DEVELOPMENT OF NON-AQUEOUS ASYMMETRIC HYBRID SUPERCAPACITORS BASED ON Li-ION INTERCALATED COMPOUNDS
GUIDE Dr.D.KALPANA, SCIENTIST,
BY
EEC DIVISION,
NAKKIRAN.A,
CECRI, KARAIKUDI.
An overview of previous presentations
Introduction Hybrid supercapacitors Synthesis of LiMn2O4 and the same multidoped with Ni, Co and Cu Physical characterization - XRD, SEM, FTIR Cell Fabrication Electrochemical characterizations Comparison of their performances
Study of supercapacitors
Having LiCo1-xAlxO2 as cathodes (where x=0,0.2,0.4 and 0.6)
Lithium Cobaltate(LiCoO2)
Commercially successful
The layered structure of LiCoO2 enables easy diffusion of Li-ions in and out of the structure
Why Aluminum
There has recently been considerable interest in Aldoping of lithium intercalation oxides.
Al substitution of the transition-metal cation has been shown theoretically and experimentally to increase the cell voltage.
Some other advantages of Al are that it is light, nontoxic, and inexpensive
Advantage
The similarity of Al and Co ions in these lithium metal oxides makes Al an attractive choice for doping The end members, a-LiAlO2 and LiCoO2, have the same crystal structure, layered a-NaFeO2 and the metal ions are close in size. These similarities remove the complications of phase transitions and lattice strain when varying doping content.
Synthesis Of Cathode Material
Two cathode materials synthesized are, i) Pure LiCoO2 ii) LiCoO2 doped with Al - LiCo1-xAlxO2 ( x = 0.2, 0.4,0.6 )
The cathode material was synthesized by soft combustion method
Compositions were taken on a stoichometric ratio based on following equations, LiNO3 + Co(NO3)2.6H2O
LiCoO2
(for pure substance)
LiNO3 + (1-x) Co(NO3)2.6H2O + xAl(NO3)2.9H2O
LiCo1-xAlxO2 (for doped substance)
Composition of precursors required for synthesis Basis : 0.2 moles of product Precursor
Weight of the material X=0
X=0.2
X=0.4
X=0.6
LiNO3
13.8g
13.8 g
13.8g
13.8
Al(NO3)2.9H2O
-
15 g
30g
45g
Co(NO3)2.6H2O
58.2g
46.56 g
34.92g
23.28g
Glycine(C2H5NO2)
30g
30 g
30g
30g
Distilled Water
100ml
100 ml
100ml
100ml
X= Fraction of Aluminium
The Soft Combustion Process Weighing of required chemicals Dissolve in 100ml distilled water Stir well at 600C Heat the mixture at 1000C for 8 hours Product is formed following a soft combustion
Physical Characterization
Thermal Analysis X-Ray Diffraction FTIR
Thermal Analysis
TGA is used to find the optimum temperature ranges for drying a sample to remove the moisture and impurities from it.
In DTA phase transitions or chemical reactions are followed through observation of heat absorbed or liberated.
TGA Curves 1.0
Weight fraction
0.9
0.8
0.7
0.6
LiCoO2 LiCo0.8Al0.2O2 LiCo0.6Al0.4O2 LiCo0.4Al0.6O2
0.5
0.4 0
200
400
600
800 0
Temperature ( C)
1000
1200
1400
DTA Curves 1.5
0
Temperature difference( C)
2.0
1.0 0.5 0.0 -0.5
LiCoO2 LiCo0.8Al0.2O2 LiCo0.6Al0.4O2 LiCo0.4Al0.6O2
-1.0 -1.5 -2.0 0
200
400
600
800 0
Temperature( C)
1000
1200
TGA Curves
The initial weight drop from 300C-1500C is due to moisture removal from the sample. the subsequent weight loss from 1500C to 3000Ccorresponds to elimination of organic compounds from samples. Next weight drop in the temperature range of 3000C-5000C is formed as a result of the reaction of unreacted precursors to give the final product. The stabilization temperature for these samples mostly lay after 8000C. So the samples are heated at 8000C for 4 hours.
FTIR Curves 100
% Transmittance
80
60
40
LiCoO2 LiCo0.8Al0.2O2 LiCo0.6Al0.4O2 LiCo0.4Al0.6O2
20
0 500
1000
1500
2000
2500 -1
Wave numbers(cm )
3000
3500
These are the FTIR spectroscopes of LiCoO2, LiCo0.8Al0.2O2, LiCo0.6Al0.4O2, and LiCo0.4Al0.6O2 respectively For high level of Al substitution, the broadening of the infrared peaks can be interpreted as an increase in CoO6 distortion due to the incorporation of Al3+ in the Co3+ site.
LiCo0.4Al0.6O2 (201)
(108) (110) (113)
(107)
(105)
(104)
(101) (006) (012)
(003)
XRD Patterns
LiCo0.6Al0.4O2
LiCo0.8Al0.2O2
LiCoO2 10
20
30
40
50
2 theta
60
70
80
90
100
All samples are single phase and have the αNaFeO2 structure (space group R3m).
