Final Book Nilshi.pdf

  • Uploaded by: Nilsimha
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Final Book Nilshi.pdf as PDF for free.

More details

  • Words: 12,067
  • Pages: 92
CHAPTER 1

INTRODUCTION A Building is an essential and important structure for people to live in, that too, an hospital building is very important to satisfy the medical needs of the people. Thus, before constructing an hospital building, we should consider the following. It should be safe, economical, easily accessible etc. To satisfy all these needs, we must design a hospital building which should satisfy certain civil engineering codes and analyze the results obtained from the design using civil engineering software. Buildings said to be safe if it can transmit all its load from super structure to sub structure without any failure. Thus for this, all the components of the building such as beams, columns, slab, footing should be efficiently and properly designed. In addition to these engineering designs, experience and good judgment is also essential for safety and economy of the structure. It should also resist wind loads and earthquake loads. After designing the components of the building, it should be analyzed using the software STAAD pro V8i for ensuring whether the loads can be carried by the structure. After the analysis, we come to know whether it is safe or unsafe to construct the building in the proposed area. If it is safe, then the hospital building can be constructed. LIST OF CODES NEEDED: 1. I S : 456– 2000 2. I S : 800 – 1980 3. Design Aids SP-16 4. I S : 875 – 1987 (Part II) 5. I S 3370:2009 (Part I) 6. I S 3370:2009 (Part II) 7. I S 3370:2009 (Part III) 8. I S : 10905 : 1984

1

CHAPTER 2

DESIGN OF SLABS TABLE 1: GROUPING OF SLABS TYPE

CONDITIONS

SIZE (m)

S1

Two adjacent edges discontinuous

3.92 x 6

S2

One short edges discontinuous

4.68 x 6

S3

One short edges discontinuous

3.42 x 6

S4

One short edges discontinuous

3.80 x 6

S5

One short edges discontinuous

3.65 x 6

S6

One short edges discontinuous

6 x 3.3

S7

One short edges discontinuous

6 x 2.69

S8

One short edges discontinuous

6.11 x 3.92

S9

One short edges discontinuous

6.11 x 4.68

S10

One short edges discontinuous

3.42x 6.11

S11

Two adjacent edges discontinuous

3.8x 6.11

S12

Two adjacent edges discontinuous

3.65 x 6.11

S13

Interior panels

3.3 x 6.11

S14

Interior panels

2.69x 6.11

S15

Interior panels

3.92 x 3.11

S16

Interior panels

8.11x 3.11

S17

Interior panels

7.7 x 3.11

S18

Interior panels

3.65 x 3.11

S19

Interior panels

3.30 x 3.11

S20

Interior panels

3.11x2.69

2

TYPE

CONDITIONS

SIZE (m)

S21

Interior panels

3.920 x 5.23

S22

Two adjacent edges discontinuous

3.5 x 5.23

S23

One short edges discontinuous

2.69x5.23

S24

Interior panels

2.53x5.23

S25

Interior panels

5.20 x 5.21

S26

Interior panels

5.23 x 3.6

S27

Interior panels

5.230 x 3.33

S28

Interior panels

3.32 x 3.2

S29

Interior panels

3.32 x 2.69

S30

One short edges discontinuous

5.07 x 3.92

S31

One long edges discontinuous

1.91 x 5.07

S32

One long edges discontinuous

3.53 x 5.07

S33

One long edges discontinuous

2.69x5.07

S34

Interior panels

2.53x 5.07

S35

Interior panels

5.20 x 5.07

S36

Interior panels

3.65 x 5.07

S37

Interior panels

5.07 x 3.34

S38

Interior panels

3.77 x 3.29

S39

Interior panels

3.770 x 2.69

S40

One long edges discontinuous

7x 3.92

S41

One long edges discontinuous

7 x 1.91

S42

One long edges discontinuous

7x 3.5

S43

Interior panels

7 x 2.69

3

TYPE

CONDITIONS

SIZE (m)

S44

Interior panels

2.53 x 7

S45

Interior panels

5.20 x 7

S46

Interior panels

3.65 x 7

S47

Interior panels

7 x 3.344

S48

Interior panels

3.2x 3.29

S49

One long edges discontinuous

3.2 x 2.69

S50

One long edges discontinuous

3.91 x 3.29

S51

One long edges discontinuous

3.91 x 2.69

S52

One long edges discontinuous

5.23 x 4

S53

One long edges discontinuous

1.91 x 5.23

S54

One long edges discontinuous

3.5 x 5.2

S55

One short edges discontinuous

5.2x3.42

S56

One short edges discontinuous

5.23x2.53

S57

One short edges discontinuous

5.23x5.28

S58

One short edges discontinuous

5.23x3.65

S59

One short edges discontinuous

5.23x3.34

S60

One short edges discontinuous

4.11x3.29

S61

One long edges discontinuous

4.11x2.69

4

CHAPTER 2.2

DESIGN OF FLOOR SLAB SLAB S1: TYPE OF SLAB ⁄

= 6.00/4

= 1.54 < 2 Hence the slab is designed as a two way slab CROSS SECTIONAL DIMENSIONS: Span/depth

= 40

Overall depth, D

= 150 mm

Assume 15 mm cover and 10 mm Ø Effective depth, d

= 150 - 15 - (10/2) = 130 mm

EFFECTIVE SPAN: Shorter span (lx) i) c/c distance

= 4.0 + (.23/2) + (.23/2) =4.23 m

ii) c/c distance + depth

= 4.0 + .13 4.13 m =4.13 m

Longer span (ly) i) c/c distance

= 6.0 + (.23/2) + (.23/2) =6.23 m

5

ii) c/c distance + depth

= 6.0+ .13 =6.13 m = 6.13 m

LOAD CALCULATION: Self weight (D.L)

= 1 x 1 x .15 x 25 D.L



= 3.75

Live load

=2



Floor finish

=1



Total load,



W

= 6.75

Wu

= 1.5 x 6.75 = 10.125



BENDING MOMENT CALCULATION: Short span co efficient αx

= 0.075

αx

= 0.056

M (-ve)

= α x. Wu.

2

= 0.075 x 10.125 x 4.132 = 12.95 M (+ve)

= α x .Wu.

2

= 0.056 x 10.125 x 4.132 = 9.67 Long span co efficient αy

= 0.047

αy

= 0.035 6

M (-ve)

= α y .Wu.

2

= 0.047 x 10.125 x6.132 = 17.88 M (+ve)

= α y .Wu.

2

= 0.035 x 10.125 x 6.132 = 13.33 CHECK FOR EFFECTIVE DEPTH: M

= 0.134 fck bd2

17.88x10^6

= 0.134 x 25 x 1000 x d2 = 73.05 mm < 130 mm

REINFORCEMENT DETAILS: Short Span Positive Reinforcement (

)

( –(

) (

9.67 x 106

= 56550 Ast – 10.88 Ast2

Ast

= 175

Minimum Reinforcement

= 0.12% bD

Ast

= 180

> 130

S

= ((πd2/4) / 180) x 1000

Using 10 mm Ø bar Spacing,

= 436 mm Maximum Spacing,

S

= 300

Provide 10 mm Ø bar @ 300 mm C/C Spacing Ast (provide)

= 270

7

))

Short Span Negative Reinforcement (–

)

( –(

12.95x 106

= 56550 Ast – 10.88 Ast2

Ast

= 237

Minimum Reinforcement

Using 10

) (

= 0.12% bD > 130 mm2

Ast

= 180

S

= ((πd2/4) / 180) x 1000

Ø bar

Spacing,

= 436 Maximum Spacing, Provide 10

S

Ø bar @ 300

= 300 C/C Spacing

Ast (provide)

= 331

Long Span Positive Reinforcement (

)

( –(

) ( Ast

Minimum Reinforcement

= 244 = 0.12% bD

Ast Using 10

= 180

> 130

Ø bar

Spacing,

S

= ((πd2/4) / 180) x 1000 = 436

Maximum Spacing, Provide 10

))

Ø bar @ 300

Ast (provide)

S

= 300 C/C Spacing = 270

8

))

Long Span Negative Reinforcement (–

)

( –(

) (

))

17.88 x 106

= 56550 Ast – 10.88 Ast2

Ast

= 333

Minimum Reinforcement

= 0.12% bD

Ast (required)

= 180

> 130

Using 10 mm Ø bar Spacing,

S

= ((πd2/4) / 180) x 1000 = 436

Maximum Spacing, Provide 10

Ø bar @ 300

S

= 300

C/C Spacing

Ast (provide)

= 380

CHECK FOR SHEAR: Maximum Shear Force,

= (Wu lx / 2) = ½ (10.125 x 4.13) Vu

Nominal Shear Stress ,

= 20.9 = Vu / b d = 0.16 ⁄

Percentage of Tension Pt

= 100 Ast / b d = (100 x 270) / (1000 x 130) = 0.21 % = 0.33 ⁄

9

>

Safe

CHECK FOR DEFLECTION: Percentage of Tension, Pt

= 0.21 %

FS

= 0.58 fy x (

(

)

(

)

)

= 195 ⁄ Modification Factor, Kt

= 1.7

(L / d) max

= (L / d) basic x Kt x Kc x Kf = 20 x 1.7 x 1 x 1 = 34

(L / d) actual

= 4130 / 130 = 31

(L / d) max > (L / d) actual Hence Safe against Deflection CHECK FOR CRACK WIDTH: Minimum Reinforcement

