BALANCES- MODELAMIENTO EVAPORADOR DE EFECTO SIMPLE
F3(t) CB3(t) hF3(t) Qvapor
Fs (t)
Fs(t)
Ξ½ (t)
T0 (t)
Ts(t)
F2(t) F1(t)
CA2(t)
CA1(t)
hF2(t)
hF1(t)
BALANCE GLOBAL ο· F1 (t) β F2(t) β F3(t) =
π
π(π)
ο· F1D(t) β F2D(t)- F3D(t) =
π
π π
ππ« (π) π
π
(1)
BALANCE COMPONENTE A ο· CA1(t) F1 (t) β CA2(t) F2(t) = ο·
π
π
π
[Ξ½(t). CA2(t)]
a1 CA1D(t) + a2CA2D(t) + a3 CA2D(t) + a4 F2D(t) = a5 ππͺπ« π¨π (π) ππ‘
(2)
π
ππ« (π) π
π
+ a6
ο· ο· ο· ο· ο· ο·
a 1 = ππ a2 = πͺπ¨π a3 = -ππ a4 = -πͺπ¨π a5 = πͺπ¨π a6 = π½
REEMPLAZANDO (1) EN (2) ο·
a1CA1D(t) + a2 F1D(t) + a3 CA2D (t) + a4F2D(t) = a5 F1D(t) - a5 F2
D(t)
- a5 F3
D(t)
+ a6
π
πͺπ« π¨π (π) π
π
DESPEJANDO CA2D(t) ο·
βππ ππ
CA1D(t) +
ππ π
πͺπ« π¨π (π) βππ
ο·
ο·
π
π
G1(s) =
G2(s) =
ο· G3(s) =
(ππ βππ ) βππ
F1D(t) +
(ππ +ππ) βππ
+ CA2D (t)
πͺπ« π¨π (π) πͺπ« π¨π (π) πͺπ« π¨π (π) ππ« π
πͺπ« π¨π (π) ππ« π (π)
=
=
=
π²π
=
π.ππ
ππ π+π ππ.π πΊ+π π²π ππ πΊ+π
π²π
=
=0
ππΊ+π
βπ.πππΏππβπ ππ.π πΊ+π
F2D(t) +
ππ βππ
F3D(t) =
ο·
G4(s)=
ο·
K1 =
ο·
K2 =
ο·
K3 =
ο·
K4 =
ο·
Ο1=βππ
πͺπ« π¨π (π) ππ« π (π)
=
π²π ππΊ+π
=
π.πππ ππ.π πΊ+π
ππ
βππ (ππ βππ ) βππ
(ππ +ππ ) ππ ππ
βππ π
π
BALANCE DE ENERGIA ο· F1(t)hF1(t) β F2(t)hF2(t) β F3(t)hF3(t) + Qch(t) =
π
π
π
[π π½(π) πΌ(π)]
ο· F1(t)Cp1T1(t) - F2(t)Cp2T2(t)- F3(t)Cp3Teb(t) + UA[T2(t)- Ts(t)] π
= [π(π)πΌ(π)] π
π
REEMPLAZAR U(t) ο· a7F1D(t) + a8T1D(t) + a10F2D(t) + a11T2D(t)+a12F3D(t)+a13TebD(t) + a14
TsD(t)
ο· a7F1
D(t)
=a15
π
ππ« (π) π
π
+ a 8 T1
D(t)
π
+a16Cv [T2D(t)] π
π
+ a10F2
D(t)
+ a11T2D(t)+a12F3D(t)+a13TebD(t)+ π
a14TsD(t) = a15 F1D(t)- a15F2D(t)- a15 F2D(t) + a16 Cv π»π« π (π) π
π
ο· (a7 β a14 )F1D(t)- a8 T1D(t)- (a9+a14)F2D(t) β a10T2D +( a11+a14) F3D(t) + a12 T3D(t)= a15Cv ο·
ππ βπππ βπππ
F1D(t) + (
TebD(t) +
οΌ οΌ οΌ οΌ
πππ βπππ
ππ βπππ
TsD(t) =
a7 = Cp1π»1 a8 =Cp1 ππ a10 = - Cp2π»2 a11 =βπ2Cp2 + UA a13= βπ3Cp3 a14 = UA a15= Cv π»2 a16= Cv π½
οΌ K5 = οΌ K6 =
ππ βπππ βπππ ππ βπππ
= π. πππ =
= π. ππ
π
π
T2D(t)
)T1D(t) +
οΌ a12= - Cp3π»eb οΌ οΌ οΌ οΌ
π
πππ +πππ βπππ
πππ πͺπ π
π»π« π (π) βπππ
π
π
F2D(t) + + T2D(t)
πππ +πππ βπππ
F3D(t) -
πππ βπππ
οΌ K7 = οΌ K8 = οΌ K9 =
πππ +πππ βπππ πππ +πππ βπππ πππ βπππ πππ
= βπ. ππ = π. ππππβπ
= βπ. ππ
οΌ K10 =
= βπ. πππ
οΌ Ο2 =
πͺπ = ππ. ππ
βπππ πππ
βπππ
ο· G5(s)= ο· G6(s)= ο· G7(s)= ο· G8(s)= ο· G9(s)=
π»π« π (π)
=
ππ« π (π) π»π« π (π) π»π« π (π) π»π« π (π) ππ« π (π) π»π« π (π) ππ« π (π) π»π« π (π) π« π»ππ (π) π»π« π (π) π»π« π (π)
=
ππ πΊ+π
=
π.ππππ
=
ππ πΊ+π ππ.ππ πΊ+π π²π
=
ο· G10(s)=
π²π
π²π ππ πΊ+π π²π ππ πΊ+π
=
ππ.ππ πΊ+π
= =
π²π ππ πΊ+π
=
π.ππ
=
π²ππ ππ πΊ+π
βπ.ππ ππ.ππ πΊ+π π.ππππβπ
ππ.ππ πΊ+π
= =
βπ.ππ ππ.ππ πΊ+π βπ.πππ ππ.ππ πΊ+π
ο· Qch(t) = Qs1(t) + Qvap(t) ο· UA [T2(t)-Ts(t)] = F1(t) Cp1 [Teb(t) β T1(t)] + Ξ»F3(t) π π π π π ο· F3D(s) = ππ T2D(s) + ππTsD(s) + ππF1D(s) + ππ TebD(t) + ππ T1D(t) π
