prestressed Concrete Bridge
8
1.2 Project Objectives The following are the objectives of the project: ► To design a bridge using prestressed concrete as the primary material. ► To compute for the initial requirements in designing the prestressed concrete bridge. ► To evaluate the adequacy of the design. 1.3 Project Scope and Limitations The scope of the project includes: ► The design of the prestressed concrete beams to be used in the project. ► The geometric cross-section of the prestressed concrete beam to be used in the project. The limitations of the project include: ► The design of other structural members of the bridge. This includes the following members: The deck slab of the bridge. The columns of the bridge in which it is laid. The concrete barriers of the bridge. ► The construction costs of the bridge. 1.4 Project Development The designer conceptualized the project which needed to comply with the needs of the client. For this, the designer provided the necessary dimensions of the bridge. The designer made sure that the plans for the superstructure bridge conform to the codes and standards provided in the NSCP Volume 2 and AASHTO Bridge Design Specifications, making the design safe, durable and acceptable. Detailing of the plan (ie. Scheduling of the Prestressed Concrete Beam) is also presented here. CONCEPTUALIZATION OF THE PROJECT DESIGN PARAMETERS
DESIGN OF NECESSARY MEMBERS FINAL DESIGN OF THE PROJECT Figure 1-2. Stages of Development of the Project
9
CHAPTER 2 : LOCATION 2.1 Project Location
Figure 2-1. Project Location Map
Trece Martires, officially the City of Trece Martires, is a 4 th class city and the de facto capital city of the province of Cavite. According to 2015 census, it has a population of 155, 713 people. The connecting city, General Trias, is a 1st class city in the province of Cavite. It is formerly known as San Francisco de Malabon. It has a population 314, 303 people in the year 2015. The bridge is located in Cavite connecting the roads of Trece Martires and General Trias. The bridge lets the travelers have another route from Trece Martires to General Trias and vice versa instead of circling around Antero Soriano Highway, making the travel time lesser. It attracts businessman to start their business around the area because the project is located in undeveloped lands, which in turn will boost tourism and economic status of the area.
10
CHAPTER 3 : DESIGN COMPUTATION 3.1 Description of the Structure The structure is a superstructure prestressed concrete bridge which has a length of 100 meters. It is composed of continuous spans of beam, 25 meters in each span. The span is the one to be designed and not the whole length of the bridge. The design approach for this project is LRFD or Load and Resistance Factor Design and its design processes shall conform to the standards given by NSCP Volume 2. The prestressed concrete beam specifications to be used in the project have geometric crosssections that conform to the standards of AASHTO Bridge Design Specifications.
Figure 3-1. Prestressed Concrete Bridge Cross-Sectional View
Data on the material properties and specifications of prestressed concrete are presented in this chapter. 3.2 Material Description Prestressed concrete is the main material used in the design of the superstructure bridge. For this project, the designer will use precast, prestressed concrete girders as per required by the AASHTO Bridge Design Specifications and NSCP Volume 2. For the prestressing steel, ½ inch diameter-seven wire strand is used. 3.3 Material Properties Listed here are the properties of the materials to be used in the project. They are the following: Concrete, Prestressing Steel, Non-Prestressing Steel. The geometrical and cross-sectional properties of the girders to be used are also listed here.