Pt(min)

= 0.12% bD = 180

= ((π x 102/4) x 5)

Pt(prov)

= 392.69 Pt(prov) > Pt(min) Spacing,

S

= 300

Spacing (req)

=300 mm

Spacing (prov)

=100mm

Spacing (req) > Spacing (prov) Diameter < D/8 =125/8 10

=15.625 Diameter of the rod=10mm 10mm<15.625 Hence ok

TORSIONAL REINFORCEMENT AT CORNERS: Mesh size

= lx / 5 = 4130 / 5 = 826

Area of Torsion Reinforcement

= (3/4) x mid span reinforcement = (3/4) x 180

Ast

= 135

Using 10 mm Ø bar Spacing,

S

= ((πd2/4) / 135) x 1000 = 580

Spacing,

S

= 300

Provide 10mm Ø bar mesh of bars @300mm c/c

11

CHAPTER 2.3

REINFORCEMENT DETAILS OF FLOOR SLABS TABLE 2 SLAB NO S1

SPAN SHORT LONG

S2

SHORT LONG

S3

SHORT LONG

S4

SHORT LONG

S5

SHORT LONG

S6

SHORT LONG

S7

SHORT LONG

B.M COEFFFICIENT αx&αy

W kN/m2

Lx (m)

B.M kN-m

0.052 0.039 0.047 0.039

13.75 13.75 13.75 13.75

4

6.48 8.61 7.76 6.61

0.056 0.042 0.037 0.028

13.75 13.75 13.75 13.75

4.68

9.96 7.47 6.58 4.98

0.041 0.030 0.037 0.028

13.75 13.75 13.75 13.75

3.42

7.29 5.33 6.58 4.98

0.038 0.029 0.037 0.028

13.75 13.75 13.75 13.75

3.8

6.28 4.80 6.11 4.63

0.048 0.036 0.037 0.028

13.75 13.75 13.75 13.75

2.65

5.80 4.35 4.47 3.38

0.049 0.037 0.047 0.035

13.75 13.75 13.75 13.75

3.3

8.90 4.47 5.48 4.15

0.037 0.028 0.037 0.028

13.75 13.75 13.75 13.75

2.68

6.66 5.03 6.66 5.03

12

REINFORCEMENT DETAILS OF FLOOR SLABS SLAB NO S8

SPAN SHORT LONG

S9

SHORT LONG

S10

SHORT LONG

S11

SHORT LONG

S12

SHORT LONG

S13

SHORT LONG

S14

SHORT LONG

B.M COEFFFICIENT αx&αy

W kN/m2

Lx (m)

B.M kN-m

0.039 0.030 0.032 0.024

13.75 13.75 13.75 13.75

3.92

7.02 4.92 5.76 4.31

0.035 0.026 0.032 0.024

13.75 13.75 13.75 13.75

4.68

6.30 4.52 5.75 4.32

0.034 0.025 0.032 0.024

13.75 13.75 13.75 13.75

3.42

5.55 4.14 5.30 3.98

0.043 0.032 0.032 0.024

13.75 13.75 13.75 13.75

3.8

5.29 3.93 3.93 2.95

0.069 0.053 0.037 0.028

13.75 13.75 13.75 13.75

3.65

12.26 9.42 6.58 5.00

0.037 0.028 0.037 0.028

13.75 13.75 13.75 13.75

3.3

7.63 5.78 7.63 5.78

0.034 0.025 0.032 0.024

13.75 13.75 13.75 13.75

2.69

6.97 5.13 6.56 4.92

13

REINFORCEMENT DETAILS OF FLOOR SLABS SLAB NO S15

SPAN SHORT LONG

S16

SHORT LONG

S17

SHORT LONG

S18

SHORT LONG

S19

SHORT LONG

S20

SHORT LONG

S21

SHORT LONG

B.M COEFFFICIENT αx&αy

W kN/m2

Lx (m)

B.M kN-m

0.032 0.024 0.032 0.024

13.75 13.75 13.75 13.75

3.92

6.56 4.92 6.56 4.92

0.037 0.028 0.032 0.024

13.75 13.75 13.75 13.75

3.11

6.13 4.64 5.30 3.98

0.047 0.036 0.032 0.024

13.75 13.75 13.75 13.75

3.11

5.78 4.42 3.93 2.95

0.066 0.050 0.037 0.028

13.75 13.75 13.75 13.75

3.11

13.54 10.26 7.60 5.70

0.053 0040 0.037 0.028

13.75 13.75 13.75 13.75

3.11

11.06 8.30 7.70 5.84

0.043 0.032 0.032 0.024

13.75 13.75 13.75 13.75

2.69

10.09 7.50 7.50 5.63

0.046 0.035 0.032 0.024

13.75 13.75 13.75 13.75

3.92

9.54 7.26 6.64 4.21

14

REINFORCEMENT DETAILS OF FLOOR SLABS SLAB NO S22

SPAN SHORT LONG

S23

SHORT LONG

S24

SHORT LONG

S25

SHORT LONG

S26

SHORT LONG

S27

SHORT LONG

S28

SHORT LONG

B.M COEFFFICIENT αx&αy

W kN/m2

Lx (m)

B.M kN-m

0.052 0.040 0.032 0.024

13.75 13.75 13.75 13.75

3.5

8.62 6.63 5.30 3.98

0.057 0.044 0.032 0.024

13.75 13.75 13.75 13.75

2.69

7.01 5.35 3.93 2.95

0.048 0.036 0.037 0.028

13.75 13.75 13.75 13.75

2.52

16.70 12.52 12.87 13.22

0.038 0.029 0.037 0.028

13.75 13.75 13.75 13.75

5.21

6.68 5.10 6.50 4.91

0.040 0.030 0.032 0.024

13.75 13.75 13.75 13.75

3.61

7.02 5.27 5.62 4.21

0.036 0.027 0.032 0.024

13.75 13.75 13.75 13.75

3.31

6.32 4.74 5.62 4.21

0.033 0.025 0.032 0.024

13.75 13.75 13.75 13.75

3.2

5.47 4.06 5.30 3.98

15

REINFORCEMENT DETAILS OF FLOOR SLABS SLAB NO S29

SPAN SHORT LONG

S30

SHORT LONG

S31

SHORT LONG

S32

SHORT LONG

S33

SHORT LONG

S34

SHORT LONG

S35

SHORT LONG

B.M COEFFFICIENT αx&αy

W kN/m2

Lx (m)

B.M kN-m

0.043 0.032 0.032 0.024

13.75 13.75 13.75 13.75

2.69

5.29 3.93 3.93 2.95

0.071 0.055 0.037 0.028

13.75 13.75 13.75 13.75

3.92

12.40 9.60 6.46 4.90

0.038 0.029 0.037 0.028

13.75 13.75 13.75 13.75

1.91

7.63 5.82 7.42 5.62

0.038 0.029 0.032 0.024

13.75 13.75 13.75 13.75

3.5

8.91 6.64 6.64 4.98

0.043 0.032 0.032 0.024

13.75 13.75 13.75 13.75

2.70

8.94 6.64 6.64 4.98

0.048 0.038 0.032 0.024

13.75 13.75 13.75 13.75

2.52

7.96 6.21 5.30 3.98

0.054 0.042 0.032 0.024

13.75 13.75 13.75 13.75

5.07

6.58 5.16 3.93 2.95

16

REINFORCEMENT DETAILS OF FLOOR SLABS SLAB NO S36

SPAN SHORT LONG

S37

SHORT LONG

S38

SHORT LONG

S39

SHORT LONG

S40

SHORT LONG

S41

SHORT LONG

S42

SHORT LONG

B.M COEFFFICIENT αx&αy

W kN/m2

Lx (m)

B.M kN-m

0.053 0.040 0.037 0.028

13.75 13.75 13.75 13.75

3.65

16.16 12.19 11.28 8.53

0.062 0.046 0.037 0.028

13.75 13.75 13.75 13.75

3.34

7.17 5.32 4.28 3.23

0.051 0.039 0.032 0.024

13.75 13.75 13.75 13.75

3.29

6.03 4.61 3.78 2.83

0.048 0.037 0.032 0.024

13.75 13.75 13.75 13.75

2.69

5.67 4.31 3.78 2.83

0.043 0.032 0.032 0.024

13.75 13.75 13.75 13.75

3.91

5.08 3.78 3.78 2.83

0.032 0.024 0.032 0.024

13.75 13.75 13.75 13.75

1.91

3.78 2.83 3.78 2.83

0.084 0.064 0.037 0.028

13.75 13.75 13.75 13.75

3.5

9.71 7.40 4.27 3.23

17

REINFORCEMENT DETAILS OF FLOOR SLABS SLAB NO S43

SPAN SHORT LONG

S44

SHORT LONG

S45

SHORT LONG

S46

SHORT LONG

S47

SHORT LONG

S48

SHORT LONG

S49

SHORT LONG

B.M COEFFFICIENT αx&αy

W kN/m2

Lx (m)