π
π
π
π
ο· ο· ο· ο· ο·
a17 = πΌπ¨ a18 = βπΌπ¨ a19 = βπͺππ (π»ππ β π»π ) a20 = - ππ πͺππ a21 = ππ πͺππ
οΌ K11 = οΌ K12 = οΌ K13 = οΌ K14 = οΌ K15 =
πππ π πππ π πππ π πππ π πππ π ππ« π (π)
πππ
ο· G11(s)=
=
ο· G12(s)=
=
ο· G13(s)=
=
ο· G14(s)=
=
ο· G15(s)=
=
π»π« π (π) ππ« π (π) π»π« π (π) ππ« π (π) π»π« π (π) ππ« π (π) π« π»ππ (π) ππ« π (π) π»π« π (π)
π πππ π πππ π πππ π
πππ π
= π. πππ = βπ. πππ = βπ. πππ = βπ. ππ = π. ππ
Teb(t) = Teb + 0.15 Keb CA2(t) TebD(t) = a22 CA2D(t) a22 = 0.15Keb π»π« ππ (π) = πππ πͺπ« (π) π¨π
οΌ K16 = πππ = π. ππ Keb ο· G16(s)=
π»π« ππ (π)
πͺπ« π¨π (π)
= K16 = 0.078
BALANCE DE MASA PARA LA CHAQUETA ο· FS1(t) - FS2(t) = 0 ο· FS1(t) = FS2(t) BALANCE DE ENERGΓA PARA LA CHAQUETA ο· FS(t) Cp TO(t) β FS(t) CP TS(t) β Q1(t) = Ο Vc Cv
π
π»πΊ (π) π
π
ο· FS(t) Cp TO(t) β FS(t) CP TS(t) β UA [Ts(t) β T2(t)] = Ο Vc Cv ο· FS(t) [Cp TO(t) - CP TS(t)] β UA [Ts(t) β T2(t)] = Ο Vc Cv ο· a23FsD(t) + a23ToD(t) + a25TsD(t) + a26T2D(t) = a25
π
π»π« π (π) π
π
π
π»πΊ (π)
π
π π
π»πΊ (π) π
π
ο· ο· ο· ο· ο·
a23 = πͺπ π»π - πͺπ π»π a24 = πͺπ ππ a25 = -UA - πͺπ π»π a26 = UA a27 = Ο Vc Cv
οΌ K17 = οΌ K18 = οΌ K19 = οΌ Ο3 =
πππ βπππ πππ βπππ πππ βπππ πππ
βπππ
ο· G17(s)=
π»π« π (π)
ππ« π (π) π« π»π (π) π»π« π (π) π»π« π (π) π»π« π (π)
=
ο· G18(s)=
=
ο· G19(s)=
=
π²ππ ππ πΊ+π π²ππ
ππ πΊ+π π²ππ ππ πΊ+π
= = =
π.πππ π.πππΊ+π π.ππ π.ππ πΊ+π π.πππ π.ππ πΊ+π
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 a22 a23 a24 a25 a26 a27
5 [lb/min] 0,032 -3,3 [lb] -0,048 0,048 35 [ lb] 1247 9493,85 -1599,68 -1590,68 -6165,94 -776,2 -3113,5104 -100 790,4 33022,08 100 -100 -314,7 -9493,85 9493,85 0,078
K1 T0 T1 T2 TEB Cp Cv F1 F2 F3 UA Ξ»
1,52 423 298Β°k 100,17 Β°C 4,186 [J/gΒ°K] 2,08 [J/gΒ°K] 5,5 [lb/min] 3,3 [lb/min] 1,7 [lb/min] 100 2204,586
EVAPORADOR DE EFECTO SIMPLE
NATHALIA FALK URIBE JΓLIAN GONZALEZ JEREZ JUAN CAMILO MORENO SEGOVIA FERMΓN ORTEGA GARCIA
GIOVANNY MORALES MEDINA
UNIVERSIDAD INDUSTRIAL DE SANTANDER ESCUELA DE INGENIERIA QUΓMICA BUCARAMANGA
29 DE MARZO DE 2019 OBJETIVOS ο§ Aplicar los conceptos obtenidos durante la asignatura control de procesos, para poner en practima en el tema asignado evaporador de efecto simple ο§ Modelar un evaporador de efecto simple bajo condiciones especiales para un funcionamiento Γ³ptimo sin inconvenientes a futuro ο§ Manejar herramientas como Simulink para realizar el diagrama de bloques y sus respectivos cΓ‘lculos, ecuaciones y condiciones que permite el programa para el modelamiento y lineralizaciΓ³n del proceso. ο§ Se muestra el desarrollo del sistema de control y modelo matemΓ‘tico para un evaporador de efecto simple utilizado para dos compuestos
DESCRIPCIΓN DEL PROCESO