11
3.3.1 Material Specifications Table 3-1. Properties of Prestressing Concrete
PRESTRESSING CONCRETE – NORMAL WEIGHT Property
Formula
Value
Unit
Unit Weight (γconc)
-
23.56
kN / m3
Compressive Strength of Concrete (f’c)
-
34.5
MPa
Initial Compressive Strength at Transfer (f’ci)
0.8f’c
27.6
MPa
Initial Compressive Strength at Service Load (fci)
0.6f’ci
16.56
MPa
Initial Tensile Strength at Service Load (Supports) (fti)
1⁄ √f' 2 ci
2.627
MPa
Initial Tensile Strength at Service Load (Midspan) (fti)
1⁄ √f' 4 ci
1.313
MPa
Compressive Strength at Service Load (fc)
0.45f’c
15.525
MPa
Tensile Strength at Service Load (ft)
√f'c
5.874
MPa
Initial Modulus of Elasticity of Concrete (Eci)
4,700√f'ci
24.692 x 103
MPa
Modulus of Elasticity of Concrete (Ec)
4,700√f'c
27.606 x 103
MPa
Modulus of Rupture (fr)
0.62√f'c
3.642
MPa
Table 3-2. Properties of Prestressing Steel
PRESTRESSING STEEL – ½ INCH DIAMETER-SEVEN WIRE STRAND – STRESS-RELIEVED Property
Formula
Value
Unit
Ultimate Strength (fpu)
-
1,862
MPa
Yield Strength (fpy)
0.85fpu
1,582.7
MPa
Stress due to Jacking Force (fpJ)
0.8fpu
1,489.6
MPa
Initial Stress (fpi)
0.7fpu
1,303.4
MPa
12
Service Stress (fpe)
0.8fpy
1,266.16
MPa
Estimated Prestress Losses
-
227.527
MPa
Modulus of Elasticity (Eps)
-
193,000
MPa
Table 3-3. Properties of Non-Prestressing Steel
NON-PRESTRESSING STEEL Property
Formula
Value
Unit
Yield Strength for Main Reinforcement Bar (fy)
-
414
MPa
Yield Strength for Stirrups (fys)
-
275
MPa
Modulus of Elasticity (Es)
-
200,000
MPa
Property
Value
Unit
Height of the Bridge above Ground (z)
35
m
Bridge Width
18
m
Roadway Width
15
m
Lane Width
3
m
Property
Value
Unit
Length (L)
25
m
Spacing of Girders (s)
3
m
Deck Slab Thickness (tdeck)
250
mm
3.3.2 Geometrical and Cross-Sectional Specifications Table 3-4. Geometrical Properties of the Bridge
GEOMETRICAL PROPERTIES OF THE BRIDGE
Table 3-5. Geometrical and Cross-Sectional Properties of I-Beam Concrete
GEOMETRICAL AND CROSS-SECTIONAL PROPERTIES
13
Haunch Thickness
200
mm
Haunch Width
2000
mm
Depth (h)
1,828.8
mm
Area of Concrete (Ac)
607,095.56
mm2
Moment of Inertia at Strong Axis (Ix)
279,328,013 ,361.217
mm4
Moment of Inertia at Weak Axis (Iy)
20,950,939, 435.672
mm4
Section Modulus at Top Part of Beam (St)
309,247,021 .888
mm3
Section Modulus at Bottom Part of Beam (Sb)
301,797,459 .635
mm3
Neutal Axis from the Top pf the Beam (yt)
903.252
mm
Neutal Axis from the Bottom pf the Beam (yb)
925.548
mm
3.3.3 Design Loads Listed here are the loads of the structure which will used to determine the parameters needed to design the necessary members. 3.3.3.1 Dead Loads Table 3-6. Design Dead Loads
DC – Dead Load of Components and Attachments Property
Value
Unit
Beam Weight
14.303
kN/m
Deck Slab Weight
17.670
kN/m
Concrete Barrier Weight
1.413
kN/m
Haunch Weight
9.424
kN/m
DW – Dead Load of Wearing Surfaces and Utilities
14
Property
Value
Unit
Thickness of Wearing Surface
100
mm
Unit Weight of Wearing Surface
21.582
kN/m3
Wearing Surface Weight
6.475
kN/m
3.3.3.2 Live Loads
36 kN
144 kN 4.27 m
144 kN 4.27 - 9.0 m
Figure 3-2. HS-20 Truck Loading
CONCENTRATED LOAD 80 kN for Moment 116 kN for Shear Uniform Load ; w = 9.4 kN/m per Lane
Figure 3-3. HS-20 Truck Lane Loading
3.4 I-Beam Description The figure below shows a typical cross-section of an I – Beam. An I – Beam is a section that consists of two parts, which are the flange and the web. The web is the vertical plate while the flange is the top and bottom plates. I – Beam are easier to build and cheaper to maintain than other types. This is good for bridges that have short, straight spans. The disadvantage of this is that it doesn’t perform well on bridges that has long spans and is curved because of the torsional forces produced in it which I – Beams are weak at.