B.M kN-m

0.051 0.038 0.037 0.028

13.75 13.75 13.75 13.75

2.70

10.64 7.62 7.72 5.82

0.038 0.029 0.032 0.024

13.75 13.75 13.75 13.75

2.53

8.91 6.68 7.50 5.63

0.043 0.032 0.032 0.024

13.75 13.75 13.75 13.75

5.20

8.92 6.64 6.64 4.98

0.048 0.037 0.032 0.026

13.75 13.75 13.75 13.75

3.652

7.96 6.13 5.30 3.98

0.054 0.042 0.032 0.024

13.75 13.75 13.75 13.75

3.34

6.64 5.16 3.93 2.95

0.053 0.040 0.037 0.028

13.75 13.75 13.75 13.75

3.19

15.86 11.97 11.01 8.38

0.049 0.035 0.047 0.035

13.75 13.75 13.75 13.75

2.69

6.10 4.15 5.48 4.15

18

REINFORCEMENT DETAILS OF FLOOR SLABS SLAB NO S49

SPAN SHORT LONG

S50

SHORT LONG

S51

SHORT LONG

S52

SHORT LONG

S53

SHORT LONG

S54

SHORT LONG

S55

SHORT LONG

B.M COEFFFICIENT αx&αy

W kN/m2

Lx (m)

B.M kN-m

0.049 0.035 0.047 0.035

13.75 13.75 13.75 13.75

2.69

6.10 4.15 5.48 4.15

0.055 0.041 0.037 0.028

13.75 13.75 13.75 13.75

3.269

6.36 4.74 4.27 3.23

0.052 0.040 0.037 0.028

13.75 13.75 13.75 13.75

2.69

6.01 4.62 4.27 3.23

0.049 0.037 0.037 0.028

13.75 13.75 13.75 13.75

4

5.67 4.27 4.27 3.23

0.037 0.028 0.037 0.028

13.75 13.75 13.75 13.75

1.91

4.27 3.23 4.27 3.23

0.048 0.035 0.047 0.035

13.75 13.75 13.75 13.75

3.5

5.85 4.15 5.48 4.15

0.048 0.035 0.047 0.035

13.75 13.75 13.75 13.75

3.42

6.36 4.74 4.27 3.23

19

REINFORCEMENT DETAILS OF FLOOR SLABS SLAB NO S56

SPAN SHORT LONG

S57

SHORT LONG

S58

SHORT LONG

S59

SHORT LONG

S60

SHORT LONG

S61

SHORT LONG

B.M COEFFFICIENT αx&αy

W kN/m2

Lx (m)

B.M kN-m

0.053 0.040 0.037 0.028

13.75 13.75 13.75 13.75

2.53

16.16 12.19 11.28 8.53

0.062 0.046 0.037 0.028

13.75 13.75 13.75 13.75

5.23

7.17 5.32 4.28 3.23

0.051 0.039 0.032 0.024

13.75 13.75 13.75 13.75

3.65

6.03 4.61 3.78 2.83

0.048 0.037 0.032 0.024

13.75 13.75 13.75 13.75

3.34

5.67 4.31 3.78 2.83

0.043 0.032 0.032 0.024

13.75 13.75 13.75 13.75

3.29

5.08 3.78 3.78 2.83

0.032 0.024 0.032 0.024

13.75 13.75 13.75 13.75

2.69

3.78 2.83 3.78 2.83

20

REINFORCEMENT DETAILS OF FLOOR SLABS SLAB SHORT SPAN REINFORCEMENT

LONG SPAN REINFORCEMENT

NO

AT SUPPORT

AT MIDSPAN

AT SUPPORT

AT MIDSPAN

S1

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

21

REINFORCEMENT DETAILS OF FLOOR SLABS SLAB SHORT SPAN REINFORCEMENT NO S13

S14

S15

S16

S17

S18

S19

S20

S21

S22

S23

S24

LONG SPAN REINFORCEMENT

AT SUPPORT

AT MIDSPAN

AT SUPPORT

AT MIDSPAN

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 250mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

22

REINFORCEMENT DETAILS OF FLOOR SLABS SLAB SHORT SPAN REINFORCEMENT NO S25

S26

S27

S28

S29

S30

S31

S32

S33

S34

S35

S36

LONG SPAN REINFORCEMENT

AT SUPPORT

AT MIDSPAN

AT SUPPORT

AT MIDSPAN

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 250mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

23

REINFORCEMENT DETAILS OF FLOOR SLABS SLAB SHORT SPAN REINFORCEMENT NO S37

S38

S39

S40

S41

S42

S43

S44

S45

S46

S47

S48

LONG SPAN REINFORCEMENT

AT SUPPORT

AT MIDSPAN

AT SUPPORT

AT MIDSPAN

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 250mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 250mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

24

REINFORCEMENT DETAILS OF FLOOR SLABS SLAB NO S49

S50

S51

S52

S53

S54

SHORT SPAN REINFORCEMENT

LONG SPAN REINFORCEMENT

AT SUPPORT

AT MIDSPAN

AT SUPPORT

AT MIDSPAN

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

DESIGN RESULTS FOR FLOOR SLAB Effective depth, d

= 130 mm

Overall depth, D

= 150 mm

25

CHAPTER 2.4

DESIGN OF ROOF SLAB SLAB S1: TYPE OF SLAB ly / l x

= 6/4 = 1.54< 2

Hence the slab is designed as a two way slab CROSS SECTIONAL DIMENSIONS: Span/depth

= 40

Overall depth, D

= 150 mm

Assume 15 mm cover and 10 mm Ø Effective depth, d

= 150 - 15 - (10/2) = 130 mm

EFFECTIVE SPAN Shorter span (lx) i) c/c distance

= 4 + (.23/2) + (.23/2) =4.23 m

ii) c/c distance + depth lx

= 4 + .13 = 4.13 mm

Longer span (ly) i) c/c distance

= 6 + (.23/2) + (.23/2) = 6.23 m

ii) c/c distance + depth

= 6 + .13 = 6.13 m

ly

= 6.13 mm

26

LOAD CALCULATION: Self weight (D.L)

= 1 x 1 x .15 x 25 D.L

Live load

= 1.5

Floor finish

=1

Total load,



= 3.75



\

⁄ ⁄

W

= 6.25

Wu

= 1.5 x 6.25 = 9.375



BENDING MOMENT CALCULATION: Short span co efficient αx

= 0.075

αy

= 0.056

M (-ve)

= α x. Wu. lx2 = 0.075 x 10.5 x 42 = 11.25

M (+ve)

= α y. Wu. lx2 = 0.056 x 10.5 x 42 = 8.4

Long span co efficient αx

= 0.047

αy

= 0.035

M (-ve)

= α x. Wu. lx2 = 7.896

M (+ve)

= α y. Wu. lx2 = 5.88 27

CHECK FOR EFFECTIVE DEPTH: M

= 0.134 fck bd2

d

= 42.89 mm < 130 mm

REINFORCEMENT DETAILS: Short Span Positive Reinforcement (

)

( –(

8.4 x 106

= 56550 Ast – 8.7 Ast2

Ast

= 125 mm2

Minimum Reinforcement

) (

))

= 0.12% bD = 180 mm2 > 125 mm2

Ast Using 10 mm Ø bar Spacing,

S

Maximum Spacing, S

= ((πd2/4) / 180) x 1000 = 436 mm = 300 mm

Provide 10 mm Ø bar @ 300 mm C/C Spacing = 270 mm2

Ast (provide) Short Span Negative Reinforcement (–

)

( –(

11.25x 106

= 56550 Ast – 8.7 Ast2

Ast

= 110 mm2

Minimum Reinforcement

= 0.12% bD = 180 mm2 > 110 mm2

Ast Using 10 mm Ø bar Spacing,

S

= ((πd2/4) / 180) x 1000 = 436 mm

Maximum Spacing,

S

= 300 mm 28

) (

))

Provide 10 mm Ø bar @ 300 mm C/C Spacing = 270 mm2

Ast (provide) Long Span Positive Reinforcement (

)

( –(

) (

))

= 90 mm2

Ast Minimum Reinforcement

= 0.12% bD

Ast

= 180 mm2 > 90 mm2

S

= ((πd2/4) / 180) x 1000

Using 10 mm Ø bar Spacing,

= 436 mm Maximum Spacing,

S

= 300 mm

Provide 10 mm Ø bar @ 300 mm C/C Spacing = 270 mm2

Ast (provide) Long Span Negative Reinforcement (–

)

( –(

7.896x 106

= 56550 Ast – 10.88 Ast2

Ast

= 100 mm2

Minimum Reinforcement

= 0.12% bD

Ast (required)

= 180 mm2 > 100 mm2

Using 10 mm Ø bar Spacing,

S

= ((πd2/4) / 180) x 1000 = 436 mm

Maximum Spacing,

S

= 300 mm

29

) (

))

CHECK FOR SHEAR: Maximum Shear Force

= (Wu lx / 2) = ½ (10.5 x 4)

Nominal Shear Stress,

Vu

= 19.5

τv

= Vu / b d ⁄

= 0.14 Percentage of Tension ,

Pt

= 100 Ast / b d = (100 x 270) / (1000 x 130) = 0.21 % ⁄

= 0.33

>

Hence Safe against Shear CHECK FOR DEFLECTION: Percentage of Tension,

Pt

= 0.21 %

FS

= 0.58 fy x ( Ast (require) / Ast (provide) ) = 195

Modification Factor, Kt (L / d) max



= 1.7 = (L / d) basic x Kt x Kc x Kf = 20 x 1.7 x 1 x 1 = 34

(L / d) actual

= 3360 / 130 = 26

(L / d) max > (L / d) actual Hence Safe against Deflection

30

TORSIONAL REINFORCEMENT AT CORNERS: Mesh size

= lx / 5 = 4000 / 5 = 800 mm

Area of Torsion Reinforcement

= (3/4) x mid span reinforcement = (3/4) x 180

Ast

= 135 mm2

S

= ((πd2/4) / 135) x 1000

Using 10 mm Ø bar Spacing,

= 580 mm Spacing,

S

= 300 mm

Provide 10 mm Ø mesh of bars @ 300 mm C/C in all corners as torsion reinforcement

