CHAPTER 1
INTRODUCTION A Building is an essential and important structure for people to live in, that too, an hospital building is very important to satisfy the medical needs of the people. Thus, before constructing an hospital building, we should consider the following. It should be safe, economical, easily accessible etc. To satisfy all these needs, we must design a hospital building which should satisfy certain civil engineering codes and analyze the results obtained from the design using civil engineering software. Buildings said to be safe if it can transmit all its load from super structure to sub structure without any failure. Thus for this, all the components of the building such as beams, columns, slab, footing should be efficiently and properly designed. In addition to these engineering designs, experience and good judgment is also essential for safety and economy of the structure. It should also resist wind loads and earthquake loads. After designing the components of the building, it should be analyzed using the software STAAD pro V8i for ensuring whether the loads can be carried by the structure. After the analysis, we come to know whether it is safe or unsafe to construct the building in the proposed area. If it is safe, then the hospital building can be constructed. LIST OF CODES NEEDED: 1. I S : 456– 2000 2. I S : 800 – 1980 3. Design Aids SP-16 4. I S : 875 – 1987 (Part II) 5. I S 3370:2009 (Part I) 6. I S 3370:2009 (Part II) 7. I S 3370:2009 (Part III) 8. I S : 10905 : 1984
1
CHAPTER 2
DESIGN OF SLABS TABLE 1: GROUPING OF SLABS TYPE
CONDITIONS
SIZE (m)
S1
Two adjacent edges discontinuous
3.92 x 6
S2
One short edges discontinuous
4.68 x 6
S3
One short edges discontinuous
3.42 x 6
S4
One short edges discontinuous
3.80 x 6
S5
One short edges discontinuous
3.65 x 6
S6
One short edges discontinuous
6 x 3.3
S7
One short edges discontinuous
6 x 2.69
S8
One short edges discontinuous
6.11 x 3.92
S9
One short edges discontinuous
6.11 x 4.68
S10
One short edges discontinuous
3.42x 6.11
S11
Two adjacent edges discontinuous
3.8x 6.11
S12
Two adjacent edges discontinuous
3.65 x 6.11
S13
Interior panels
3.3 x 6.11
S14
Interior panels
2.69x 6.11
S15
Interior panels
3.92 x 3.11
S16
Interior panels
8.11x 3.11
S17
Interior panels
7.7 x 3.11
S18
Interior panels
3.65 x 3.11
S19
Interior panels
3.30 x 3.11
S20
Interior panels
3.11x2.69
2
TYPE
CONDITIONS
SIZE (m)
S21
Interior panels
3.920 x 5.23
S22
Two adjacent edges discontinuous
3.5 x 5.23
S23
One short edges discontinuous
2.69x5.23
S24
Interior panels
2.53x5.23
S25
Interior panels
5.20 x 5.21
S26
Interior panels
5.23 x 3.6
S27
Interior panels
5.230 x 3.33
S28
Interior panels
3.32 x 3.2
S29
Interior panels
3.32 x 2.69
S30
One short edges discontinuous
5.07 x 3.92
S31
One long edges discontinuous
1.91 x 5.07
S32
One long edges discontinuous
3.53 x 5.07
S33
One long edges discontinuous
2.69x5.07
S34
Interior panels
2.53x 5.07
S35
Interior panels
5.20 x 5.07
S36
Interior panels
3.65 x 5.07
S37
Interior panels
5.07 x 3.34
S38
Interior panels
3.77 x 3.29
S39
Interior panels
3.770 x 2.69
S40
One long edges discontinuous
7x 3.92
S41
One long edges discontinuous
7 x 1.91
S42
One long edges discontinuous
7x 3.5
S43
Interior panels
7 x 2.69
3
TYPE
CONDITIONS
SIZE (m)
S44
Interior panels
2.53 x 7
S45
Interior panels
5.20 x 7
S46
Interior panels
3.65 x 7
S47
Interior panels
7 x 3.344
S48
Interior panels
3.2x 3.29
S49
One long edges discontinuous
3.2 x 2.69
S50
One long edges discontinuous
3.91 x 3.29
S51
One long edges discontinuous
3.91 x 2.69
S52
One long edges discontinuous
5.23 x 4
S53
One long edges discontinuous
1.91 x 5.23
S54
One long edges discontinuous
3.5 x 5.2
S55
One short edges discontinuous
5.2x3.42
S56
One short edges discontinuous
5.23x2.53
S57
One short edges discontinuous
5.23x5.28
S58
One short edges discontinuous
5.23x3.65
S59
One short edges discontinuous
5.23x3.34
S60
One short edges discontinuous
4.11x3.29
S61
One long edges discontinuous
4.11x2.69
4
CHAPTER 2.2
DESIGN OF FLOOR SLAB SLAB S1: TYPE OF SLAB ⁄
= 6.00/4
= 1.54 < 2 Hence the slab is designed as a two way slab CROSS SECTIONAL DIMENSIONS: Span/depth
= 40
Overall depth, D
= 150 mm
Assume 15 mm cover and 10 mm Ø Effective depth, d
= 150 - 15 - (10/2) = 130 mm
EFFECTIVE SPAN: Shorter span (lx) i) c/c distance
= 4.0 + (.23/2) + (.23/2) =4.23 m
ii) c/c distance + depth
= 4.0 + .13 4.13 m =4.13 m
Longer span (ly) i) c/c distance
= 6.0 + (.23/2) + (.23/2) =6.23 m
5
ii) c/c distance + depth
= 6.0+ .13 =6.13 m = 6.13 m
LOAD CALCULATION: Self weight (D.L)
= 1 x 1 x .15 x 25 D.L
⁄
= 3.75
Live load
=2
⁄
Floor finish
=1
⁄
Total load,
⁄
W
= 6.75
Wu
= 1.5 x 6.75 = 10.125
⁄
BENDING MOMENT CALCULATION: Short span co efficient αx
= 0.075
αx
= 0.056
M (-ve)
= α x. Wu.
2
= 0.075 x 10.125 x 4.132 = 12.95 M (+ve)
= α x .Wu.
2
= 0.056 x 10.125 x 4.132 = 9.67 Long span co efficient αy
= 0.047
αy
= 0.035 6
M (-ve)
= α y .Wu.
2
= 0.047 x 10.125 x6.132 = 17.88 M (+ve)
= α y .Wu.
2
= 0.035 x 10.125 x 6.132 = 13.33 CHECK FOR EFFECTIVE DEPTH: M
= 0.134 fck bd2
17.88x10^6
= 0.134 x 25 x 1000 x d2 = 73.05 mm < 130 mm
REINFORCEMENT DETAILS: Short Span Positive Reinforcement (
)
( –(
) (
9.67 x 106
= 56550 Ast – 10.88 Ast2
Ast
= 175
Minimum Reinforcement
= 0.12% bD
Ast
= 180
> 130
S
= ((πd2/4) / 180) x 1000
Using 10 mm Ø bar Spacing,
= 436 mm Maximum Spacing,
S
= 300
Provide 10 mm Ø bar @ 300 mm C/C Spacing Ast (provide)
= 270
7
))
Short Span Negative Reinforcement (–
)
( –(
12.95x 106
= 56550 Ast – 10.88 Ast2
Ast
= 237
Minimum Reinforcement
Using 10
) (
= 0.12% bD > 130 mm2
Ast
= 180
S
= ((πd2/4) / 180) x 1000
Ø bar
Spacing,
= 436 Maximum Spacing, Provide 10
S
Ø bar @ 300
= 300 C/C Spacing
Ast (provide)
= 331
Long Span Positive Reinforcement (
)
( –(
) ( Ast
Minimum Reinforcement
= 244 = 0.12% bD
Ast Using 10
= 180
> 130
Ø bar
Spacing,
S
= ((πd2/4) / 180) x 1000 = 436
Maximum Spacing, Provide 10
))
Ø bar @ 300