15
Figure 3-4. Prestressed Concrete I-beam
16
3.5 Design Methodology Referring to the codes and standards provided by the AASHTO Bridge Design Specifications, the designers considered a thorough process on how the design of a prestressed concrete beam is done. The flowchart presented is derived and provided by “The Federal Highway Administration”.
17
Figure 3-5. Main Flow Chart for the Design of Superstructure Bridges
3.6 Geometric Cross-Section of I-Beam
Figure 3-6. Geometric Cross – Section of I – Beam
18
3.7 Geometric Modeling
3.8 Load Diagrams
Figure 3-7. Geometric Modeling
Figure 3-8. Shear Diagram
19
Figure 3-10. Moment Diagram
3.9 Load Combinations There are many load combinations that can be applied when designing a bridge. The most common load combinations are the only ones applied for this project. The following are the description of the load combination to be used:
Strength I – Basic load combination relating to the normal vehicular use of the bridge without wind.
Strength IV – Load combination relating to very high dead load to live load force effect ratios. (Will govern if DL / LL > 7; Span > 185 meters)
Service I – Load combination relating to normal operational use of the bridge with a 90 kph wind and all loads at nominal values. Compression in precast concrete components.
Service III – Load combination relating only to tension in prestressed concrete superstructures with the objective of crack control.
Fatigue – Fatigue and Fracture load combinations relating to repetitive gravitational vehicular live load and dynamic responses under a single design truck.
20
The following are the load combinations to be used: Strength I – 1.25 DC + 1.50 DW + 1.75 (LL + IM) Strength IV – 1.50 DC + 1.50 DW Service I – 1.00 DC + 1.00 DW + 1.00 (LL + IM) Service III – 1.00 DC + 1.00 DW + 0.80 (LL + IM) Fatigue – 0.75 (LL + IM) where: DC – Dead Load of Structural Components and Non-Structural Attachments (Dead Load) DW – Dead Load of Wearing Surfaces and Utilities (Dead Load) LL – Vehicular Live Load (Live Load) IM – Vehicular Dynamic Load Allowance (Impact Load) (15% – Fatigue, 33% – Others) 3.9.1 Strength I [1.25DC + 1.50 DW + 1.75(LL + IM)]
Figure 3-11. Strength I Load Combination
21
3.9.2 Strength IV (1.25DC + 1.50 DW)
Figure 3-12. Strength IV Load Combination
3.9.3 Service I [1.00DC + 1.00 DW + 1.00(LL + IM)]
Figure 3-13. Service I Load Combination
22
3.9.4 Service III [1.00DC + 1.00DW + 0.80(LL + IM)]
Figure 3-14. Service III Load Combination
3.9.5 Fatigue [0.75(LL + IM)]
Figure 3-15. Fatigue Load Combination
23
3.10 Structural Analysis 3.10.1 Strength I Load Combination
24
3.10.2 Strength IV Load Combination
25
3.10.3 Service I Load Combination
26
3.10.4 Service III Load Combination
27
3.10.5 Fatigue Load Combination
28
3.10.6 Maximum Shear and Maximum Moment
29
3.11 Design of Concrete I-Beam 3.11.1 Computation of Moment of Inertia
30
31
32
3.11.2 Stresses at Transfer and Service Load At Transfer:
Property
Value
Unit
fpi
1,303.4
MPa
Initial % Loss
10%
-
Initial Prestress Loss
130.34
MPa
Total Initial Prestress Loss
1,173.06
MPa
Aps
4,343.217
mm2
33
Pi
5,094,354.275
N
Moment Due to Prestressing – C.G. of Beam – Midspan Moment Due to Self-Weight – C.G. of Beam – Midspan
= =
3,997.6 kN – m 1,163.2 kN – m
Stress Check at Transfer – Midspan
fb
-8.393
MPa
<
-20.7
MPa
OK!
ft
-8.391
MPa
<
1.468
MPa
OK!