31

CHAPTER 2.5 TABLE 3: REINFORCEMENT DETAILS OF ROOF SLABS

SLAB NO S1

B.M SPAN

SHORT

SHORT LONG

S3

SHORT LONG

S4

SHORT LONG

S5

SHORT LONG

S6

B.M

kN/m

(m)

kN-m

0.052

9.375

4

9.25

0.039

9.375

6.93

0.047

9.375

8.36

0.039

9.375

6.93

0.056

9.375

0.042

9.375

7.47

0.037

9.375

6.58

0.028

9.375

4.98

0.041

9.375

0.030

9.375

5.33

0.037

9.375

6.58

0.028

9.375

4.98

0.038

9.375

0.029

9.375

4.80

0.037

9.375

6.11

0.028

9.375

4.63

0.048

9.375

0.036

9.375

4.35

0.037

9.375

4.47

0.028

9.375

3.38

0.049

9.375

0.037

9.375

4.47

0.047

9.375

5.48

0.035

9.375

4.15

αx&αy

LONG

S2

Lx

COEFFFICIENT

SHORT LONG

32

W 2

4.68

3.42

3.8

2.65

3.3

9.96

7.29

6.28

5.80

8.90

SLAB NO S7

B.M SPAN

SHORT

SHORT LONG

S9

SHORT LONG

S10

SHORT LONG

S11

SHORT LONG

S12

SHORT LONG

S13

Lx

B.M

kN/m2

(m)

kN-m

0.037

9.375

2.68

6.66

0.028

9.375

5.03

0.037

9.375

6.66

0.028

9.375

5.03

0.039

9.375

0.030

9.375

4.92

0.032

9.375

5.76

0.024

9.375

4.31

0.035

9.375

0.026

9.375

4.52

0.032

9.375

5.75

0.024

9.375

4.32

0.034

9.375

0.025

9.375

4.14

0.032

9.375

5.30

0.024

9.375

3.98

0.043

9.375

0.032

9.375

3.93

0.032

9.375

3.93

0.024

9.375

2.95

0.069

9.375

0.053

9.375

9.42

0.037

9.375

6.58

0.028

9.375

5.00

0.037

9.375

0.028

9.375

5.78

0.037

9.375

7.63

0.028

9.375

5.78

αx&αy

LONG

S8

W

COEFFFICIENT

SHORT LONG

33

3.92

4.68

3.42

3.8

3.65

3.3

7.02

6.30

5.55

5.29

12.26

7.63

SLAB NO S14

B.M SPAN

SHORT

SHORT LONG

S16

SHORT LONG

S17

SHORT LONG

S18

SHORT LONG

S19

SHORT LONG

S20

Lx

B.M

kN/m2

(m)

kN-m

0.034

9.375

2.69

6.97

0.025

9.375

5.13

0.032

9.375

6.56

0.024

9.375

4.92

0.032

9.375

0.024

9.375

4.92

0.032

9.375

6.56

0.024

9.375

4.92

0.037

9.375

0.028

9.375

4.64

0.032

9.375

5.30

0.024

9.375

3.98

0.047

9.375

0.036

9.375

4.42

0.032

9.375

3.93

0.024

9.375

2.95

0.066

9.375

0.050

9.375

10.26

0.037

9.375

7.60

0.028

9.375

5.70

0.053

9.375

0040

9.375

8.30

0.037

9.375

7.70

0.028

9.375

5.84

0.043

9.375

0.032

9.375

7.50

0.032

9.375

7.50

0.024

9.375

5.63

αx&αy

LONG

S15

W

COEFFFICIENT

SHORT LONG

34

3.92

3.11

3.11

3.11

3.11

2.69

6.56

6.13

5.78

13.54

11.06

10.09

SLAB NO S21

B.M SPAN

SHORT

SHORT LONG

S23

SHORT LONG

S24

SHORT LONG

S25

SHORT LONG

S26

SHORT LONG

S27

Lx

B.M

kN/m2

(m)

kN-m

0.046

9.375

3.92

9.54

0.035

9.375

7.26

0.032

9.375

6.64

0.024

9.375

4.21

0.052

9.375

0.040

9.375

6.63

0.032

9.375

5.30

0.024

9.375

3.98

0.057

9.375

0.044

9.375

5.35

0.032

9.375

3.93

0.024

9.375

2.95

0.048

9.375

0.036

9.375

12.52

0.037

9.375

12.87

0.028

9.375

13.22

0.038

9.375

0.029

9.375

5.10

0.037

9.375

6.50

0.028

9.375

4.91

0.040

9.375

0.030

9.375

5.27

0.032

9.375

5.62

0.024

9.375

4.21

0.036

9.375

0.027

9.375

4.74

0.032

9.375

5.62

0.024

9.375

4.21

αx&αy

LONG

S22

W

COEFFFICIENT

SHORT LONG

35

3.5

2.69

2.52

5.21

3.61

3.31

8.62

7.01

16.70

6.68

7.02

6.32

SLAB NO S28

B.M SPAN

SHORT

SHORT LONG

S30

SHORT LONG

S31

SHORT LONG

S32

SHORT LONG

S33

SHORT LONG

S34

Lx

B.M

kN/m2

(m)

kN-m

0.033

9.375

3.2

5.47

0.025

9.375

4.06

0.032

9.375

5.30

0.024

9.375

3.98

0.043

9.375

0.032

9.375

3.93

0.032

9.375

3.93

0.024

9.375

2.95

0.071

9.375

0.055

9.375

9.60

0.037

9.375

6.46

0.028

9.375

4.90

0.038

9.375

0.029

9.375

5.82

0.037

9.375

7.42

0.028

9.375

5.62

0.038

9.375

0.029

9.375

6.64

0.032

9.375

6.64

0.024

9.375

4.98

0.043

9.375

0.032

9.375

6.64

0.032

9.375

6.64

0.024

9.375

4.98

0.048

9.375

0.038

9.375

6.21

0.032

9.375

5.30

0.024

9.375

3.98

αx&αy

LONG

S29

W

COEFFFICIENT

SHORT LONG

36

2.69

3.92

1.91

3.5

2.70

2.52

5.29

12.40

7.63

8.91

8.94

7.96

SLAB NO S35

B.M SPAN

SHORT

SHORT LONG

S37

SHORT LONG

S38

SHORT LONG

S39

SHORT LONG

S40

SHORT LONG

S41

Lx

B.M

kN/m2

(m)

kN-m

0.054

9.375

5.07

6.58

0.042

9.375

5.16

0.032

9.375

3.93

0.024

9.375

2.95

0.053

9.375

0.040

9.375

12.19

0.037

9.375

11.28

0.028

9.375

8.53

0.062

9.375

0.046

9.375

5.32

0.037

9.375

4.28

0.028

9.375

3.23

0.051

9.375

0.039

9.375

4.61

0.032

9.375

3.78

0.024

9.375

2.83

0.048

9.375

0.037

9.375

4.31

0.032

9.375

3.78

0.024

9.375

2.83

0.043

9.375

0.032

9.375

3.78

0.032

9.375

3.78

0.024

9.375

2.83

0.032

9.375

0.024

9.375

2.83

0.032

9.375

3.78

0.024

9.375

2.83

αx&αy

LONG

S36

W

COEFFFICIENT

SHORT LONG

37

3.65

3.34

3.29

2.69

3.91

1.91

16.16

7.17

6.03

5.67

5.08

3.78

SLAB NO S42

B.M SPAN

SHORT

SHORT LONG

S44

SHORT LONG

S45

SHORT LONG

S46

SHORT LONG

S47

SHORT LONG

S48

Lx

B.M

kN/m2

(m)

kN-m

0.084

9.375

3.5

9.71

0.064

9.375

7.40

0.037

9.375

4.27

0.028

9.375

3.23

0.051

9.375

0.038

9.375

7.62

0.037

9.375

7.72

0.028

9.375

5.82

0.038

9.375

0.029

9.375

6.68

0.032

9.375

7.50

0.024

9.375

5.63

0.043

9.375

0.032

9.375

6.64

0.032

9.375

6.64

0.024

9.375

4.98

0.048

9.375

0.037

9.375

6.13

0.032

9.375

5.30

0.026

9.375

3.98

0.054

9.375

0.042

9.375

5.16

0.032

9.375

3.93

0.024

9.375

2.95

0.053

9.375

0.040

9.375

11.97

0.037

9.375

11.01

0.028

9.375

8.38

αx&αy

LONG

S43

W

COEFFFICIENT

SHORT LONG

38

2.70

2.53

5.20

3.652

3.34

3.19

10.64

8.91

8.92

7.96

6.64

15.86

SLAB NO S49

B.M SPAN

SHORT

SHORT LONG

S51

SHORT LONG

S52

SHORT LONG

S53

SHORT LONG

S54

Lx

B.M

kN/m2

(m)