Ast (provide)
S
= 300 C/C Spacing = 270
8
))
Long Span Negative Reinforcement (–
)
( –(
) (
))
17.88 x 106
= 56550 Ast – 10.88 Ast2
Ast
= 333
Minimum Reinforcement
= 0.12% bD
Ast (required)
= 180
> 130
Using 10 mm Ø bar Spacing,
S
= ((πd2/4) / 180) x 1000 = 436
Maximum Spacing, Provide 10
Ø bar @ 300
S
= 300
C/C Spacing
Ast (provide)
= 380
CHECK FOR SHEAR: Maximum Shear Force,
= (Wu lx / 2) = ½ (10.125 x 4.13) Vu
Nominal Shear Stress ,
= 20.9 = Vu / b d = 0.16 ⁄
Percentage of Tension Pt
= 100 Ast / b d = (100 x 270) / (1000 x 130) = 0.21 % = 0.33 ⁄
9
>
Safe
CHECK FOR DEFLECTION: Percentage of Tension, Pt
= 0.21 %
FS
= 0.58 fy x (
(
)
(
)
)
= 195 ⁄ Modification Factor, Kt
= 1.7
(L / d) max
= (L / d) basic x Kt x Kc x Kf = 20 x 1.7 x 1 x 1 = 34
(L / d) actual
= 4130 / 130 = 31
(L / d) max > (L / d) actual Hence Safe against Deflection CHECK FOR CRACK WIDTH: Minimum Reinforcement
Pt(min)
= 0.12% bD = 180
= ((π x 102/4) x 5)
Pt(prov)
= 392.69 Pt(prov) > Pt(min) Spacing,
S
= 300
Spacing (req)
=300 mm
Spacing (prov)
=100mm
Spacing (req) > Spacing (prov) Diameter < D/8 =125/8 10
=15.625 Diameter of the rod=10mm 10mm<15.625 Hence ok
TORSIONAL REINFORCEMENT AT CORNERS: Mesh size
= lx / 5 = 4130 / 5 = 826
Area of Torsion Reinforcement
= (3/4) x mid span reinforcement = (3/4) x 180
Ast
= 135
Using 10 mm Ø bar Spacing,
S
= ((πd2/4) / 135) x 1000 = 580
Spacing,
S
= 300
Provide 10mm Ø bar mesh of bars @300mm c/c
11
CHAPTER 2.3
REINFORCEMENT DETAILS OF FLOOR SLABS TABLE 2 SLAB NO S1
SPAN SHORT LONG
S2
SHORT LONG
S3
SHORT LONG
S4
SHORT LONG
S5
SHORT LONG
S6
SHORT LONG
S7
SHORT LONG
B.M COEFFFICIENT αx&αy
W kN/m2
Lx (m)
B.M kN-m
0.052 0.039 0.047 0.039
13.75 13.75 13.75 13.75
4
6.48 8.61 7.76 6.61
0.056 0.042 0.037 0.028
13.75 13.75 13.75 13.75
4.68
9.96 7.47 6.58 4.98
0.041 0.030 0.037 0.028
13.75 13.75 13.75 13.75
3.42
7.29 5.33 6.58 4.98
0.038 0.029 0.037 0.028
13.75 13.75 13.75 13.75
3.8
6.28 4.80 6.11 4.63
0.048 0.036 0.037 0.028
13.75 13.75 13.75 13.75
2.65
5.80 4.35 4.47 3.38
0.049 0.037 0.047 0.035
13.75 13.75 13.75 13.75
3.3
8.90 4.47 5.48 4.15
0.037 0.028 0.037 0.028
13.75 13.75 13.75 13.75
2.68
6.66 5.03 6.66 5.03
12
REINFORCEMENT DETAILS OF FLOOR SLABS SLAB NO S8
SPAN SHORT LONG
S9
SHORT LONG
S10
SHORT LONG
S11
SHORT LONG
S12
SHORT LONG
S13
SHORT LONG
S14
SHORT LONG
B.M COEFFFICIENT αx&αy
W kN/m2
Lx (m)
B.M kN-m
0.039 0.030 0.032 0.024
13.75 13.75 13.75 13.75
3.92
7.02 4.92 5.76 4.31
0.035 0.026 0.032 0.024
13.75 13.75 13.75 13.75
4.68
6.30 4.52 5.75 4.32
0.034 0.025 0.032 0.024
13.75 13.75 13.75 13.75
3.42
5.55 4.14 5.30 3.98
0.043 0.032 0.032 0.024
13.75 13.75 13.75 13.75
3.8
5.29 3.93 3.93 2.95
0.069 0.053 0.037 0.028
13.75 13.75 13.75 13.75
3.65
12.26 9.42 6.58 5.00
0.037 0.028 0.037 0.028
13.75 13.75 13.75 13.75
3.3
7.63 5.78 7.63 5.78
0.034 0.025 0.032 0.024
13.75 13.75 13.75 13.75
2.69
6.97 5.13 6.56 4.92
13
REINFORCEMENT DETAILS OF FLOOR SLABS SLAB NO S15
SPAN SHORT LONG
S16
SHORT LONG
S17
SHORT LONG
S18
SHORT LONG
S19
SHORT LONG
S20
SHORT LONG
S21
SHORT LONG
B.M COEFFFICIENT αx&αy
W kN/m2
Lx (m)
B.M kN-m
0.032 0.024 0.032 0.024
13.75 13.75 13.75 13.75
3.92
6.56 4.92 6.56 4.92
0.037 0.028 0.032 0.024
13.75 13.75 13.75 13.75
3.11
6.13 4.64 5.30 3.98
0.047 0.036 0.032 0.024
13.75 13.75 13.75 13.75
3.11
5.78 4.42 3.93 2.95
0.066 0.050 0.037 0.028
13.75 13.75 13.75 13.75
3.11
13.54 10.26 7.60 5.70
0.053 0040 0.037 0.028
13.75 13.75 13.75 13.75
3.11
11.06 8.30 7.70 5.84
0.043 0.032 0.032 0.024
13.75 13.75 13.75 13.75
2.69
10.09 7.50 7.50 5.63
0.046 0.035 0.032 0.024
13.75 13.75 13.75 13.75
3.92
9.54 7.26 6.64 4.21
14
REINFORCEMENT DETAILS OF FLOOR SLABS SLAB NO S22
SPAN SHORT LONG
S23
SHORT LONG
S24
SHORT LONG
S25
SHORT LONG
S26
SHORT LONG
S27
SHORT LONG
S28
SHORT LONG
B.M COEFFFICIENT αx&αy
W kN/m2
Lx (m)
B.M kN-m
0.052 0.040 0.032 0.024
13.75 13.75 13.75 13.75
3.5
8.62 6.63 5.30 3.98
0.057 0.044 0.032 0.024
13.75 13.75 13.75 13.75
2.69
7.01 5.35 3.93 2.95
0.048 0.036 0.037 0.028
13.75 13.75 13.75 13.75
2.52
16.70 12.52 12.87 13.22
0.038 0.029 0.037 0.028
13.75 13.75 13.75 13.75
5.21
6.68 5.10 6.50 4.91
0.040 0.030 0.032 0.024
13.75 13.75 13.75 13.75
3.61
7.02 5.27 5.62 4.21
0.036 0.027 0.032 0.024
13.75 13.75 13.75 13.75
3.31
6.32 4.74 5.62 4.21
0.033 0.025 0.032 0.024
13.75 13.75 13.75 13.75
3.2
5.47 4.06 5.30 3.98
15
REINFORCEMENT DETAILS OF FLOOR SLABS SLAB NO S29
SPAN SHORT LONG
S30
SHORT LONG
S31
SHORT LONG
S32
SHORT LONG
S33
SHORT LONG
S34
SHORT LONG
S35
SHORT LONG
B.M COEFFFICIENT αx&αy
W kN/m2
Lx (m)
B.M kN-m
0.043 0.032 0.032 0.024
13.75 13.75 13.75 13.75
2.69
5.29 3.93 3.93 2.95
0.071 0.055 0.037 0.028
13.75 13.75 13.75 13.75
3.92
12.40 9.60 6.46 4.90
0.038 0.029 0.037 0.028
13.75 13.75 13.75 13.75
1.91
7.63 5.82 7.42 5.62
0.038 0.029 0.032 0.024
13.75 13.75 13.75 13.75
3.5
8.91 6.64 6.64 4.98
0.043 0.032 0.032 0.024
13.75 13.75 13.75 13.75
2.70
8.94 6.64 6.64 4.98
0.048 0.038 0.032 0.024
13.75 13.75 13.75 13.75
2.52
7.96 6.21 5.30 3.98
0.054 0.042 0.032 0.024
13.75 13.75 13.75 13.75
5.07
6.58 5.16 3.93 2.95
16
REINFORCEMENT DETAILS OF FLOOR SLABS SLAB NO S36
SPAN SHORT LONG
S37
SHORT LONG
S38
SHORT LONG
S39
SHORT LONG
S40
SHORT LONG
S41
SHORT LONG
S42
SHORT LONG
B.M COEFFFICIENT αx&αy
W kN/m2
Lx (m)
B.M kN-m
0.053 0.040 0.037 0.028
13.75 13.75 13.75 13.75
3.65
16.16 12.19 11.28 8.53
0.062 0.046 0.037 0.028
13.75 13.75 13.75 13.75
3.34
7.17 5.32 4.28 3.23
0.051 0.039 0.032 0.024
13.75 13.75 13.75 13.75
3.29
6.03 4.61 3.78 2.83
0.048 0.037 0.032 0.024
13.75 13.75 13.75 13.75
2.69
5.67 4.31 3.78 2.83
0.043 0.032 0.032 0.024
13.75 13.75 13.75 13.75
3.91
5.08 3.78 3.78 2.83
0.032 0.024 0.032 0.024
13.75 13.75 13.75 13.75
1.91
3.78 2.83 3.78 2.83
0.084 0.064 0.037 0.028
13.75 13.75 13.75 13.75
3.5
9.71 7.40 4.27 3.23
17
REINFORCEMENT DETAILS OF FLOOR SLABS SLAB NO S43
SPAN SHORT LONG
S44
SHORT LONG
S45
SHORT LONG
S46
SHORT LONG
S47
SHORT LONG
S48
SHORT LONG
S49
SHORT LONG
B.M COEFFFICIENT αx&αy
