6.002
CIRCUITS AND ELECTRONICS
Filters
http://electrical.globalautomation.info
Review
R
vI + –
C
+ vC –
ZR
Vi + –
ZC
+ Vc –
ZC Vc = ⋅ Vi ZC + Z R 1 Vc 1 jωC = = 1 Vi + R 1 + jωRC jω C Reading: Section 14.5, 14.6, 15.3 from A & L.
http://electrical.globalautomation.info
A Filter ZR
Vi + –
ZC
+ Vc –
ZC 1 ⋅ Vi = Vc = ZC + Z R 1 + jωRC Vc H (ω ) = Vi
1
Demo with audio
“Low Pass Filter”
ω
http://electrical.globalautomation.info
Quick Review of ImpedancesJust as I ab
A
R1
+ Vab
RAB
Vab = = R1 + R2 I ab
Z AB
Vab = = R1 + jωL I ab
R2
B
I ab
A
R1
–
+ Vab
j ωL B
–
http://electrical.globalautomation.info
Quick Review of Impedances Similarly
A
Z AB = R1 + Z C || R2 + Z L
R1 R2
C L B
= R1 +
Z C R2 + ZL Z C + R2
= R1 +
R2 + jω L 1 + jωCR2
http://electrical.globalautomation.info
We can build other filters by combining impedances Z (ω )
L Z
R C
ω
http://electrical.globalautomation.info
We can build other filters by combining impedances Z (ω)
L Z
R C
ω
H (ω )
HPF High Pass Filter
+ –
ω H (ω )
LPF Low Pass Filter ω
+ –
H (ω )
+ –
HPF ω
http://electrical.globalautomation.info
Check out:
C
L
+ R Vr –
+ –
Vi
Intuitively: Vr 1 Vi C
k bloc
eq r f w s lo
L bloc
ωo =
1
(1 − ω
ω RC
2
LC ) + (ω RC ) 2
freq
ω
LC
R Vr = 1 Vi jω L + +R jω C j ω RC = 1 − ω 2 LC + j ω RC Vr = Vi
ks hig h
2
At resonance, ω = ωo and ZL + ZC = 0, so Vi sees only R! More later…
http://electrical.globalautomation.info
What about:
Vlc
+ Vi + –
Vlc Vi 1
C open
L
– C
R
Band Stop Filter L open
ω
Check out Vl and Vc in the lab.
http://electrical.globalautomation.info
Another example: R + L
Vi + –
C
Vo –
Vo Vi ort h s L
BPF Cs
ωo
ho rt
ω
Application: see AM radio coming up shortly
http://electrical.globalautomation.info
AM Radio Receiver
antenna
R Vi + –
L
C
demodulator amplifier
Thévenin antenna model crystal radio demo
http://electrical.globalautomation.info
AM Receiver R Vi + –
L
C
demodulator amplifier
filter
signal strength 10 KHz
WBZ News Radio
f 540 …1000 1010 1020 1030 … 1600 KHz “Selectivity” important — relates to a parameter “Q” for the filter. Next…
http://electrical.globalautomation.info
Selectivity: Look at series RLC in more detail C
L
Vi + – Recall, Vr Vi
+ Vr –
R Vr R = Vi R + jω L +
1 1 2
1 jω C
higher Q
Δω
bandwidth
ωo ωo Define Q = Δω
ω
quality factor
high Q ⇒ more selective http://electrical.globalautomation.info
Quality Factor Q Q=
ωo Δω
ωο: R Vr = Vi R + jω L +
1 = 1 L 1 ⎞ ⎛ 1 + j⎜ ω − ⎟ jω C R CR ω ⎝ ⎠
at ωο =0 1 ωo = LC Δω ?
http://electrical.globalautomation.info
Quality Factor Q ωo Q= Δω Δω : Note that abs magnitude is when
Vr = Vi
i.e. when
1 2
1 1 = ⎛ L 1 ⎞ 1 ± j1 1 + j⎜ ω − ⎟ ω R CR ⎠ ⎝ 1 ωL − = ±1 R ω CR
ω2 ∓
ωR L
−
1 =0 LC
Looking at the roots of both equations, R 1 ω1 = + 2L 2
R2 4 + L2 LC
R 1 ω2 = − + 2L 2
R2 4 + L2 LC
R Δω = ω1 − ω2 = L
http://electrical.globalautomation.info
Quality Factor Q
Q= Q=
ωo Δω ωo R L
=
ωo L R
1 ωo = LC
The lower the R (for series R), the sharper the peak
http://electrical.globalautomation.info
Quality Factor Q Another way of looking at Q : energy stored Q = 2π energy lost per cycle = 2π
1 L Ir 2
2
1 2 2π Ir R 2 ω0 ωo L Q= R
http://electrical.globalautomation.info