kN-m

0.049

9.375

2.69

6.10

0.035

9.375

4.15

0.047

9.375

5.48

0.035

9.375

4.15

0.049

9.375

0.035

9.375

4.15

0.047

9.375

5.48

0.035

9.375

4.15

0.055

9.375

0.041

9.375

4.74

0.037

9.375

4.27

0.028

9.375

3.23

0.052

9.375

0.040

9.375

4.62

0.037

9.375

4.27

0.028

9.375

3.23

0.049

9.375

0.037

9.375

4.27

0.037

9.375

4.27

0.028

9.375

3.23

0.052

9.375

0.040

9.375

4.62

0.037

9.375

4.27

0.028

9.375

3.23

αx&αy

LONG

S50

W

COEFFFICIENT

SHORT LONG

39

3.269

2.69

4

1.91

3.5

6.10

6.36

6.01

5.67

6.01

SLAB NO S55

B.M SPAN

SHORT

SHORT LONG

S57

SHORT LONG

S58

SHORT LONG

S59

SHORT LONG

S60

Lx

B.M

kN/m2

(m)

kN-m

0.043

9.375

3.42

5.67

0.032

9.375

4.27

0.032

9.375

4.27

0.024

9.375

3.23

0.053 0.040 0.037 0.028

9.375

0.062 0.046 0.037 0.028

9.375

0.051 0.039 0.032 0.024

9.375

0.048 0.037 0.032 0.024

9.375

0.043 0.032 0.032 0.024

9.375

αx&αy

LONG

S56

W

COEFFFICIENT

SHORT LONG

2.53

16.16 12.19 11.28 8.53

5.23

7.17 5.32 4.28 3.23

3.65

6.03 4.61 3.78 2.83

3.34

5.67 4.31 3.78 2.83

3.29

5.08 3.78 3.78 2.83

9.375 9.375 9.375

9.375 9.375 9.375

9.375 9.375 9.375

9.375 9.375 9.375

9.375 9.375 9.375

40

SLAB NO S61

B.M SPAN

COEFFFICIENT αx&αy

SHORT LONG

0.032 0.024 0.032 0.024

W

Lx

B.M

kN/m2

(m)

kN-m

9.375

2.69

3.78 2.83 3.78 2.83

9.375 9.375 9.375

41

REINFORCEMENT DETAILS OF ROOF SLABS SLAB NO S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

SHORT SPAN REINFORCEMENT

LONG SPAN REINFORCEMENT

AT SUPPORT

AT MIDSPAN

AT SUPPORT

AT MIDSPAN

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

42

SLAB NO S13

S14

S15

S16

S17

S18

S19

S20

S21

S22

S23

S24

S25

SHORT SPAN REINFORCEMENT

LONG SPAN REINFORCEMENT

AT SUPPORT

AT MIDSPAN

AT SUPPORT

AT MIDSPAN

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 250mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

43

SLAB NO S26

S27

S28

S29

S30

S31

S32

S33

S34

S35

S36

S37

S38

SHORT SPAN REINFORCEMENT

LONG SPAN REINFORCEMENT

AT SUPPORT

AT MIDSPAN

AT SUPPORT

AT MIDSPAN

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 250mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

44

SLAB NO S39

S40

S41

S42

S43

S44

S45

S46

S47

S48

S49

S50

S51

SHORT SPAN REINFORCEMENT

LONG SPAN REINFORCEMENT

AT SUPPORT

AT MIDSPAN

AT SUPPORT

AT MIDSPAN

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 250mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 250mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

45

SLAB NO S52

S53

S54

SHORT SPAN REINFORCEMENT AT SUPPORT

LONG SPAN REINFORCEMENT

AT MIDSPAN

AT SUPPORT

AT MIDSPAN

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

10 mm Ø

10 mm Ø

10 mm Ø

10 mm Ø

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

@ 300mm c/c

DESIGN RESULTS FOR ROOF SLAB Effective depth, d

= 130 mm

Overall depth, D

= 150 mm

46

CHAPTER 3.1

A) PRELIMINARY DESIGN OF BEAM Effective span ,

= 6000 mm

Breadth of beam

= 300mm

Depth of beam

=

to

= 500 to 400 Assume size of beam

= 300 x 600 mm

Effective depth

= 600 – 35 = 565 mm

LOAD CALCULATION Live load

= 6 x (4/2) x 1.5 = 18

Self weight of slab

= 6 x (4/2) x 0.15x25 = 45

Floor finish

= 6 x (4/2) x 1 = 12

Self weight of beam

= 6 x 0.3 x 0.6 x 25 = 27

Weight of parapet wall

= 6 x 0.3 x 4 x 25 = 180

Total load,

W

= 279

Factored load,

Wu

= 1.5 x 278 = 418.5

BENDING MOMENT 47

M

= = = 251.1

M

REINFORCEMENT: Mu(lim)

= 0.138 x fck x b x d^2 = 0.138 x 25 x 300 x 600 x600 =372.6 KN M

Mu < Mu(lim) Hence Design it as singly reinforced section.

48

CHAPTER 3.1

B) PRELIMINARY DESIGN OF BEAM Effective span ,

= 8.8m

Breadth of beam

= 300mm

Depth of beam

=

to

= 700 to 586 Assume size of beam

= 300 x 600 mm

Effective depth

= 600 – 35 = 565 mm

LOAD CALCULATION Live load

= 8.8x (0.6/2) x 1.5 = 3.96

Self weight of slab

= 8.8 x (0.6/2) x 0.15x25 = 9.73

Floor finish

= 8.8 x (0.6/2) x 1 = 2.59

Self weight of beam

= 8.8 x 0.3 x 0.6 x 25 = 38.92

Weight of parapet wall

= 8.8 x 0.3 x 4 x 25 = 264

Total load,

W

= 319.2

Factored load,

Wu

= 1.5 x 319.2 = 478.8

BENDING MOMENT 49

M

= = = 421.344

M

REINFORCEMENT: Mu(lim)

= 0.138 x fck x b x d^2 = 0.138 x 25 x 300 x 600 x600 =372.6 KN M

Mu > Mu(lim) Hence Design it as doubly reinforced section.

50

CHAPTER 4

ANALYSIS OF FRAME

51

CHAPTER 5

A ) DESIGN OF BEAM SINGLY REINFORCED BEAM Wall thickness

= 230 mm

Span

= 6000 mm

Imposed load on beam

= 2 kN/m

fck

= 25 N/mm2

fy

= 500 N/mm2

Assume Effective cover

= 50 mm

STEP 1: CROSS SECTIONAL DIMENSION: Span/Depth

= 10

6000/Depth

= 10

Depth

≈ 600 mm

d

= D – Effective cover

d

= 600– 50 = 550mm

STEP 2: EFFECTIVE SPAN : Clear span

= 6 – 0.23 = 5.77 mm

From Pg: 34, IS 456:2000 1) Clear span + d

= 5.77 + 0.25 = 6.02m

2) Center to center

=6m

Effective span

=6m 52

STEP 3 : LOAD CALCULATION : Dead load

= b * d * unit weight of concrete = 0.23 * 0.6 * 25 = 3.45 kN/m

Live load

= 2 kN/m

Total load

= 5.45 kN/m

Ultimate load

= 1.5 * 5.45

Wu

= 8.175kN /m

STEP 4 : ULTIMATE MOMENT AND SHEAR FORCE = Wu * l2/8

Moment Mu

= 8.175 * 62/8 = 36.78 kNm Shear force Vu

= Wu * l/2 = 8.175 * 6/2 = 24.525 kNm

STEP 5 : TENSION REINFORCEMENT Mulim

= 0.36 * fck * Xu max/d * (1-0.42 * Xu max/d) * bd2 = 0.36 * 25 * 0.46 * (1-(0.42 * 0.46)) * 230 * 5502 = 232.3 kNm

Mu < Mulim The section is under reinforced and safe. Mu

= 0.87 * fy * Ast * d * (1-(Ast * fy/b * d* fck))

36.78 * 106

= 0.87 * 500 * Ast * 550*(1-(Ast * 500/230*550*25))

Ast

= 257.65 mm2

53

Minimum reinforcement required : As/bd

= 0.85/fy

From Pg : 47 IS 456:2000

As

= 0.85 * b * d/fy = 0.85 * 230 * 550/500

Ast min

= 215.05 mm2

Ast min < Ast required Hence OK Provide 10 mm dia bars, As ɸ

= ∏/4 * 102 = 78.53 mm2

No of bars required

= Ast/Asɸ = 257.65/78.53 = 3.28 ≈ 4 bars

Spacing

= 78.53/257.65 = 304.79 ≈ 300 mm(minimum)

Provide 4 Nos of 10 mm dia bars @300 mm c/c spacing as reinforcement in tension zone Ast provided

= 4 * ∏/4 * 102 = 314.15 mm2

STEP 6 : DESIGN OF STIRRUPS : Ast min

= 215.05mm2

Use 8 mm dia bar, ast

= ∏/4 *82

54

= 50.26 mm2 Spacing

= ast/Ast *1000 = 50.26/215.05*1000 = 233mm ≈ 300 mm

Use 8 mm dia bar@300 mm c/c spacing. STEP 7 : CHECK FOR SHEAR : ϮV

= Vu/bd = 24.525 * 103/230 * 550 = 0.193 N/mm2

Pt

= 100 * Ast/bd = 100 * 314.15/230 * 550 = 0.24

From Pg:73 IS 456:2000 Ϯc

= 0.37 N/mm2

Since Ϯc > Ϯv Hence safe and not need of shear reinforcement. STEP 8 : CHECK FOR DEFLECTION : (L/d) max

= (L/d)basic * Kt * Kc * Kf

fs

= 0.58 * fy * Astrequired/Ast provided = 0.58 * 233* (257.65/314.15) = 110.8

Pt

= 0.24

fs

= 110.8 N/mm2

Kt

= 1.8 55

Kc

=1

Kf

=1

(L/d)max

= 20 * 1.8 * 1 * 1 = 36

(L/d)provided

= 6000/250 = 24

(L/d)max > (L/d)provided Hence the member is safe against deflection.