W kN/m2
Lx (m)
B.M kN-m
0.051 0.038 0.037 0.028
13.75 13.75 13.75 13.75
2.70
10.64 7.62 7.72 5.82
0.038 0.029 0.032 0.024
13.75 13.75 13.75 13.75
2.53
8.91 6.68 7.50 5.63
0.043 0.032 0.032 0.024
13.75 13.75 13.75 13.75
5.20
8.92 6.64 6.64 4.98
0.048 0.037 0.032 0.026
13.75 13.75 13.75 13.75
3.652
7.96 6.13 5.30 3.98
0.054 0.042 0.032 0.024
13.75 13.75 13.75 13.75
3.34
6.64 5.16 3.93 2.95
0.053 0.040 0.037 0.028
13.75 13.75 13.75 13.75
3.19
15.86 11.97 11.01 8.38
0.049 0.035 0.047 0.035
13.75 13.75 13.75 13.75
2.69
6.10 4.15 5.48 4.15
18
REINFORCEMENT DETAILS OF FLOOR SLABS SLAB NO S49
SPAN SHORT LONG
S50
SHORT LONG
S51
SHORT LONG
S52
SHORT LONG
S53
SHORT LONG
S54
SHORT LONG
S55
SHORT LONG
B.M COEFFFICIENT αx&αy
W kN/m2
Lx (m)
B.M kN-m
0.049 0.035 0.047 0.035
13.75 13.75 13.75 13.75
2.69
6.10 4.15 5.48 4.15
0.055 0.041 0.037 0.028
13.75 13.75 13.75 13.75
3.269
6.36 4.74 4.27 3.23
0.052 0.040 0.037 0.028
13.75 13.75 13.75 13.75
2.69
6.01 4.62 4.27 3.23
0.049 0.037 0.037 0.028
13.75 13.75 13.75 13.75
4
5.67 4.27 4.27 3.23
0.037 0.028 0.037 0.028
13.75 13.75 13.75 13.75
1.91
4.27 3.23 4.27 3.23
0.048 0.035 0.047 0.035
13.75 13.75 13.75 13.75
3.5
5.85 4.15 5.48 4.15
0.048 0.035 0.047 0.035
13.75 13.75 13.75 13.75
3.42
6.36 4.74 4.27 3.23
19
REINFORCEMENT DETAILS OF FLOOR SLABS SLAB NO S56
SPAN SHORT LONG
S57
SHORT LONG
S58
SHORT LONG
S59
SHORT LONG
S60
SHORT LONG
S61
SHORT LONG
B.M COEFFFICIENT αx&αy
W kN/m2
Lx (m)
B.M kN-m
0.053 0.040 0.037 0.028
13.75 13.75 13.75 13.75
2.53
16.16 12.19 11.28 8.53
0.062 0.046 0.037 0.028
13.75 13.75 13.75 13.75
5.23
7.17 5.32 4.28 3.23
0.051 0.039 0.032 0.024
13.75 13.75 13.75 13.75
3.65
6.03 4.61 3.78 2.83
0.048 0.037 0.032 0.024
13.75 13.75 13.75 13.75
3.34
5.67 4.31 3.78 2.83
0.043 0.032 0.032 0.024
13.75 13.75 13.75 13.75
3.29
5.08 3.78 3.78 2.83
0.032 0.024 0.032 0.024
13.75 13.75 13.75 13.75
2.69
3.78 2.83 3.78 2.83
20
REINFORCEMENT DETAILS OF FLOOR SLABS SLAB SHORT SPAN REINFORCEMENT
LONG SPAN REINFORCEMENT
NO
AT SUPPORT
AT MIDSPAN
AT SUPPORT
AT MIDSPAN
S1
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
21
REINFORCEMENT DETAILS OF FLOOR SLABS SLAB SHORT SPAN REINFORCEMENT NO S13
S14
S15
S16
S17
S18
S19
S20
S21
S22
S23
S24
LONG SPAN REINFORCEMENT
AT SUPPORT
AT MIDSPAN
AT SUPPORT
AT MIDSPAN
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 250mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
22
REINFORCEMENT DETAILS OF FLOOR SLABS SLAB SHORT SPAN REINFORCEMENT NO S25
S26
S27
S28
S29
S30
S31
S32
S33
S34
S35
S36
LONG SPAN REINFORCEMENT
AT SUPPORT
AT MIDSPAN
AT SUPPORT
AT MIDSPAN
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 250mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
23
REINFORCEMENT DETAILS OF FLOOR SLABS SLAB SHORT SPAN REINFORCEMENT NO S37
S38
S39
S40
S41
S42
S43
S44
S45
S46
S47
S48
LONG SPAN REINFORCEMENT
AT SUPPORT
AT MIDSPAN
AT SUPPORT
AT MIDSPAN
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 250mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 250mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
24
REINFORCEMENT DETAILS OF FLOOR SLABS SLAB NO S49
S50
S51
S52
S53
S54
SHORT SPAN REINFORCEMENT
LONG SPAN REINFORCEMENT
AT SUPPORT
AT MIDSPAN
AT SUPPORT
AT MIDSPAN
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
DESIGN RESULTS FOR FLOOR SLAB Effective depth, d
= 130 mm
Overall depth, D
= 150 mm
25
CHAPTER 2.4
DESIGN OF ROOF SLAB SLAB S1: TYPE OF SLAB ly / l x
= 6/4 = 1.54< 2
Hence the slab is designed as a two way slab CROSS SECTIONAL DIMENSIONS: Span/depth
= 40
Overall depth, D
= 150 mm
Assume 15 mm cover and 10 mm Ø Effective depth, d
= 150 - 15 - (10/2) = 130 mm
EFFECTIVE SPAN Shorter span (lx) i) c/c distance
= 4 + (.23/2) + (.23/2) =4.23 m
ii) c/c distance + depth lx
= 4 + .13 = 4.13 mm
Longer span (ly) i) c/c distance
= 6 + (.23/2) + (.23/2) = 6.23 m
ii) c/c distance + depth
= 6 + .13 = 6.13 m
ly
= 6.13 mm
26
LOAD CALCULATION: Self weight (D.L)
= 1 x 1 x .15 x 25 D.L
Live load
= 1.5
Floor finish
=1
Total load,
⁄
= 3.75
⁄
\
⁄ ⁄
W
= 6.25
Wu
= 1.5 x 6.25 = 9.375
⁄
BENDING MOMENT CALCULATION: Short span co efficient αx
= 0.075
αy
= 0.056
M (-ve)
= α x. Wu. lx2 = 0.075 x 10.5 x 42 = 11.25
M (+ve)
= α y. Wu. lx2 = 0.056 x 10.5 x 42 = 8.4
Long span co efficient αx
= 0.047
αy
= 0.035
M (-ve)
= α x. Wu. lx2 = 7.896
M (+ve)
= α y. Wu. lx2 = 5.88 27
CHECK FOR EFFECTIVE DEPTH: M
= 0.134 fck bd2
d
= 42.89 mm < 130 mm
REINFORCEMENT DETAILS: Short Span Positive Reinforcement (
)
( –(
8.4 x 106
= 56550 Ast – 8.7 Ast2
Ast
= 125 mm2
Minimum Reinforcement
) (
))
= 0.12% bD = 180 mm2 > 125 mm2
Ast Using 10 mm Ø bar Spacing,
S
Maximum Spacing, S
= ((πd2/4) / 180) x 1000 = 436 mm = 300 mm
Provide 10 mm Ø bar @ 300 mm C/C Spacing = 270 mm2
Ast (provide) Short Span Negative Reinforcement (–
)
( –(
11.25x 106
= 56550 Ast – 8.7 Ast2
Ast
= 110 mm2
Minimum Reinforcement
= 0.12% bD = 180 mm2 > 110 mm2
Ast Using 10 mm Ø bar Spacing,
S
= ((πd2/4) / 180) x 1000 = 436 mm
Maximum Spacing,
S
= 300 mm 28
) (
))
Provide 10 mm Ø bar @ 300 mm C/C Spacing = 270 mm2
Ast (provide) Long Span Positive Reinforcement (
)
( –(
) (
))
= 90 mm2
Ast Minimum Reinforcement
= 0.12% bD
Ast
= 180 mm2 > 90 mm2
S
= ((πd2/4) / 180) x 1000
Using 10 mm Ø bar Spacing,
= 436 mm Maximum Spacing,
S
= 300 mm
Provide 10 mm Ø bar @ 300 mm C/C Spacing = 270 mm2
Ast (provide) Long Span Negative Reinforcement (–
)
( –(
7.896x 106
= 56550 Ast – 10.88 Ast2
Ast
= 100 mm2
Minimum Reinforcement
= 0.12% bD
Ast (required)
= 180 mm2 > 100 mm2
Using 10 mm Ø bar Spacing,
S
= ((πd2/4) / 180) x 1000 = 436 mm
Maximum Spacing,
S
= 300 mm
29
) (
))
CHECK FOR SHEAR: Maximum Shear Force
= (Wu lx / 2) = ½ (10.5 x 4)
Nominal Shear Stress,
Vu
= 19.5
τv
= Vu / b d ⁄
= 0.14 Percentage of Tension ,
Pt
= 100 Ast / b d = (100 x 270) / (1000 x 130) = 0.21 % ⁄
= 0.33
>
Hence Safe against Shear CHECK FOR DEFLECTION: Percentage of Tension,
Pt
= 0.21 %
FS
= 0.58 fy x ( Ast (require) / Ast (provide) ) = 195