Check Total Loss Due to Initial Prestressing
n
6.22
fES
-8.393
MPa
Total Loss
52.24
MPa
<
130.34
MPa
OK!
At Service:
34
Prestress Losses at Service Level
Elastic Shortening
-52.24
MPa
fpi
1,303.4
MPa
Aps
4,343.22
mm2
35
Ac
607,095.56
mm2
γk
0.8
-
γst
0.84
-
Δ - fpr
17
MPa
Δ - fpi
135.91
MPa
Total Prestress Force
4,843.8
kN
MPrestressing Strand
3,800.6
kN - m
MDC
3,366.6
kN – m
MDW
1,088.3
kN – m
MLL
3,464.6
kN – m
MLL + IM
7,820.7
kN – m
Stresses at Midspan (Service I)
ft
-7.98
MPa
<
-15.535
MPa
OK!
fb
-7.98
MPa
<
-5.874
MPa
OK!
36
3.11.3 Fatigue Check Distribution Factor for 1 Lane Loading
DFS = 1.173 Lane / Beam
Fatigue Checking
ft
-7.98
MPa
fb
0.0024349
MPa
Ration of Compression to Tension Stress
3,276.61
>
2
OK!
37
3.11.4 Strength Limit State Check
38
39
3.11.5 Shear Design
40
Reinforcement Properties Property
Value
Unit
Remarks
Distance to Centroid of Compression Flange, d’
6
mm
-
Distance to Centroid of Bottom Prestressing Tendon, dp,b
84
mm
-
Distance to Centroid of Web Prestressing Tendon, dp,w
76
mm
-
Distance to Centroid of Tension, d
80
mm
-
Top Compression Reinforcement
2 #8 @ 12mm O.C.
Bottom Compression Reinforcement
2 #8 @ 12mm O.C.
Web Compression Reinforcement
2 #8 @ 12mm O.C.
Shear Stirrup Reinforcement
#8 @ 15mm O.C.
Bottom Prestressing Tendons
16 x 36 – ½” Φ Tendons
Web Prestressing Tendons
4 x 36 – ½” Φ Tendons
Shear and Moment Property
Value
Unit
Self-Weight Moment
29,116.96
kN – m
Dead Load Moment
37,500.00
kN – m
Live Load Moment
52,500.00
kN – m
Pi
25,698.10
kPa
Pe
20,558.50
kPa
Vu
6,886.74
kN
Tu
35,868.41
kN – m
The Section is Adequate for the given Loadings!
41
Transfer Load Condition Checking Property
Value
Unit
ec
38.18
mm
ft
-0.581
kPa
fb
3.300
kPa
fsi
113.864
kPa
Fsi
189.000
kPa
fsi < Fsi, OK!