56

CHAPTER 5

B) DESIGN OF BEAM DOUBLY REINFORCED BEAM

Wall thickness

= 230 mm

Span

= 8800 mm

Imposed load on beam

= 2 kN/m

fck

= 25 N/mm2

fy

= 500 N/mm2

Assume Effective cover

= 50 mm

STEP 1: CROSS SECTIONAL DIMENSION: Span/Depth

= 15

8800/Depth

= 15

Depth

≈ 600 mm

d

= D – Effective cover

d

= 600– 50 = 550mm

STEP 2: EFFECTIVE SPAN : Clear span

= 8.8 – 0.23 = 8.57 mm

From Pg: 34, IS 456:2000 1) Clear span + d

= 8.57 + 0.25 = 8.82m

2) Center to center

= 8.8 m 57

Effective span

= 8.8 m

STEP 3 : LOAD CALCULATION : Dead load

= b * d * unit weight of concrete = 0.23 * 0.6 * 25 = 3.45 kN/m

Live load

= 2 kN/m

Total load

= 5.45 kN/m

Ultimate load

= 1.5 * 5.45

Wu

= 8.175kN /m

STEP 4 : ULTIMATE MOMENT AND SHEAR FORCE = Wu * l2/8

Moment Mu

= 8.175 * 62/8 = 36.78 kNm Shear force Vu

= Wu * l/2 = 8.175 * 6/2 = 24.525 kNm

STEP 5:REINFORCEMENT = (0.0035x (Xu(max)-d1)/Xu(max))x Es

Fsc Pgno.70 IS 456 Xu(max)/d =0.46

=(0.0035 x (276-50)/276) x 2x 10^5 =573.18N/mm2 Asc

=(Mu-Mu(lim))/(Fsc(d-d1) =((399.6x 10^6)-(372 x 10^6)/(573x(600-50)

58

= 85.67 mm^2 Assuming 10mm dia bars = 85.67/(0.78x 102)

No of rods

= 1.09 ≈ 2 nos Provide 2 nos 10 mm dia bars at 90mm c/c top compression fa

STEP 6 : TENSION REINFORCEMENT Mulim

= 0.36 * fck * Xu max/d * (1-0.42 * Xu max/d) * bd2 = 0.36 * 25 * 0.46 * (1-(0.42 * 0.46)) * 230 * 5502 = 232.3 kNm

Mu < Mulim The section is under reinforced and safe. Mu

= 0.87 * fy * Ast * d * (1-(Ast * fy/b * d* fck))

36.78 * 106

= 0.87 * 500 * Ast * 550*(1-(Ast * 500/230*550*25))

Ast

= 257.65 mm2

Minimum reinforcement required : As/bd

= 0.85/fy

From Pg : 47 IS 456:2000

As

= 0.85 * b * d/fy = 0.85 * 230 * 550/500

Ast min

= 215.05 mm2

Ast min < Ast required Hence OK Provide 10 mm dia bars, As ɸ

= ∏/4 * 102 = 78.53 mm2

59

No of bars required

= Ast/Asɸ = 257.65/78.53 = 3.28 ≈ 4 bars

Spacing

= 78.53/257.65 = 304.79 ≈ 300 mm(minimum)

Provide 4 Nos of 10 mm dia bars @300 mm c/c spacing as reinforcement in tension zone Ast provided

= 4 * ∏/4 * 102 = 314.15 mm2

STEP 7 : DESIGN OF STIRRUPS : Ast min

= 215.05mm2

Use 8 mm dia bar, ast

= ∏/4 *82 = 50.26 mm2

Spacing

= ast/Ast *1000 = 50.26/215.05*1000 = 233mm ≈ 300 mm

Use 8 mm dia bar@300 mm c/c spacing. STEP 8 : CHECK FOR SHEAR : ϮV

= Vu/bd = 24.525 * 103/230 * 550 = 0.193 N/mm2 60

Pt

= 100 * Ast/bd = 100 * 314.15/230 * 550 = 0.24

From Pg:73 IS 456:2000 Ϯc

= 0.37 N/mm2

Since Ϯc > Ϯv Hence safe and not need of shear reinforcement. STEP 9 : CHECK FOR DEFLECTION : (L/d) max

= (L/d)basic * Kt * Kc * Kf

fs

= 0.58 * fy * Astrequired/Ast provided = 0.58 * 233* (257.65/314.15) = 110.8

Pt

= 0.24

fs

= 110.8 N/mm2

Kt

= 1.8

Kc

=1

Kf

=1

(L/d)max

= 20 * 1.8 * 1 * 1 = 36

(L/d)provided

= 6000/250 = 24

(L/d)max > (L/d)provided Hence the member is safe against deflection.

61

CHAPTER 6

DESIGN OF COLUMN 6.1 DESIGN OF CORNER COLUMN Breadth

= 460mm

Depth(D)

= 610mm

Effective depth(d)

= 610-50

d

= 560mm

fck

= 25 N/mm2

fy

= 500 N/mm2

Pux

= 115.96 kN

Mux

= 66.34 kNm

Muy

= 47.36 kNm

STEP 1: Assume 2.2% of reinforcement distributed equally on 4 sides. STEP 2: From chart 63 of SP 16 for p=2.2% Pu/Ag

= 20

Puz

= 20 *610* 460

Puz

= 5612 kNm

Pu/Puz

= 115.96/5612 = 0.025

Determination of Mux1 and Muy1 P/fck

= 2.2/25 = 0.088

62

Pu/fckbd

= 115.96* 103/25 * 460 * 610 = 0.016

For X – X axis d’/D

= 50/610 = 0.08

Refer chart 48 Mux1/fckbD2

= 0.04

Mux1

= 0.04 *25 * 460 * 6102

Mux1

= 171.16kNm

b=610mm

D=460mm

For Y – Y axis

From chart 4(4 sides) Muy1/fckbD2

= 0.04

Muy1

= 0.04 *25 *610 * 4602

Muy1

= 129.07kNm

Mux/Mux1

= 66.34/171.16 = 0.38

Muy/Muy1

= 47.36/129.09 = 0.36

From chart 64 (Mux/Mux1)permissible

= 0.7

(Mux/Mux1)permissible

> Mux/Mux1

Hence design is safe p

= 100Asc/bD

63

Asc

= 2.2 * 460 * 610/100

Asc

=6173.2 mm2

Provide 32 mm dia bars = ∏ * 322/4

Ast

= 804.2mm2 No of bars

= 6173.2/804.2 =7.6 = 8 nos

Provide 8 nos of 32 mm dia bars @ 300 mm c/c DESIGN OF LATERAL TIES 1. Diameter (1)

16 mm

(2)

1/4 * Ø

= 1/4 * 32 = 8mm

Provide 16mm dia lateral ties 2. Pitch (1)

500 mm

(2)

16 * 32

(3)

300 mm

= 512mm

Provide 16 mm dia @ 300 mm c/c spacing

64

6.2 DESIGN OF MIDDLE COLUMN Breadth

= 300mm

Depth(D)

= 460mm

Effective depth(d)

= 460-50

d

= 410mm

fck

= 25 N/mm2

fy

= 500 N/mm2

Pux

= 178.54kN

Mux

= 35.66 kNm

Muy

=28.88 kNm

STEP 1: Assume 2.2% of reinforcement distributed equally on 4 sides. STEP 2: From chart 63 of SP 16 for p=2.2% Pu/Ag

= 20

Puz

= 20 *300 * 460

Puz

= 2760 kNm

Pu/Puz

= 178.54/2760 = 0.064

Determination of Mux1 and Muy1 P/fck

= 2.2/25 = 0.088

Pu/fckbd

= 178.54* 103/25 * 300 * 460 = 0.05

65

For X – X axis d’/D

= 50/460 = 0.10

Refer chart 48 Mux1/fckbD2

= 0.1

Mux1

= 0.1 *25 * 300 * 4602

Mux1

= 158.7kNm

b=460mm

D=300mm

For Y – Y axis

From chart 48(4 sides) Muy1/fckbD2

= 0.09

Muy1

= 0.09 *25 *460 * 3002

Muy1

= 93.15 kNm

Mux/Mux1

= 35.66/158.7 = 0.22

Muy/Muy1

= 28.88/93.15 = 0.3

From chart 64 (Mux/Mux1)permissible

= 0.9

(Mux/Mux1)permissible > Mux/Mux1 Hence design is safe P

= 100Asc/bD

Asc

= 2.2 * 300 * 460/100

Asc

= 3036 mm2

66

Provide 22 mm dia bars = ∏ * 222/4

Ast

= 380.13 mm2 No of bars

= 3036/380.13 = 8nos

Provide 8 nos of 22 mm dia bars @ 130 mm c/c DESIGN OF LATERAL TIES 1. Diameter (1)

16 mm

(2)