Modification Factor, Kt (L / d) max
⁄
= 1.7 = (L / d) basic x Kt x Kc x Kf = 20 x 1.7 x 1 x 1 = 34
(L / d) actual
= 3360 / 130 = 26
(L / d) max > (L / d) actual Hence Safe against Deflection
30
TORSIONAL REINFORCEMENT AT CORNERS: Mesh size
= lx / 5 = 4000 / 5 = 800 mm
Area of Torsion Reinforcement
= (3/4) x mid span reinforcement = (3/4) x 180
Ast
= 135 mm2
S
= ((πd2/4) / 135) x 1000
Using 10 mm Ø bar Spacing,
= 580 mm Spacing,
S
= 300 mm
Provide 10 mm Ø mesh of bars @ 300 mm C/C in all corners as torsion reinforcement
31
CHAPTER 2.5 TABLE 3: REINFORCEMENT DETAILS OF ROOF SLABS
SLAB NO S1
B.M SPAN
SHORT
SHORT LONG
S3
SHORT LONG
S4
SHORT LONG
S5
SHORT LONG
S6
B.M
kN/m
(m)
kN-m
0.052
9.375
4
9.25
0.039
9.375
6.93
0.047
9.375
8.36
0.039
9.375
6.93
0.056
9.375
0.042
9.375
7.47
0.037
9.375
6.58
0.028
9.375
4.98
0.041
9.375
0.030
9.375
5.33
0.037
9.375
6.58
0.028
9.375
4.98
0.038
9.375
0.029
9.375
4.80
0.037
9.375
6.11
0.028
9.375
4.63
0.048
9.375
0.036
9.375
4.35
0.037
9.375
4.47
0.028
9.375
3.38
0.049
9.375
0.037
9.375
4.47
0.047
9.375
5.48
0.035
9.375
4.15
αx&αy
LONG
S2
Lx
COEFFFICIENT
SHORT LONG
32
W 2
4.68
3.42
3.8
2.65
3.3
9.96
7.29
6.28
5.80
8.90
SLAB NO S7
B.M SPAN
SHORT
SHORT LONG
S9
SHORT LONG
S10
SHORT LONG
S11
SHORT LONG
S12
SHORT LONG
S13
Lx
B.M
kN/m2
(m)
kN-m
0.037
9.375
2.68
6.66
0.028
9.375
5.03
0.037
9.375
6.66
0.028
9.375
5.03
0.039
9.375
0.030
9.375
4.92
0.032
9.375
5.76
0.024
9.375
4.31
0.035
9.375
0.026
9.375
4.52
0.032
9.375
5.75
0.024
9.375
4.32
0.034
9.375
0.025
9.375
4.14
0.032
9.375
5.30
0.024
9.375
3.98
0.043
9.375
0.032
9.375
3.93
0.032
9.375
3.93
0.024
9.375
2.95
0.069
9.375
0.053
9.375
9.42
0.037
9.375
6.58
0.028
9.375
5.00
0.037
9.375
0.028
9.375
5.78
0.037
9.375
7.63
0.028
9.375
5.78
αx&αy
LONG
S8
W
COEFFFICIENT
SHORT LONG
33
3.92
4.68
3.42
3.8
3.65
3.3
7.02
6.30
5.55
5.29
12.26
7.63
SLAB NO S14
B.M SPAN
SHORT
SHORT LONG
S16
SHORT LONG
S17
SHORT LONG
S18
SHORT LONG
S19
SHORT LONG
S20
Lx
B.M
kN/m2
(m)
kN-m
0.034
9.375
2.69
6.97
0.025
9.375
5.13
0.032
9.375
6.56
0.024
9.375
4.92
0.032
9.375
0.024
9.375
4.92
0.032
9.375
6.56
0.024
9.375
4.92
0.037
9.375
0.028
9.375
4.64
0.032
9.375
5.30
0.024
9.375
3.98
0.047
9.375
0.036
9.375
4.42
0.032
9.375
3.93
0.024
9.375
2.95
0.066
9.375
0.050
9.375
10.26
0.037
9.375
7.60
0.028
9.375
5.70
0.053
9.375
0040
9.375
8.30
0.037
9.375
7.70
0.028
9.375
5.84
0.043
9.375
0.032
9.375
7.50
0.032
9.375
7.50
0.024
9.375
5.63
αx&αy
LONG
S15
W
COEFFFICIENT
SHORT LONG
34
3.92
3.11
3.11
3.11
3.11
2.69
6.56
6.13
5.78
13.54
11.06
10.09
SLAB NO S21
B.M SPAN
SHORT
SHORT LONG
S23
SHORT LONG
S24
SHORT LONG
S25
SHORT LONG
S26
SHORT LONG
S27
Lx
B.M
kN/m2
(m)
kN-m
0.046
9.375
3.92
9.54
0.035
9.375
7.26
0.032
9.375
6.64
0.024
9.375
4.21
0.052
9.375
0.040
9.375
6.63
0.032
9.375
5.30
0.024
9.375
3.98
0.057
9.375
0.044
9.375
5.35
0.032
9.375
3.93
0.024
9.375
2.95
0.048
9.375
0.036
9.375
12.52
0.037
9.375
12.87
0.028
9.375
13.22
0.038
9.375
0.029
9.375
5.10
0.037
9.375
6.50
0.028
9.375
4.91
0.040
9.375
0.030
9.375
5.27
0.032
9.375
5.62
0.024
9.375
4.21
0.036
9.375
0.027
9.375
4.74
0.032
9.375
5.62
0.024
9.375
4.21
αx&αy
LONG
S22
W
COEFFFICIENT
SHORT LONG
35
3.5
2.69
2.52
5.21
3.61
3.31
8.62
7.01
16.70
6.68
7.02
6.32
SLAB NO S28
B.M SPAN
SHORT
SHORT LONG
S30
SHORT LONG
S31
SHORT LONG
S32
SHORT LONG
S33
SHORT LONG
S34
Lx
B.M
kN/m2
(m)
kN-m
0.033
9.375
3.2
5.47
0.025
9.375
4.06
0.032
9.375
5.30
0.024
9.375
3.98
0.043
9.375
0.032
9.375
3.93
0.032
9.375
3.93
0.024
9.375
2.95
0.071
9.375
0.055
9.375
9.60
0.037
9.375
6.46
0.028
9.375
4.90
0.038
9.375
0.029
9.375
5.82
0.037
9.375
7.42
0.028
9.375
5.62
0.038
9.375
0.029
9.375
6.64
0.032
9.375
6.64
0.024
9.375
4.98
0.043
9.375
0.032
9.375
6.64
0.032
9.375
6.64
0.024
9.375
4.98
0.048
9.375
0.038
9.375
6.21
0.032
9.375
5.30
0.024
9.375
3.98
αx&αy
LONG
S29
W
COEFFFICIENT
SHORT LONG
36
2.69
3.92
1.91
3.5
2.70
2.52
5.29
12.40
7.63
8.91
8.94
7.96
SLAB NO S35
B.M SPAN
SHORT
SHORT LONG
S37
SHORT LONG
S38
SHORT LONG
S39
SHORT LONG
S40
SHORT LONG
S41
Lx
B.M
kN/m2
(m)
kN-m
0.054
9.375
5.07
6.58
0.042
9.375
5.16
0.032
9.375
3.93
0.024
9.375
2.95
0.053
9.375
0.040
9.375
12.19
0.037
9.375
11.28
0.028
9.375
8.53
0.062
9.375
0.046
9.375
5.32
0.037
9.375
4.28
0.028
9.375
3.23
0.051
9.375
0.039
9.375
4.61
0.032
9.375
3.78
0.024
9.375
2.83
0.048
9.375
0.037
9.375
4.31
0.032
9.375
3.78
0.024
9.375
2.83
0.043
9.375
0.032
9.375
3.78
0.032
9.375
3.78
0.024
9.375
2.83
0.032
9.375
0.024
9.375
2.83
0.032
9.375
3.78
0.024
9.375
2.83
αx&αy
LONG
S36
W
COEFFFICIENT
SHORT LONG
37
3.65
3.34
3.29
2.69
3.91
1.91
16.16
7.17
6.03
5.67
5.08
3.78
SLAB NO S42
B.M SPAN
SHORT
SHORT LONG
S44
SHORT LONG
S45
SHORT LONG
S46
SHORT LONG
S47
SHORT LONG
S48
Lx
B.M
kN/m2
(m)
kN-m
0.084
9.375
3.5
9.71
0.064
9.375
7.40
0.037
9.375
4.27
0.028
9.375
3.23
0.051
9.375
0.038
9.375
7.62
0.037
9.375
7.72
0.028
9.375
5.82
0.038
9.375
0.029
9.375
6.68
0.032
9.375
7.50
0.024
9.375
5.63
0.043
9.375
0.032
9.375
6.64
0.032
9.375
6.64
0.024
9.375
4.98
0.048
9.375
0.037
9.375
6.13
0.032
9.375
5.30
0.026
9.375
3.98
0.054
9.375
0.042
9.375
5.16
0.032
9.375
3.93
0.024
9.375
2.95
0.053
9.375
0.040
9.375
11.97
0.037
9.375
11.01
0.028
9.375
8.38
αx&αy
LONG
S43
W
COEFFFICIENT
SHORT LONG
38
2.70
2.53
5.20
3.652
3.34
3.19
10.64
8.91
8.92
7.96
6.64
15.86
SLAB NO S49
B.M SPAN
SHORT
SHORT LONG
S51
SHORT LONG
S52
SHORT LONG
S53
SHORT LONG
S54
Lx
B.M
kN/m2
(m)
kN-m
0.049
9.375
2.69
6.10
0.035
9.375
4.15
0.047
9.375
5.48
0.035
9.375
4.15
0.049
9.375
0.035
9.375
4.15
0.047
9.375
5.48
0.035
9.375
4.15
0.055
9.375
0.041
9.375
4.74
0.037
9.375
4.27
0.028
9.375
3.23
0.052
9.375
0.040
9.375
4.62
0.037
9.375
4.27
0.028
9.375
3.23
0.049
9.375
0.037
9.375
4.27
0.037
9.375
4.27
0.028
9.375
3.23
0.052
9.375
0.040
9.375
4.62
0.037
9.375
4.27
0.028
9.375
3.23
αx&αy
LONG
S50
W
COEFFFICIENT
SHORT LONG
39
3.269
2.69
4
1.91
3.5
6.10
6.36
6.01
5.67
6.01
SLAB NO S55
B.M SPAN
SHORT
SHORT LONG
S57
SHORT LONG