f
ti
f
bi
1 e MG Pi St A St
0.318
kPa
> - mi [Satisfactory]
1 e MG Pi Sb A Sb
3.387
kPa
< Fbi [Satisfactory]
(As')reqd
=
0.000
(ACI 318-11 R18.4.1)
mm2
<
(As')provd
[Satisfactory]
42
Serviceability Condition Checking Property
Value
Unit
tdeck
300
mm
B
500.00
mm
Ac
17,529.00
mm2
yt
40.82
mm
yb
59.18
mm
Ic
23,171,159.00
mm4
St
567,642.00
mm3
Sb
391,537.00
mm3
Mmm. TOP FIBER STRESS
MAX. BOT. FIBER STRESS 0.5
me = 0.6fc' = 3.600 kPa, for total loads me, G+D = 0.4fc' = 2.400 kPa, for sustammed loads only me, 0.5(G+D)+L = 0.4fc' = 2.400 kPa, for live + 50% sustammed loads f se
=
155.520 kPa
-Fbe = -(0, 3, or 6)(fc') = -0.465 kPa MAX. ALLOWABLE STRESS Fse = 0.8fy =194.400 kPa, amer all losses
< Fse [Satisfactory]
1 e M M M f te Pe G D L S ct A St
2.181 kPa
<
me
1 e M M f te,G D Pe G D S ct A St
1.071 kPa
<
me, G+D [Satisfactory]
1 e 0.5(M G M D) M L f te,0.5(G D) L 0.5Pe S ct A St
1 e M M M f be Pe G D L S cb A Sb
1.646 kNis
-0.175 kPa
>
[Satisfactory]
< me, 0.5(G+D)+L [Satisfactory]
-Fbe
[Satisfactory]
43
CHECK ULTIMATE LOAD CONDITION (AASHTO 9.15.1 & 9.17 ACI 318-11 18.7) FACTORED ULTIMATE MOMENT Mu,x = g ( b D MD + b L ML ) = 1.3 [ 1.0 ( M G + MD) + 1.67 ML] (AASHTO Eq. 3-10) = 200579.551 kN-m Mu,y = 41320.410 kN-m 2
2 0.5
Mu = (Mu,x + Mu,y ) = 20791.430 kN-m q=
11.6
deg
COMPRESSION ZONE FACTOR b1 = 0.75 , (ACI 318-11 R10.2.7) TENDON TYPE FACTOR g p = 0.280 , (ACI 318-11 18.7.2) RATIO OF TENSION REmmF. r = 0.001 , RATIO OF COMPR. REmmF. r' = 0.002 , RATIO OF PRESTR. REmmF. rp = 0.006 , mmDEX OF TENSION REmmF. w = 0.013 , mmDEX OF COMPR. REmmF. w' = 0.016 , mmDEX OF PRESTR. REmmF. wp = 0.237 , STRESS mm BONDED TENDONS :
(ACI 318-11 Chapter 2) (ACI 318-11 Chapter 2) (ACI 318-11 Chapter 2) (ACI 318-11 18.7.2) (ACI 318-11 18.7.2) (ACI 318-11 18.7.2)
f pu d ' p , 0.17 f ps f pu 1 MIN p ' 1 fc dp
243.940 kPa
44
STRESS mm UNBOUNDED TENDONS :
e s,max = 0.0021 , (ACI 318-11 10.3.4 & 10.3.5) c = 98.2 mm, by pure math method Fc = 32282.5 kPa
f' f ps MIN f se 10 c , f y, f se 60 100 p
dc =
47.3
mm
f Mn = 2603343 kN-m > Mu [Satisfactory]
' fc MIN f se 10 , f y, f se 30 f ps 300 p
1 e S 1.2M cr 1.2S b Pe 7.5 f 'c M G cb 1 Sb Ac S b
145854
kN-m < f Mn [Satisfactory] (AASHTO 9.18.2 & ACI 318-11 18.8.2)
CHECkN SHEAR CAPACITY (AASHTO 9.20, ACI 318-11 11.1 & 11.4)
d MAX 0.8h , d p
f 'c MIN 100 ,
84.00 mm
f 'c
provd
77.46 psi
V ud p MAX MIN 0.6 f 'c 700MIN 1 , d , 5b wd f 'c , 2b wd f 'c , for f se 0.4 f pu b w M u V c ' 2b wd f c , for f se 0.4 f pu
Av f yd , 8b wd f 'c V s MIN S
3200.40 kPa
MIN 0.75d , 24 , for 4 d f ' V s bw c S max MIN 0.375d , 12 , for V s 4b wd f 'c
5441.73
d A ps f puS bw MAX 50b wS , , for f se 0.4 f pu f 80 df y y Av(min) 50b wS , for f se 0.4 f pu f y
24.00
kPa
1.867 mm2
mm
45
V c no shear re inf . requd , for case1: V u 2 V , for case 2: c V u V c Av,requd Av(min) 2 MAX Av,cal , Av(min) , for case 3: V c V u V S V c unsatisfactory , for case 4: V S V c V u
4.434 mm2 [Satisfactory], Case 3 applicable
CHECkN TORSIONAL CAPACITY (AASHTO 9.21, ACI 318-11 11.1 & 11.5) Acp
=
26880 mm2
Pcp
=
752
fpc
=
0.765 kPa
Aoh
=
25293 mm2
Ph
=
735
At Tu S 1.7 Aoh f yv cos 37.5
mm
Tu
>
f pc Acp2 f 'c 1 5278.243 kN-mPa P cp ' 4 fc
Thus, Torsional Remmf. Reqd.