Miller indices (hkl) are indexed in the hexagonal setting. No impurity phase was detected in the XRD patterns of LiAlyCo1−yO2
On Al doping, the (108) peak shifts towards lower 2θ and the (110) peak shifts towards higher 2θ value
(110)
(108)
XRD Patterns LiCo0.4Al0.6O2
LiCo0.6Al0.4O2
LiCo0.8Al0.2O2
LiCoO2
64
66
2 theta
68
Electrochemical Characterizations
Cyclic Voltammetry Electrochemical Impedance Spectroscopy Galvanostatic Charge/Discharge
CV of LiCoO2/CNF before cycles 0.0004
0.0002
Current(A)
0.0000
-0.0002
-0.0004
-0.0006 1mV/s 2mV/s 5mV/s
-0.0008 2000
1000
0
Voltage(mV)
-1000
-2000
CV of LiCoO2/CNF after 500 cycles 0.0002
Current(A)
0.0000
-0.0002
1mV/s 2mV/s 5mV/s
-0.0004
1500
1000
500
0
Voltage(mV)
-500
-1000
-1500
CV of LiCo0.8Al0.2O2/CNF before cycles 0.0004
Current(A)
0.0002
0.0000
-0.0002
-0.0004
1mV/s 2mV/s 5mV/s
-0.0006 1500
1000
500
0
Voltage(mV)
-500
-1000
-1500
CV of LiCo0.8Al0.2O2/CNF after 500 cycles 0.0002
Current(A)
0.0001
0.0000
-0.0001
1mV/s 2mV/s 5mV/s -0.0002 1500
1000
500
0
Voltage(mV)
-500
-1000
-1500
CV of LiCo0.6Al0.4O2/CNF before cycles 0.00015
Current(A)
0.00010
0.00005
0.00000
-0.00005
1mV/s 2mV/s 5mV/s
-0.00010
-0.00015 1500
1000
500
0
Voltage(mV)
-500
-1000
-1500
CV of LiCo0.6Al0.4O2/CNF after 500 cycles 0.0006
Current(A)
0.0004
0.0002
0.0000
-0.0002
1mV/s 2mV/s 5mV/s
-0.0004
-0.0006 2000
1000
0
Voltage(mV)
-1000
-2000
CV of LiCo0.4Al0.6O2/CNF before cycles
Current(A)
0.0004
0.0002
0.0000
-0.0002
1mV/s 2mV/s 5mV/s
-0.0004
1500
1000
500
0
Voltage(mV)
-500
-1000
-1500
CV of LiCo0.4Al0.6O2/CNF after 500 cycles 0.00010
Current(A)
0.00005
0.00000
-0.00005
1mV/s 2mV/s -0.00010 1500
1000
500
0
Voltage(mV)
-500
-1000
-1500
Specific capacitance (F/g)
from CV Scan rate Composition
Before cycles
After cycles
5mV/s
2mV/s
1mV/s
0
15.93
18.75
20.09
0.2
11.6
15.25
16.3
0.4
21.74
26.93
27.61
0.6
6.1
7.63
8.3
0
4.113
5.29
11.95
0.2
8.274
10.33
12.93
0.4
16.225
19.74
21.51
0.6
-
5.1
6.4
Impedance Spectroscopy – Before Cycles -80
LiCoO2 LiCo0.8Al0.2O2 LiCo0.6Al0.4O2 LiCo0.4Al0.6O2
Im
Z (Ohm)
-60
-40
-20
0 0
20
40
60
ZRe(Ohm)
80
100
Impedance Spectroscopy – After 500 Cycles -250
LiCoO2 LiCo0.8Al0.2O2 LiCo0.6Al0.4O2 LiCo0.4Al0.6O2
-150
Im
Z (Ohm)
-200
-100
-50
0 0
50
100
150
ZRe(Ohm)
200
250
Results of Impedance Spectroscopy Rs
Cdl
Ohm
mF
0
3.747
0.6194
0.2
2.392
0.5518
0.4
4.551
0.5491
0.6
5.649
0.6328
0
4.721
0.6567
0.2
6.253
0.5778
0.4
4.782
0.621
0.6
6.211
0.711
Property x
Before cycles
After cycles
Galvanostatic Charge-Discharge behaviour of LiCoO2/CNF 2.1
2.0
1.6
Voltage(V)
Voltage(V)
1.4
1.2
0.8 0.7
0.4
0.0
0.0
350
400
450
500
550
600
5600
5610
5620
5630
Time(s)
Time(s)
First cycle
500th cycle
5640
5650
Galvanostatic Charge-Discharge behaviour of LiCo0.8Al0.2O2/CNF 2.0
1.6
Voltage(V)
Voltage(V)
1.6
0.8
1.2
0.8
0.4 0.0 26
28
30
32
34
36
Time(s)
First cycle
38
40
42
0.0 1337
1338
1339
1340
Time(s)
1341
500th cycle
1342
1343
1344
Galvanostatic Charge-Discharge behaviour of LiCo0.6Al0.4O2/CNF 2.0 2.0
1.6
Voltage(v)
Voltage(V)
1.6
1.2
0.8
1.2
0.8
0.4
0.4
0.0 600
650
700
750
800
Time(s)
First cycle
850
900
0.0 9120
9140
9160
Time(s)
500th cycle
9180
9200
2.0
2.0
1.6
1.6
1.2
1.2
Voltage(V)
Voltage(V)
Galvanostatic Charge-Discharge behaviour of LiCo0.4Al0.6O2/CNF
0.8
0.8
0.4
0.4
0.0
0.0 105
110
115
120
125
Time(s)
130
First cycle
135
140
145
11732
11736
11740
Time(s)
11744
500th cycle
11748
11752
Results of Galvanostatic Charge-Discharge Analysis Properties Composition
0 Before cycles
After cycles
Specific capacitanc e (F/g) 11.17
Power density (kW/kg)
Energy density (kWh/kg)
312.5
12.41
0.2
0.415
303.03
0.44
0.4
11.41
333.3
12.68
0.6
1.53
322.58
1.075
0
1.8
312.5
2.01
0.2
0.303
303.03
0.336
0.4
3.83
333.33
4.25
0.6
0.88
322.58
0.986
Conclusion
LiCoO2 is a good cathode material for hybrid supercapacitor since it is having specific capacitance of 11 F/g.
In the doped cathode materials, LiCo0.6Al0.4O2 is having good capacitance and cycle behaviour.
Thank You
Queries?