S58
SHORT LONG
S59
SHORT LONG
S60
Lx
B.M
kN/m2
(m)
kN-m
0.043
9.375
3.42
5.67
0.032
9.375
4.27
0.032
9.375
4.27
0.024
9.375
3.23
0.053 0.040 0.037 0.028
9.375
0.062 0.046 0.037 0.028
9.375
0.051 0.039 0.032 0.024
9.375
0.048 0.037 0.032 0.024
9.375
0.043 0.032 0.032 0.024
9.375
αx&αy
LONG
S56
W
COEFFFICIENT
SHORT LONG
2.53
16.16 12.19 11.28 8.53
5.23
7.17 5.32 4.28 3.23
3.65
6.03 4.61 3.78 2.83
3.34
5.67 4.31 3.78 2.83
3.29
5.08 3.78 3.78 2.83
9.375 9.375 9.375
9.375 9.375 9.375
9.375 9.375 9.375
9.375 9.375 9.375
9.375 9.375 9.375
40
SLAB NO S61
B.M SPAN
COEFFFICIENT αx&αy
SHORT LONG
0.032 0.024 0.032 0.024
W
Lx
B.M
kN/m2
(m)
kN-m
9.375
2.69
3.78 2.83 3.78 2.83
9.375 9.375 9.375
41
REINFORCEMENT DETAILS OF ROOF SLABS SLAB NO S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
SHORT SPAN REINFORCEMENT
LONG SPAN REINFORCEMENT
AT SUPPORT
AT MIDSPAN
AT SUPPORT
AT MIDSPAN
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
42
SLAB NO S13
S14
S15
S16
S17
S18
S19
S20
S21
S22
S23
S24
S25
SHORT SPAN REINFORCEMENT
LONG SPAN REINFORCEMENT
AT SUPPORT
AT MIDSPAN
AT SUPPORT
AT MIDSPAN
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 250mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
43
SLAB NO S26
S27
S28
S29
S30
S31
S32
S33
S34
S35
S36
S37
S38
SHORT SPAN REINFORCEMENT
LONG SPAN REINFORCEMENT
AT SUPPORT
AT MIDSPAN
AT SUPPORT
AT MIDSPAN
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 250mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
44
SLAB NO S39
S40
S41
S42
S43
S44
S45
S46
S47
S48
S49
S50
S51
SHORT SPAN REINFORCEMENT
LONG SPAN REINFORCEMENT
AT SUPPORT
AT MIDSPAN
AT SUPPORT
AT MIDSPAN
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 250mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 250mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
45
SLAB NO S52
S53
S54
SHORT SPAN REINFORCEMENT AT SUPPORT
LONG SPAN REINFORCEMENT
AT MIDSPAN
AT SUPPORT
AT MIDSPAN
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
10 mm Ø
10 mm Ø
10 mm Ø
10 mm Ø
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
@ 300mm c/c
DESIGN RESULTS FOR ROOF SLAB Effective depth, d
= 130 mm
Overall depth, D
= 150 mm
46
CHAPTER 3.1
A) PRELIMINARY DESIGN OF BEAM Effective span ,
= 6000 mm
Breadth of beam
= 300mm
Depth of beam
=
to
= 500 to 400 Assume size of beam
= 300 x 600 mm
Effective depth
= 600 – 35 = 565 mm
LOAD CALCULATION Live load
= 6 x (4/2) x 1.5 = 18
Self weight of slab
= 6 x (4/2) x 0.15x25 = 45
Floor finish
= 6 x (4/2) x 1 = 12
Self weight of beam
= 6 x 0.3 x 0.6 x 25 = 27
Weight of parapet wall
= 6 x 0.3 x 4 x 25 = 180
Total load,
W
= 279
Factored load,
Wu
= 1.5 x 278 = 418.5
BENDING MOMENT 47
M
= = = 251.1
M
REINFORCEMENT: Mu(lim)
= 0.138 x fck x b x d^2 = 0.138 x 25 x 300 x 600 x600 =372.6 KN M
Mu < Mu(lim) Hence Design it as singly reinforced section.
48
CHAPTER 3.1
B) PRELIMINARY DESIGN OF BEAM Effective span ,
= 8.8m
Breadth of beam
= 300mm
Depth of beam
=
to
= 700 to 586 Assume size of beam
= 300 x 600 mm
Effective depth
= 600 – 35 = 565 mm
LOAD CALCULATION Live load
= 8.8x (0.6/2) x 1.5 = 3.96
Self weight of slab
= 8.8 x (0.6/2) x 0.15x25 = 9.73
Floor finish
= 8.8 x (0.6/2) x 1 = 2.59
Self weight of beam
= 8.8 x 0.3 x 0.6 x 25 = 38.92
Weight of parapet wall
= 8.8 x 0.3 x 4 x 25 = 264
Total load,
W
= 319.2
Factored load,
Wu
= 1.5 x 319.2 = 478.8
BENDING MOMENT 49
M
= = = 421.344
M
REINFORCEMENT: Mu(lim)
= 0.138 x fck x b x d^2 = 0.138 x 25 x 300 x 600 x600 =372.6 KN M
Mu > Mu(lim) Hence Design it as doubly reinforced section.
50
CHAPTER 4
ANALYSIS OF FRAME
51
CHAPTER 5
A ) DESIGN OF BEAM SINGLY REINFORCED BEAM Wall thickness
= 230 mm
Span
= 6000 mm
Imposed load on beam
= 2 kN/m
fck
= 25 N/mm2
fy
= 500 N/mm2
Assume Effective cover
= 50 mm
STEP 1: CROSS SECTIONAL DIMENSION: Span/Depth
= 10
6000/Depth
= 10
Depth
≈ 600 mm
d
= D – Effective cover
d
= 600– 50 = 550mm
STEP 2: EFFECTIVE SPAN : Clear span
= 6 – 0.23 = 5.77 mm
From Pg: 34, IS 456:2000 1) Clear span + d
= 5.77 + 0.25 = 6.02m
2) Center to center
=6m
Effective span
=6m 52
STEP 3 : LOAD CALCULATION : Dead load
= b * d * unit weight of concrete = 0.23 * 0.6 * 25 = 3.45 kN/m
Live load
= 2 kN/m
Total load
= 5.45 kN/m
Ultimate load
= 1.5 * 5.45
Wu
= 8.175kN /m
STEP 4 : ULTIMATE MOMENT AND SHEAR FORCE = Wu * l2/8
Moment Mu
= 8.175 * 62/8 = 36.78 kNm Shear force Vu
= Wu * l/2 = 8.175 * 6/2 = 24.525 kNm
STEP 5 : TENSION REINFORCEMENT Mulim
= 0.36 * fck * Xu max/d * (1-0.42 * Xu max/d) * bd2 = 0.36 * 25 * 0.46 * (1-(0.42 * 0.46)) * 230 * 5502 = 232.3 kNm
Mu < Mulim The section is under reinforced and safe. Mu
= 0.87 * fy * Ast * d * (1-(Ast * fy/b * d* fck))
36.78 * 106
= 0.87 * 500 * Ast * 550*(1-(Ast * 500/230*550*25))
Ast
= 257.65 mm2
53
Minimum reinforcement required : As/bd
= 0.85/fy
From Pg : 47 IS 456:2000
As
= 0.85 * b * d/fy = 0.85 * 230 * 550/500
Ast min
= 215.05 mm2
Ast min < Ast required Hence OK Provide 10 mm dia bars, As ɸ
= ∏/4 * 102 = 78.53 mm2
No of bars required
= Ast/Asɸ = 257.65/78.53 = 3.28 ≈ 4 bars
Spacing
= 78.53/257.65 = 304.79 ≈ 300 mm(minimum)
Provide 4 Nos of 10 mm dia bars @300 mm c/c spacing as reinforcement in tension zone Ast provided
= 4 * ∏/4 * 102 = 314.15 mm2
STEP 6 : DESIGN OF STIRRUPS : Ast min
= 215.05mm2
Use 8 mm dia bar, ast
= ∏/4 *82
54
= 50.26 mm2 Spacing
= ast/Ast *1000 = 50.26/215.05*1000 = 233mm ≈ 300 mm
Use 8 mm dia bar@300 mm c/c spacing. STEP 7 : CHECK FOR SHEAR : ϮV
= Vu/bd = 24.525 * 103/230 * 550 = 0.193 N/mm2
Pt
= 100 * Ast/bd = 100 * 314.15/230 * 550 = 0.24
From Pg:73 IS 456:2000 Ϯc
= 0.37 N/mm2
Since Ϯc > Ϯv Hence safe and not need of shear reinforcement. STEP 8 : CHECK FOR DEFLECTION : (L/d) max
= (L/d)basic * Kt * Kc * Kf
fs
= 0.58 * fy * Astrequired/Ast provided = 0.58 * 233* (257.65/314.15) = 110.8
Pt
= 0.24
fs
= 110.8 N/mm2
Kt
= 1.8 55
Kc
=1
Kf
=1
(L/d)max
= 20 * 1.8 * 1 * 1 = 36
(L/d)provided
= 6000/250 = 24
(L/d)max > (L/d)provided Hence the member is safe against deflection.