1/4 * Ø

= 1/4 * 22 = 5.5 mm

Provide 16 mm dia lateral ties 2. Pitch (1)

500 mm

(2)

16 * 22

(3)

300 mm

= 352 mm

Provide 16 mm dia @ 300 mm c/c spacing

67

6.3 DESIGN OF SIDE COLUMN Breadth

= 460mm

Depth(D)

= 610mm

Effective depth(d)

= 610-50

d

= 560mm

fck

= 25 N/mm2

fy

= 500 N/mm2

Pux

= 456.06 kN

Mux

= 473.23 kNm

Muy

= 27.193 kNm

STEP 1:NON DIMENSIONAL PARAMETRS P/fck

= 1.2/25 = 0.05

Pu/fckbd

= 456.06 * 103/25 * 460 * 610 = 0.06

d’/D

= 50/610 = 0.08 ≈ 0.1

Refer chart 48 Mux/fckbD2

= 0.095

Mux

= 0.095 *25 * 460 * 6102

Mux

= 406.51 kNm

From chart 36 68

(P/Fck)

= 0.2

P

= 0.20 x 25 =5

P

= 100Asc/bD

Asc

= 5* 460 * 610/100

Asc

= 5400 mm2

Provide 25 mm dia bars = ∏ * 252/4

Ast

= 490.87 mm2 No of bars

= 5400/490 = 12 nos

Provide 12 nos of 25 mm dia bars @ 100 mm c/c DESIGN OF LATERAL TIES 1. Diameter (1)

16 mm

(2)

1/4 * Ø

= 1/4 * 25 = 6.25 mm

Provide 16 mm dia lateral ties 2. Pitch (1)

500 mm

(2)

16 * 25

(3)

300 mm

= 400 mm

Provide 16m dia @ 300 mm c/c spacing

69

CHAPTER 7 DESIGN OF FOUNDATION Isolated footing for side column Factored axial load

= 1920.65 kN

Dead load of footing slab

= 10% of 1920.65 = 192.1kN

Total load = 2112.75 kN Safe bearing capacity of the Footing = 150 kN/ Area required = 2112.75/150 = 14.09 The size of footing is 3.1 m x 3.1 m Hence the provided area

= 9.61

Bending moment Net earth pressure acting upward Due to axial load

= 2112.75 / 9.61 = 220 kN/

B.M about an axis xx passing through = 220 x 3.1 x (

The face of the column

)

x1/2

= 668.36 kN - m D

= (668.36 x

)

/

= 440 mm B.M about an axis yy passing through The face of the column

= 220 x 3.1 x ( = 702.2 kN- m

70

)

x1/2

/ 0.138 x 25 x 1000) (1/2)

D

= (702.2 x

D

= 451.14 mm

Adopt 450 mm effective depth and 500 mm overall depth. Reinforcement details 668.36 x

= 0.87 x 500 x

x 450[1- {(500x

)/(25x1000x450)}]

= 4197.38 Providing no of bars @ 25 mm ф = ((πd2/4) / 4197.38) x 1000

Spacing, S

= 110 mm Provided = 4462.48 P

= 100

/bd

= (100 x 4197.38 ) / (1000x450) = 0.93 Provide 25 mm dia @ 110mm c/c along both the spans. CHECK FOR SHEAR Shear one way action: l

= 220 x 3.1 x [(3.1-0.30)/2)-0.45] = 647.9 kN = Vu / bd = 648 x = 0.47 N/

Shear strength of M25 concrete with 2.3% steel = 0.65 N/ <

Hence ok. 71

(

)

Shear two-way action: (

Vu

=

[

Vu

= 220 x [

) ] (

)]

= 1995 kN = Vu/bd = {(1995 x

) / (3100x450)}

= 1.12N/ M20 grade

= ks*

Ks

= (0.5+βc)

βc

= Length of shorter side / Length of longer side = 230/300 = 0.77

Ks

= (0.50+0.77) = 1.27>1

Ks

=1 = = 0.25 = 0.25 25 = 1.25 N/

<

Hence safe

Development of reinforcement: For deformation bars, value shall be increase 60%

72

> 1.12 N/

Development length for 25 mm bars Ld

=ф /4 = 25x0.87x500/4x1.2x1.6 = 1416 mm

50ф

= 50x22 = 1250mm

Actual embedment provided from the face of the column is Length available

= [(3100-450)/2]-50 mm = 1275mm < Ld

Provide 1416 mm development length

73

CHAPTER 8

DESIGN OF STAIRCASE DESIGN OF STAIRCASE: Tread

= 260 mm

Rise

= 150 mm

fck

= 20 N /mm2

fy

= 500 N /mm2

EFFECTIVE SPAN: Leff

= (9 x 260) + 2(260/2) = 2600 mm

Thickness of waist slab

= Span / 20 = 130 mm

Adopt overall depth, D

= 130 mm

Assume cover

= 20 mm

Effective depth, d

= 110 mm

LOAD CALCULATIONS: Dead load of slab on slope, Ws

= .12 x 1 x 25 = 3 kN /m

Dead load of slab on = (Ws (R2+T2) ½) / T

Horizontal span, W

= 3.46 kN /m Dead load of one slab

= (0.5 x 0.15 x 0.26 x 25 ) = 0.49 kN /m

74

Loads of steps per m length

= (0.49 x 1000) / 260 = 1.88 kN /m

Assume finishes etc

= 0.5 kN /m

Total dead load

= (3.46 + 1.88 + 0.5) = 5.84 kN /m

Assume service live load

= 5 kN /m

Total service load, W

= 10.84 kN /m

Ultimate service load, Wu

= 16.26 kN /m

BENDING MOMENT CALCULATIONS: = 0.125 Wu L2

Maximum moment at centre

= 14.17 kN- m CHECK FOR DEPTH OF WAIST SLAB: = (Mu / 0.138 fck b) 1/2

Depth, d

= 72 mm < 110 mm Adopting effective depth of waist slab as 110 mm and overall depth as 130 mm AREA OF STEEL FOR MAIN REINFORCEMENT: MU

= 0.87fyAstd (1–(fy Ast)/ (bdfck))

14.17 x 106

= 47850 Ast – 10.88 Ast2

Ast

= 320 mm2

Using 12 mm Ø bar = ((πd2/4) / 320) x 1000

Spacing, S

= 353 mm

75

Maximum Spacing, S

= 300 mm

Provide 12 mm Ø bar @ 300 mm C/C Spacing = 380 mm2

Ast (provide) DISTRIBUTION REINFORCEMENT: Minimum Reinforcement

= 0.12% b D = 160 mm2

Ast Using 8 mm Ø bar Spacing, S

= ((πd2/4) / 160) x 1000 = 315 mm

Maximum Spacing, S

= 300 mm

Provide 8 mm Ø bar @ 300 mm C/C Spacing DESIGN USING SP:16 DESIGN CHARTS:

Refer table 2 of SP:16

Mu / b d2

= 1.17

Ast

= (pt b d / 100) = (0.292 x 1000 x 110) / 100 =320 mm2

The reinforcement quantity is the same as obtain by analytical method

76

CHAPTER 9 DESIGN OF LINTEL AND SUNSHADE 9.1 DESIGN OF LINTEL STEP1: LOAD CALCULATION Assume size of the lintel as 230x230 mm Span + effective depth

= 5.25+0.2

Length L

= 5.45 m

Load from brick wall

= (0.23x0.63x20) = 2.89kN/m

Self weight of sunshade

= (0.6x0.007x25) = 1.05kN/m

Live load on sunshade

= 0.6x0.75 = 0.45kN/m

Total load Wu

= 4.39kN/m

Bending moment

= (WL2/10) = (4.39x5.452/10) = 13.03 kN- m

Factored moment

= 1.5x13.03 = 19.55 kN- m

Mu

= 0.138 fck b d2

19.55x106

= 0.138x25x230x d2

D

=156.94mm

Effective depth

= 200mm

Overall depth

= 230 mm Mu

200mm

= 0.138 fck b d2 = 0.138x25x230x2002 = 31.74 kN- m

Mulim > Mu hence the section is under reinforced

77

STEP2: CALCULATION OF REINFORCEMENT From IS456 – 2000 Annex G Mux

= 0.87x fy x Ast x d x[

19.55x106

= 0.87x415xAst x 2000 x [

Ast

= 305 mm2

Provide 12 mm bar Spacing

=

x1000

= 370mm Maximum spacing

= 300mm

Provide 12 mm dia bar @ 300 mm c-c spacing.

78

] ]

9.2 DESIGN OF SUNSHADE STEP1: DATA Length of overhang

= 0.6 m

Thickness of sunshade

= 70 mm

STEP2: LOAD CALCULATION Self weight of sunshade

= 0.7x1x25 = 1.75 kN/m

Live load Total load

= 0.75 kN/m W

= 2.5 kN/m

Concentrated load at free end = 1kN STEP3: EFFECTIVE SPAN Effective span Le

= 0.6+(0.23/2) = 0.715 m

STEP4: CALCULATION OF BENDING MOMENT Mmax

= (W1+12/2) + (W2x1) =(2.5x0.7152/2)+(0.715) = 1.35kNm

Factored moment

= 1.35x1.5= 2.03kNm

STEP5: CHECK FOR DEPTH Mu

= 0.138 fck b d2

2.03x106

= 0.138x25x1000x d2

d

=27mm<70 mm hence safe

STEP6: CALCULATION OF REINFORCEMENT Mux

= 0.87x fy x Ast x d x[

79

]

2.03x106

= 0.87x415xAst x 50 x [

Ast

= 118.25 mm2

Check for minimum reinforcement Astmin

= 0.12% BD = (0.12%100)x1000x70 = 84 mm2 < 118.25 mm2

Hence safe Provide 10 mm bar Spacing

=

π

x1000

= 70mm Maximum spacing

= 70x3=210mm

Provide 10 mm dia bar @ 210 mm c-c spacing.