mm
0.020 mm2/mm
Av 2 At 50bw At MAX , S S f yv Total Re qD
5 Acp f 'c f yv At 25bw At f yv 2 MAX 37.5 , P h max , 87.77 mm2 cot AL Ph f yL S f yv S f yL f yL
0.595 mm2/mm <
At S ProvD
0.635 mm2/mm
[Satisfactory]
46
CHAPTER 4 : FINAL DESIGN After analyzing the data calculated and considering the specific codes and standards provided by AASHTO, National Structural Code of the Philippines and the Department of Public Works and Highways, the designer have finalized the design of the prestressed concrete beam to be used in the Tanza – Trece – Martires Bridge project. The design is ensured to conform to the standards of various structural codes used as well as the safety of the structure. With this, a detailed geometric cross-section of the girder and the schedule of prestressing and non-prestressing reinforcement to be used are presented in this chapter. 4.1 Beam Schedule
Figure 4-1. Final Geometric Cross-Section of the I-Beam
47
4.2 Prestressing and Non-Prestressing Steel Schedule Table 4-1. Prestressing and Non-Prestressing Steel Details
Prestressing Steel Property
Details
Bottom Prestressing Tendons
16 x 36 – ½” Φ Tendons
Web Prestressing Tendons
4 x 36 – ½” Φ Tendons
Non-Prestressing Steel Property
Details
Top Compression Reinforcement
2 #8 @ 12mm O.C.
Bottom Compression Reinforcement
2 #8 @ 12mm O.C.
Web Compression Reinforcement
2 #8 @ 12mm O.C.
Shear Stirrup Reinforcement
2 legs, #10 @ 8mm O.C.
48
CHAPTER 5 : ACTUAL PHOTOS 5.1 Existing Cast-in-place Bridge
Figure 5-2. Perspective View of the Superstructure Prestressed Concrete Bridge
49
5.2 Proposed Prestressed Concrete Bridge
Figure 5-2. Perspective View of the Superstructure Prestressed Concrete Bridge
50
REFERENCES ► Bridge Design Specifications – LRFD, 6th Edition, 2012, American Association of State Highway and Transportation Officials (AASHTO). Retrieved from: http://utc2.edu.vn/Uploads/File/AASHTO%20LRFD%202012%20BridgeDesignSpecifications%206t h%20Ed%20%28US%29.PDF ► Design Guidelines, Criteria and Standards, DPWH. ► National Structural Code of the Philippines, NSCP Vol. II - Bridges, 2nd Ed., 1997 ► DPWH Department Order No.75, Series of 1992 ► Comprehensive Design Example for Prestresses Concrete (PSC) Girder Superstructure Bridge with Commentary (The Federal Highway Administration) ► American Concrete Institute ► American Society of State Highway and Transportation Officials 2007 ► LRFD Bridge Design – AASHTO Bridge Design Specifications – Loadings and General Information. Retrieved from: http://www.inti.gob.ar/cirsoc/pdf/puentes_hormigon/16-AAC-Load%20HandoutColor.pdf
51