56
CHAPTER 5
B) DESIGN OF BEAM DOUBLY REINFORCED BEAM
Wall thickness
= 230 mm
Span
= 8800 mm
Imposed load on beam
= 2 kN/m
fck
= 25 N/mm2
fy
= 500 N/mm2
Assume Effective cover
= 50 mm
STEP 1: CROSS SECTIONAL DIMENSION: Span/Depth
= 15
8800/Depth
= 15
Depth
≈ 600 mm
d
= D – Effective cover
d
= 600– 50 = 550mm
STEP 2: EFFECTIVE SPAN : Clear span
= 8.8 – 0.23 = 8.57 mm
From Pg: 34, IS 456:2000 1) Clear span + d
= 8.57 + 0.25 = 8.82m
2) Center to center
= 8.8 m 57
Effective span
= 8.8 m
STEP 3 : LOAD CALCULATION : Dead load
= b * d * unit weight of concrete = 0.23 * 0.6 * 25 = 3.45 kN/m
Live load
= 2 kN/m
Total load
= 5.45 kN/m
Ultimate load
= 1.5 * 5.45
Wu
= 8.175kN /m
STEP 4 : ULTIMATE MOMENT AND SHEAR FORCE = Wu * l2/8
Moment Mu
= 8.175 * 62/8 = 36.78 kNm Shear force Vu
= Wu * l/2 = 8.175 * 6/2 = 24.525 kNm
STEP 5:REINFORCEMENT = (0.0035x (Xu(max)-d1)/Xu(max))x Es
Fsc Pgno.70 IS 456 Xu(max)/d =0.46
=(0.0035 x (276-50)/276) x 2x 10^5 =573.18N/mm2 Asc
=(Mu-Mu(lim))/(Fsc(d-d1) =((399.6x 10^6)-(372 x 10^6)/(573x(600-50)
58
= 85.67 mm^2 Assuming 10mm dia bars = 85.67/(0.78x 102)
No of rods
= 1.09 ≈ 2 nos Provide 2 nos 10 mm dia bars at 90mm c/c top compression fa
STEP 6 : TENSION REINFORCEMENT Mulim
= 0.36 * fck * Xu max/d * (1-0.42 * Xu max/d) * bd2 = 0.36 * 25 * 0.46 * (1-(0.42 * 0.46)) * 230 * 5502 = 232.3 kNm
Mu < Mulim The section is under reinforced and safe. Mu
= 0.87 * fy * Ast * d * (1-(Ast * fy/b * d* fck))
36.78 * 106
= 0.87 * 500 * Ast * 550*(1-(Ast * 500/230*550*25))
Ast
= 257.65 mm2
Minimum reinforcement required : As/bd
= 0.85/fy
From Pg : 47 IS 456:2000
As
= 0.85 * b * d/fy = 0.85 * 230 * 550/500
Ast min
= 215.05 mm2
Ast min < Ast required Hence OK Provide 10 mm dia bars, As ɸ
= ∏/4 * 102 = 78.53 mm2
59
No of bars required
= Ast/Asɸ = 257.65/78.53 = 3.28 ≈ 4 bars
Spacing
= 78.53/257.65 = 304.79 ≈ 300 mm(minimum)
Provide 4 Nos of 10 mm dia bars @300 mm c/c spacing as reinforcement in tension zone Ast provided
= 4 * ∏/4 * 102 = 314.15 mm2
STEP 7 : DESIGN OF STIRRUPS : Ast min
= 215.05mm2
Use 8 mm dia bar, ast
= ∏/4 *82 = 50.26 mm2
Spacing
= ast/Ast *1000 = 50.26/215.05*1000 = 233mm ≈ 300 mm
Use 8 mm dia bar@300 mm c/c spacing. STEP 8 : CHECK FOR SHEAR : ϮV
= Vu/bd = 24.525 * 103/230 * 550 = 0.193 N/mm2 60
Pt
= 100 * Ast/bd = 100 * 314.15/230 * 550 = 0.24
From Pg:73 IS 456:2000 Ϯc
= 0.37 N/mm2
Since Ϯc > Ϯv Hence safe and not need of shear reinforcement. STEP 9 : CHECK FOR DEFLECTION : (L/d) max
= (L/d)basic * Kt * Kc * Kf
fs
= 0.58 * fy * Astrequired/Ast provided = 0.58 * 233* (257.65/314.15) = 110.8
Pt
= 0.24
fs
= 110.8 N/mm2
Kt
= 1.8
Kc
=1
Kf
=1
(L/d)max
= 20 * 1.8 * 1 * 1 = 36
(L/d)provided
= 6000/250 = 24
(L/d)max > (L/d)provided Hence the member is safe against deflection.
61
CHAPTER 6
DESIGN OF COLUMN 6.1 DESIGN OF CORNER COLUMN Breadth
= 460mm
Depth(D)
= 610mm
Effective depth(d)
= 610-50
d
= 560mm
fck
= 25 N/mm2
fy
= 500 N/mm2
Pux
= 115.96 kN
Mux
= 66.34 kNm
Muy
= 47.36 kNm
STEP 1: Assume 2.2% of reinforcement distributed equally on 4 sides. STEP 2: From chart 63 of SP 16 for p=2.2% Pu/Ag
= 20
Puz
= 20 *610* 460
Puz
= 5612 kNm
Pu/Puz
= 115.96/5612 = 0.025
Determination of Mux1 and Muy1 P/fck
= 2.2/25 = 0.088
62
Pu/fckbd
= 115.96* 103/25 * 460 * 610 = 0.016
For X – X axis d’/D
= 50/610 = 0.08
Refer chart 48 Mux1/fckbD2
= 0.04
Mux1
= 0.04 *25 * 460 * 6102
Mux1
= 171.16kNm
b=610mm
D=460mm
For Y – Y axis
From chart 4(4 sides) Muy1/fckbD2
= 0.04
Muy1
= 0.04 *25 *610 * 4602
Muy1
= 129.07kNm
Mux/Mux1
= 66.34/171.16 = 0.38
Muy/Muy1
= 47.36/129.09 = 0.36
From chart 64 (Mux/Mux1)permissible
= 0.7
(Mux/Mux1)permissible
> Mux/Mux1
Hence design is safe p
= 100Asc/bD
63
Asc
= 2.2 * 460 * 610/100
Asc
=6173.2 mm2
Provide 32 mm dia bars = ∏ * 322/4
Ast
= 804.2mm2 No of bars
= 6173.2/804.2 =7.6 = 8 nos
Provide 8 nos of 32 mm dia bars @ 300 mm c/c DESIGN OF LATERAL TIES 1. Diameter (1)
16 mm
(2)
1/4 * Ø
= 1/4 * 32 = 8mm
Provide 16mm dia lateral ties 2. Pitch (1)
500 mm
(2)
16 * 32
(3)
300 mm
= 512mm
Provide 16 mm dia @ 300 mm c/c spacing
64
6.2 DESIGN OF MIDDLE COLUMN Breadth
= 300mm
Depth(D)
= 460mm
Effective depth(d)
= 460-50
d
= 410mm
fck
= 25 N/mm2
fy
= 500 N/mm2
Pux
= 178.54kN
Mux
= 35.66 kNm
Muy
=28.88 kNm
STEP 1: Assume 2.2% of reinforcement distributed equally on 4 sides. STEP 2: From chart 63 of SP 16 for p=2.2% Pu/Ag
= 20
Puz
= 20 *300 * 460
Puz
= 2760 kNm
Pu/Puz
= 178.54/2760 = 0.064
Determination of Mux1 and Muy1 P/fck
= 2.2/25 = 0.088
Pu/fckbd
= 178.54* 103/25 * 300 * 460 = 0.05
65
For X – X axis d’/D
= 50/460 = 0.10
Refer chart 48 Mux1/fckbD2
= 0.1
Mux1
= 0.1 *25 * 300 * 4602
Mux1
= 158.7kNm
b=460mm
D=300mm
For Y – Y axis
From chart 48(4 sides) Muy1/fckbD2
= 0.09
Muy1
= 0.09 *25 *460 * 3002
Muy1
= 93.15 kNm
Mux/Mux1
= 35.66/158.7 = 0.22
Muy/Muy1
= 28.88/93.15 = 0.3
From chart 64 (Mux/Mux1)permissible
= 0.9
(Mux/Mux1)permissible > Mux/Mux1 Hence design is safe P
= 100Asc/bD
Asc
= 2.2 * 300 * 460/100
Asc
= 3036 mm2
66
Provide 22 mm dia bars = ∏ * 222/4
Ast
= 380.13 mm2 No of bars
= 3036/380.13 = 8nos
Provide 8 nos of 22 mm dia bars @ 130 mm c/c DESIGN OF LATERAL TIES 1. Diameter (1)
16 mm
(2)
1/4 * Ø
= 1/4 * 22 = 5.5 mm
Provide 16 mm dia lateral ties 2. Pitch (1)
500 mm
(2)
16 * 22
(3)
300 mm
= 352 mm
Provide 16 mm dia @ 300 mm c/c spacing
67
6.3 DESIGN OF SIDE COLUMN Breadth
= 460mm
Depth(D)
= 610mm
Effective depth(d)
= 610-50
d
= 560mm
fck
= 25 N/mm2
fy
= 500 N/mm2
Pux
= 456.06 kN
Mux
= 473.23 kNm
Muy
= 27.193 kNm
STEP 1:NON DIMENSIONAL PARAMETRS P/fck
= 1.2/25 = 0.05
Pu/fckbd
= 456.06 * 103/25 * 460 * 610 = 0.06
d’/D
= 50/610 = 0.08 ≈ 0.1
Refer chart 48 Mux/fckbD2
= 0.095
Mux
= 0.095 *25 * 460 * 6102
Mux
= 406.51 kNm
From chart 36 68
(P/Fck)
= 0.2
P
= 0.20 x 25 =5
P
= 100Asc/bD
Asc
= 5* 460 * 610/100