80

]

CHAPTER 10

10.1 DESIGN OF UNDER GROUND WATER TANK GIVEN Size of water tank

(L x B x H)

= 9m x 4m x 4m

Angle of repose @ wet soil

= 300

Angle of repose @ dry soil

= 60

Unit weight of soil

= 20 ⁄

Grade of concrete

= 25 ⁄

Grade of steel

= 500 ⁄

PERMISSIBLE AND DESIGN VALUES Tension due to bending,

= 1.7 ⁄

Compression due to bending,

=7 ⁄

Steel reinforcement for strength,

= 115 ⁄

Design constant, m

=

(

)

= 13.33 n

=

(

(

))

= 0.447 j

=

–(

)

= 0.851 Q

=

(

= 1.33 DESIGN OF LONG WALLS Ratio of long walls (L / H)

= 2.25 > 2

Ratio of short walls (B / H)

=1<2

81

)

Long walls are designed as vertical cantilevers and Short walls are designed as continuous slab LONG WALL DESIGN By considering 1m run of wall(Tension near water face) Maximum BM @ top

= = 30.97

Maximum BM @ top

= = 69.17

DESIGN FOR THICKNESS OF WALL Maximum BM

=

Overall thickness, D

= 330

Assume cover, d’

= 40

Effective depth, d

= 290

REQUIRED FOR LONG WALL FOR INNER FACE = = 1092.5 Provide 10

bars

Spacing

= S

Hence provide 10

bars @ 180

82

x 1000

= 180

c/c spacing along vertical direction

REQUIRED FOR LONG WALL FOR OUTER FACE = = 2440.07 Provide 10

bars

Spacing

= S

Hence provide 10

x 1000

= 100

bars @ 100

c/c spacing along vertical

direction HORIZONTAL REINFORCEMENT FOR LONG WALLS =(

Area of distribution bars

)

= 990 Provide 10

bars

Spacing

= S

Hence provide 10

bars @ 100

x 1000

= 100

c/c spacing along horizontal direction

on both sides DESIGN OF SHORT WALL Maximum BM

=

Effective span

=[

= 86.46

]

= 4.33 m =√

Effective depth, d

= 255 Provide depth

= 290 83

< 290

REQUIRED FOR LONG WALL FOR OUTER FACE = = 3050 Provide 10

bars

Spacing

= S

Hence provide 10

x 1000

= 100

bars @ 100

c/c spacing along vertical

direction HORIZONTAL REINFORCEMENT FOR LONG WALLS =(

Area of distribution bars

)

= 990 Provide 10

bars

Spacing

= S

Hence provide 10

bars @ 100

x 1000

= 100

c/c spacing along horizontal direction

on both sides. DESIGN OF ROOF SLAB Let us assume overall thickness of slab t

= 150

Assume cover

= 25

Effective depth provided

= 125

LOAD CALCULATION Self weight of slab

= 1 x 0.15 x 1 x 25 = 3.75 84



Live load

= 2.5



Floor finish

= 0.5



Total load, W

= 6.75



⁄ ⁄

=

= 2.15 > 2 Hence one way slab MOMENT CALCULATION BM

= M

= 15.81

Effective depth, d

=√

Provide depth

= 125

= 109 < 125

REQUIRED FOR LONG WALL FOR OUTER FACE = = 1293.91 Hence provide 10

bars @ 155

c/c spacing along vertical direction

HORIZONTAL REINFORCEMENT FOR LONG WALLS =(

Area of distribution bars

)

= 450 Provide 10

bars

Spacing

= S

Hence provide 10

bars @ 110

on both side. 85

x 1000

= 110

c/c spacing along horizontal direction

CHAPTER 10.2

DESIGN OF ELEVATED WATER TANK GIVEN DATA Capacity

= 80000 liters

Height, H

=4m

Grade of concrete

= 25

Grade of steel

= 500



PERMISSIBLE AND DESIGN VALUES Tension due to bending,

= 1.2 ⁄

Compression due to bending,

=7 ⁄

Steel reinforcement for strength,

= 100 ⁄

Design constant, m

(

=

)

= 13.33 n

=

(

(

))

= 0.482 J

=

–(

)

= 0.839 Q

=

(

)

= 1.41 DIMENSIONS OF TANK Volume,

V

= Area x Height =

x4

Diameter of the tank, D

= 8.94 m

Overall length,

= 4 + 0.2 = 4.2 m

H 86

Assume thickness of wall and base slab t

= 160 mm

RING TENSION, BM & SHEAR IS 3370-D-IV in Table - 9 (

=

)

= 13 For tension

= = T

= 148.38 = 0.0122 x 13 x 4.23

For Bending Moment M

= 9.03

AREA OF STEEL FOR TENSION = = = 1484 Use 20

bars

Spacing, Hence provide 20

S

= 200

bars @ 200 mm c/c spacing Provided

= 1570

CHECK FOR THICKNESS =

(

)

1.2

=

t

= 105 mm < 160 mm

87

(

)

Hence safe AREA OF STEEL FOR BENDING MOMENT = = = 837.5 Use 12

bars

Spacing,

S

Hence provide 12

= 130 bars @ 130 mm c/c spacing

VERTICAL REINFORCEMENT Minimum vertical reinforcement @ top Minimum

= = 480

Use 12

bars

Spacing,

Hence provide 12

S

=

x 1000

S

= 230

bars @ 230 mm c/c spacing

88

CHAPTER 11

SEPTIC TANK DESIGN SYMBOLS USED A= volume of liquid to be stored in septic tank P= Number of people using the tank Q= sewage flow =90% of the daily water consumption F= sizing factor S= sludge and scum accumulation rate N= period between Step 1: TO FIND VOLUME OF TANK Volume of liquid entering the tank each day A q Assume p A

= Pxq = 0.9x Q = 0.9x200= 180 l/p/d = 1000 = 1000x180 = 180000 liters

Step 2: Volume of sludge and scam is given by, B

= P x N x Fxs

F

= 1.0 as all wastes go to tank

S

= 40 liters/person/day

B

= 1000x2x1x40 = 80000 liters

Assume N = 2 years

Step 3: Total tank volume

= A+B = 180000+80000

89

= 260000 liters = Total volume /1000 = 260m3 Step 4: Assume liquid depth

= 5m

Assume tank width

= Wm

Assume two compartments Length of first

= 2W

Length of second

=W

Volume of tank (V)

= 5 x (2W+W) x W = 15 W2

Thus

15W2

= 260 m3 W

Width of tank

= 4.16 = 4.16 m

Length of first compartment = 8.32 m Length of second compartment = 4.16 m Design of tank from floor to soffit of cover slab = Liquid depth + free board = 5.3 m Total volume of tank

= (8.32x4.16x5)+(4.16x4.16x5) = 259.584 m3

Mass of water displaced

= Volume x density of water = 259584 kg = 26.46 kN

90

CHAPTER 12

CONCLUSION Structural elements are designed in limit state method comparing manual design with STAAD.Pro, all the parameters of the elements are similar to that of the requirement. Thus in our design project, we learnt how to plan, analyze and design a hospital building. We came to know about the importance of civil engineering through our project as without civil engineering, the world cannot progress.

91

CHAPTER 12

REFERENCES 1. Indian Standard 10905:1984 (Part I) “Code of Practice for Room dimensions”. 2. Indian Standard 875:1987 (Part II) “Code of Practice for design loads in buildings and structures for Live Load Calculation”. 3. Indian Standard 456:2000 “Code of Practice for Plain and Reinforced Concrete (fourth revision)”, Bureau of Indian Standards, New Delhi. 4. Krishna Raju, N. “Design of Reinforced Concrete Structures”, CBS Publishers & Distributors, New Delhi, 2003. 5. Punmia, B.C. Ashok Kumar Jain and Arun Kumar Jain, “Reinforced Concrete Structures” Lakshmi Publications Pvt. Ltd, 10th Edition. 6. Sinha, N.C. and Roy S.K. “Fundamentals of Reinforced Concrete”, Chand, S. & Co, Ltd., New Delhi, 2011. 7. Indian Standard 3370:2009 (Part I) “Code of practice for concrete structures for the storage of liquids: Part I General requirements”, Bureau of Indian Standards, New Delhi. 8. Indian Standard 3370:2009 (Part II) “Code of practice for concrete structures for the storage of liquids: Part II Reinforced Concrete Structures”, Bureau of Indian Standards, New Delhi. 9. Indian Standard 3370:2009 (Part III) “Code of practice for concrete structures for the storage of liquids: Part III Reinforced Concrete Structures”, Bureau of Indian Standards, New Delhi. 10. Punmia, B.C. and Ashok Kumar Jain, “Soil Mechanics and Foundations” Firewall Media Publishers, 2005.

92

Related Documents

Final Book
June 2020 6
Final Book
July 2020 6
Final Book
April 2020 8
Final Book
June 2020 8
Book Feb 1 Final
July 2020 5

More Documents from "Shakib Shaikh"