Asc
= 5400 mm2
Provide 25 mm dia bars = ∏ * 252/4
Ast
= 490.87 mm2 No of bars
= 5400/490 = 12 nos
Provide 12 nos of 25 mm dia bars @ 100 mm c/c DESIGN OF LATERAL TIES 1. Diameter (1)
16 mm
(2)
1/4 * Ø
= 1/4 * 25 = 6.25 mm
Provide 16 mm dia lateral ties 2. Pitch (1)
500 mm
(2)
16 * 25
(3)
300 mm
= 400 mm
Provide 16m dia @ 300 mm c/c spacing
69
CHAPTER 7 DESIGN OF FOUNDATION Isolated footing for side column Factored axial load
= 1920.65 kN
Dead load of footing slab
= 10% of 1920.65 = 192.1kN
Total load = 2112.75 kN Safe bearing capacity of the Footing = 150 kN/ Area required = 2112.75/150 = 14.09 The size of footing is 3.1 m x 3.1 m Hence the provided area
= 9.61
Bending moment Net earth pressure acting upward Due to axial load
= 2112.75 / 9.61 = 220 kN/
B.M about an axis xx passing through = 220 x 3.1 x (
The face of the column
)
x1/2
= 668.36 kN - m D
= (668.36 x
)
/
= 440 mm B.M about an axis yy passing through The face of the column
= 220 x 3.1 x ( = 702.2 kN- m
70
)
x1/2
/ 0.138 x 25 x 1000) (1/2)
D
= (702.2 x
D
= 451.14 mm
Adopt 450 mm effective depth and 500 mm overall depth. Reinforcement details 668.36 x
= 0.87 x 500 x
x 450[1- {(500x
)/(25x1000x450)}]
= 4197.38 Providing no of bars @ 25 mm ф = ((πd2/4) / 4197.38) x 1000
Spacing, S
= 110 mm Provided = 4462.48 P
= 100
/bd
= (100 x 4197.38 ) / (1000x450) = 0.93 Provide 25 mm dia @ 110mm c/c along both the spans. CHECK FOR SHEAR Shear one way action: l
= 220 x 3.1 x [(3.1-0.30)/2)-0.45] = 647.9 kN = Vu / bd = 648 x = 0.47 N/
Shear strength of M25 concrete with 2.3% steel = 0.65 N/ <
Hence ok. 71
(
)
Shear two-way action: (
Vu
=
[
Vu
= 220 x [
) ] (
)]
= 1995 kN = Vu/bd = {(1995 x
) / (3100x450)}
= 1.12N/ M20 grade
= ks*
Ks
= (0.5+βc)
βc
= Length of shorter side / Length of longer side = 230/300 = 0.77
Ks
= (0.50+0.77) = 1.27>1
Ks
=1 = = 0.25 = 0.25 25 = 1.25 N/
<
Hence safe
Development of reinforcement: For deformation bars, value shall be increase 60%
72
> 1.12 N/
Development length for 25 mm bars Ld
=ф /4 = 25x0.87x500/4x1.2x1.6 = 1416 mm
50ф
= 50x22 = 1250mm
Actual embedment provided from the face of the column is Length available
= [(3100-450)/2]-50 mm = 1275mm < Ld
Provide 1416 mm development length
73
CHAPTER 8
DESIGN OF STAIRCASE DESIGN OF STAIRCASE: Tread
= 260 mm
Rise
= 150 mm
fck
= 20 N /mm2
fy
= 500 N /mm2
EFFECTIVE SPAN: Leff
= (9 x 260) + 2(260/2) = 2600 mm
Thickness of waist slab
= Span / 20 = 130 mm
Adopt overall depth, D
= 130 mm
Assume cover
= 20 mm
Effective depth, d
= 110 mm
LOAD CALCULATIONS: Dead load of slab on slope, Ws
= .12 x 1 x 25 = 3 kN /m
Dead load of slab on = (Ws (R2+T2) ½) / T
Horizontal span, W
= 3.46 kN /m Dead load of one slab
= (0.5 x 0.15 x 0.26 x 25 ) = 0.49 kN /m
74
Loads of steps per m length
= (0.49 x 1000) / 260 = 1.88 kN /m
Assume finishes etc
= 0.5 kN /m
Total dead load
= (3.46 + 1.88 + 0.5) = 5.84 kN /m
Assume service live load
= 5 kN /m
Total service load, W
= 10.84 kN /m
Ultimate service load, Wu
= 16.26 kN /m
BENDING MOMENT CALCULATIONS: = 0.125 Wu L2
Maximum moment at centre
= 14.17 kN- m CHECK FOR DEPTH OF WAIST SLAB: = (Mu / 0.138 fck b) 1/2
Depth, d
= 72 mm < 110 mm Adopting effective depth of waist slab as 110 mm and overall depth as 130 mm AREA OF STEEL FOR MAIN REINFORCEMENT: MU
= 0.87fyAstd (1–(fy Ast)/ (bdfck))
14.17 x 106
= 47850 Ast – 10.88 Ast2
Ast
= 320 mm2
Using 12 mm Ø bar = ((πd2/4) / 320) x 1000
Spacing, S
= 353 mm
75
Maximum Spacing, S
= 300 mm
Provide 12 mm Ø bar @ 300 mm C/C Spacing = 380 mm2
Ast (provide) DISTRIBUTION REINFORCEMENT: Minimum Reinforcement
= 0.12% b D = 160 mm2
Ast Using 8 mm Ø bar Spacing, S
= ((πd2/4) / 160) x 1000 = 315 mm
Maximum Spacing, S
= 300 mm
Provide 8 mm Ø bar @ 300 mm C/C Spacing DESIGN USING SP:16 DESIGN CHARTS:
Refer table 2 of SP:16
Mu / b d2
= 1.17
Ast
= (pt b d / 100) = (0.292 x 1000 x 110) / 100 =320 mm2
The reinforcement quantity is the same as obtain by analytical method
76
CHAPTER 9 DESIGN OF LINTEL AND SUNSHADE 9.1 DESIGN OF LINTEL STEP1: LOAD CALCULATION Assume size of the lintel as 230x230 mm Span + effective depth
= 5.25+0.2
Length L
= 5.45 m
Load from brick wall
= (0.23x0.63x20) = 2.89kN/m
Self weight of sunshade
= (0.6x0.007x25) = 1.05kN/m
Live load on sunshade
= 0.6x0.75 = 0.45kN/m
Total load Wu
= 4.39kN/m
Bending moment
= (WL2/10) = (4.39x5.452/10) = 13.03 kN- m
Factored moment
= 1.5x13.03 = 19.55 kN- m
Mu
= 0.138 fck b d2
19.55x106
= 0.138x25x230x d2
D
=156.94mm
Effective depth
= 200mm
Overall depth
= 230 mm Mu
200mm
= 0.138 fck b d2 = 0.138x25x230x2002 = 31.74 kN- m
Mulim > Mu hence the section is under reinforced
77
STEP2: CALCULATION OF REINFORCEMENT From IS456 – 2000 Annex G Mux
= 0.87x fy x Ast x d x[
19.55x106
= 0.87x415xAst x 2000 x [
Ast
= 305 mm2
Provide 12 mm bar Spacing
=
x1000
= 370mm Maximum spacing
= 300mm
Provide 12 mm dia bar @ 300 mm c-c spacing.
78
] ]
9.2 DESIGN OF SUNSHADE STEP1: DATA Length of overhang
= 0.6 m
Thickness of sunshade
= 70 mm
STEP2: LOAD CALCULATION Self weight of sunshade
= 0.7x1x25 = 1.75 kN/m
Live load Total load
= 0.75 kN/m W
= 2.5 kN/m
Concentrated load at free end = 1kN STEP3: EFFECTIVE SPAN Effective span Le
= 0.6+(0.23/2) = 0.715 m
STEP4: CALCULATION OF BENDING MOMENT Mmax
= (W1+12/2) + (W2x1) =(2.5x0.7152/2)+(0.715) = 1.35kNm
Factored moment
= 1.35x1.5= 2.03kNm
STEP5: CHECK FOR DEPTH Mu
= 0.138 fck b d2
2.03x106
= 0.138x25x1000x d2
d
=27mm<70 mm hence safe
STEP6: CALCULATION OF REINFORCEMENT Mux
= 0.87x fy x Ast x d x[
79
]
2.03x106
= 0.87x415xAst x 50 x [
Ast
= 118.25 mm2
Check for minimum reinforcement Astmin
= 0.12% BD = (0.12%100)x1000x70 = 84 mm2 < 118.25 mm2
Hence safe Provide 10 mm bar Spacing
=
π
x1000
= 70mm Maximum spacing
= 70x3=210mm
Provide 10 mm dia bar @ 210 mm c-c spacing.
80
]
CHAPTER 10
10.1 DESIGN OF UNDER GROUND WATER TANK GIVEN Size of water tank
(L x B x H)
= 9m x 4m x 4m
Angle of repose @ wet soil
= 300
Angle of repose @ dry soil
= 60
Unit weight of soil
= 20 ⁄
Grade of concrete
= 25 ⁄
Grade of steel
= 500 ⁄
PERMISSIBLE AND DESIGN VALUES Tension due to bending,
= 1.7 ⁄
Compression due to bending,
=7 ⁄
Steel reinforcement for strength,
= 115 ⁄
Design constant, m
=
(
)
= 13.33 n
=
(
(
))
= 0.447 j
=
–(
)
= 0.851 Q
=
(
= 1.33 DESIGN OF LONG WALLS Ratio of long walls (L / H)
= 2.25 > 2
Ratio of short walls (B / H)
=1<2
81
)
Long walls are designed as vertical cantilevers and Short walls are designed as continuous slab LONG WALL DESIGN By considering 1m run of wall(Tension near water face) Maximum BM @ top
= = 30.97
Maximum BM @ top
= = 69.17
DESIGN FOR THICKNESS OF WALL Maximum BM
=
Overall thickness, D
= 330
Assume cover, d’
= 40
Effective depth, d
= 290
REQUIRED FOR LONG WALL FOR INNER FACE = = 1092.5 Provide 10
bars
Spacing
= S
Hence provide 10
bars @ 180
82
x 1000
= 180
c/c spacing along vertical direction
REQUIRED FOR LONG WALL FOR OUTER FACE = = 2440.07 Provide 10
bars
Spacing
= S
Hence provide 10
x 1000
= 100
bars @ 100
c/c spacing along vertical
direction HORIZONTAL REINFORCEMENT FOR LONG WALLS =(
Area of distribution bars
)
= 990 Provide 10
bars
Spacing
= S
Hence provide 10
bars @ 100
x 1000
= 100
c/c spacing along horizontal direction
on both sides DESIGN OF SHORT WALL Maximum BM
=
Effective span
=[
= 86.46
]
= 4.33 m =√
Effective depth, d
= 255 Provide depth
= 290 83
< 290
REQUIRED FOR LONG WALL FOR OUTER FACE = = 3050 Provide 10
bars
Spacing
= S
Hence provide 10
x 1000
= 100
bars @ 100
c/c spacing along vertical
direction HORIZONTAL REINFORCEMENT FOR LONG WALLS =(
Area of distribution bars
)
= 990 Provide 10
bars
Spacing
= S
Hence provide 10
bars @ 100
x 1000
= 100
c/c spacing along horizontal direction
on both sides. DESIGN OF ROOF SLAB Let us assume overall thickness of slab t
= 150
Assume cover
= 25
Effective depth provided
= 125
LOAD CALCULATION Self weight of slab
= 1 x 0.15 x 1 x 25 = 3.75 84
⁄
Live load
= 2.5
⁄
Floor finish
= 0.5
⁄
Total load, W
= 6.75
⁄
⁄ ⁄
=
= 2.15 > 2 Hence one way slab MOMENT CALCULATION BM
= M
= 15.81
Effective depth, d
=√
Provide depth
= 125
= 109 < 125
REQUIRED FOR LONG WALL FOR OUTER FACE = = 1293.91 Hence provide 10
bars @ 155
c/c spacing along vertical direction
HORIZONTAL REINFORCEMENT FOR LONG WALLS =(
Area of distribution bars
)
= 450 Provide 10
bars
Spacing
= S
Hence provide 10
bars @ 110
on both side. 85
x 1000
= 110
c/c spacing along horizontal direction
CHAPTER 10.2
DESIGN OF ELEVATED WATER TANK GIVEN DATA Capacity
= 80000 liters
Height, H
=4m
Grade of concrete
= 25
Grade of steel
= 500
⁄
PERMISSIBLE AND DESIGN VALUES Tension due to bending,
= 1.2 ⁄
Compression due to bending,
=7 ⁄
Steel reinforcement for strength,
= 100 ⁄
Design constant, m
(
=
)
= 13.33 n
=
(
(
))
= 0.482 J
=
–(
)
= 0.839 Q
=
(
)
= 1.41 DIMENSIONS OF TANK Volume,
V
= Area x Height =
x4
Diameter of the tank, D
= 8.94 m
Overall length,
= 4 + 0.2 = 4.2 m
H 86
Assume thickness of wall and base slab t
= 160 mm
RING TENSION, BM & SHEAR IS 3370-D-IV in Table - 9 (
=
)
= 13 For tension
= = T
= 148.38 = 0.0122 x 13 x 4.23
For Bending Moment M
= 9.03
AREA OF STEEL FOR TENSION = = = 1484 Use 20
bars
Spacing, Hence provide 20
S
= 200
bars @ 200 mm c/c spacing Provided
= 1570
CHECK FOR THICKNESS =
(
)
1.2
=
t
= 105 mm < 160 mm
87
(
)
Hence safe AREA OF STEEL FOR BENDING MOMENT = = = 837.5 Use 12
bars
Spacing,
S
Hence provide 12
= 130 bars @ 130 mm c/c spacing
VERTICAL REINFORCEMENT Minimum vertical reinforcement @ top Minimum
= = 480
Use 12
bars
Spacing,
Hence provide 12
S
=
x 1000
S
= 230
bars @ 230 mm c/c spacing
88
CHAPTER 11
SEPTIC TANK DESIGN SYMBOLS USED A= volume of liquid to be stored in septic tank P= Number of people using the tank Q= sewage flow =90% of the daily water consumption F= sizing factor S= sludge and scum accumulation rate N= period between Step 1: TO FIND VOLUME OF TANK Volume of liquid entering the tank each day A q Assume p A
= Pxq = 0.9x Q = 0.9x200= 180 l/p/d = 1000 = 1000x180 = 180000 liters
Step 2: Volume of sludge and scam is given by, B
= P x N x Fxs
F
= 1.0 as all wastes go to tank
S
= 40 liters/person/day
B
= 1000x2x1x40 = 80000 liters
Assume N = 2 years
Step 3: Total tank volume
= A+B = 180000+80000
89
= 260000 liters = Total volume /1000 = 260m3 Step 4: Assume liquid depth
= 5m
Assume tank width
= Wm
Assume two compartments Length of first
= 2W
Length of second
=W
Volume of tank (V)
= 5 x (2W+W) x W = 15 W2
Thus
15W2
= 260 m3 W
Width of tank
= 4.16 = 4.16 m
Length of first compartment = 8.32 m Length of second compartment = 4.16 m Design of tank from floor to soffit of cover slab = Liquid depth + free board = 5.3 m Total volume of tank
= (8.32x4.16x5)+(4.16x4.16x5) = 259.584 m3
Mass of water displaced
= Volume x density of water = 259584 kg = 26.46 kN
90
CHAPTER 12
CONCLUSION Structural elements are designed in limit state method comparing manual design with STAAD.Pro, all the parameters of the elements are similar to that of the requirement. Thus in our design project, we learnt how to plan, analyze and design a hospital building. We came to know about the importance of civil engineering through our project as without civil engineering, the world cannot progress.
91
CHAPTER 12
REFERENCES 1. Indian Standard 10905:1984 (Part I) “Code of Practice for Room dimensions”. 2. Indian Standard 875:1987 (Part II) “Code of Practice for design loads in buildings and structures for Live Load Calculation”. 3. Indian Standard 456:2000 “Code of Practice for Plain and Reinforced Concrete (fourth revision)”, Bureau of Indian Standards, New Delhi. 4. Krishna Raju, N. “Design of Reinforced Concrete Structures”, CBS Publishers & Distributors, New Delhi, 2003. 5. Punmia, B.C. Ashok Kumar Jain and Arun Kumar Jain, “Reinforced Concrete Structures” Lakshmi Publications Pvt. Ltd, 10th Edition. 6. Sinha, N.C. and Roy S.K. “Fundamentals of Reinforced Concrete”, Chand, S. & Co, Ltd., New Delhi, 2011. 7. Indian Standard 3370:2009 (Part I) “Code of practice for concrete structures for the storage of liquids: Part I General requirements”, Bureau of Indian Standards, New Delhi. 8. Indian Standard 3370:2009 (Part II) “Code of practice for concrete structures for the storage of liquids: Part II Reinforced Concrete Structures”, Bureau of Indian Standards, New Delhi. 9. Indian Standard 3370:2009 (Part III) “Code of practice for concrete structures for the storage of liquids: Part III Reinforced Concrete Structures”, Bureau of Indian Standards, New Delhi. 10. Punmia, B.C. and Ashok Kumar Jain, “Soil Mechanics and Foundations” Firewall Media Publishers, 2005.
92