Tipos de ondas http://www.info7.mx/internacional/conoce-los-tipos-de-sismos-y-su-medicion/1955411
Escala para medir sismos https://es.wikipedia.org/wiki/Escalas_de_magnitud_s%C3%ADsmica
Licuefacción de suelo https://es.wikipedia.org/wiki/Licuefacci%C3%B3n_de_suelo
LA RESPUESTA SÍSMICA DE LOS SUELOS Evidencias del efecto local Méjico (1985) Un ejemplo de la amplificación de la señal sísmica se produjo durante el terremoto de Méjico de 1985. Este terremoto se caracterizó por una magnitud de 8.1. El seísmo provocó daños severos en edificios altos y lo que es más remarcable, a una distancia epicentral alta (alrededor de 300 km). Por este motivo ha sido muy estudiado en ingeniería sísmica. Las características del movimiento se pueden resumir en: gran amplificación a períodos largos, larga duración y períodos predominantes claramente definidos. La ciudad de Méjico está situada en el valle de Méjico, de 20 km de ancho y 1.5 km de profundidad. La cuenca del valle está constituída por rocas sedimentarias de edad Mesozoica y está relleno de rocas volcánicas Cuaternarias y Terciarias, y depósitos lacustres y aluviales Cuaternarios, y de una capa de arcilla de potencia variable, entre 30 y 70 m, extremadamente blanda. El subsuelo de la ciudad de Méjico se dividió en tres zonas (fig. 3.1): la zona de la colina (Hill Zone), la zona del lago (LakeBed Zone) y la zona de transición (Transition Zone). La zona del lago está constituida geológicamente por una arcilla blanda y la zona de colina por rocas volcánicas Cuaternarias y Terciarias volcánicas (figs. 3.1 y 3.2 San Francisco (1906, 1989) Un estudio de daño sísmico realizado en la ciudad de San Francisco llegaba a la conclusión, ya a principios del siglo pasado, que la cantidad de daño producido por un terremoto dependía del carácter geológico del suelo principalmente y que cuando la sacudida se producía en la roca sólida producía daños pequeños y en cambio los daños eran mayores sobre suelo [62]. La bahía de San Francisco se sitúa en una zona de alta sismicidad por lo que constituye el entorno ideal para el estudio de la respuesta sísmica del suelo in-situ. Se localiza en un valle de orientación noroeste-sudeste y está limitada por dos fallas activas, la falla San Andreas y la falla Hayward, que constituyen los margenes de la bahía oeste y este respectivamente.
Efectos inducidos Los efectos inducidos por un terremoto son fenómenos que suelen producirse durante o después de un terremoto. Las roturas de taludes, caídas de rocas y otros deslizamientos así como la licuefacción son efectos inducidos. Algunos autores consideran estos fenómenos como una de las categorías de los efectos locales [67], pero en general se estudian aisladamente. Un terremoto induce en el suelo condiciones no drenadas, es decir, debido a la aplicación de la carga cíclica y rápida como la que constituye un seísmo se produce un incremento de la presión en los poros entre las partículas que puede provocar que las tensiones efectivas tiendan a cero, es decir, se produce una pérdida de la tensión en el contacto entre las partículas. Esto provoca una transformación en el estado del suelo, ya que adquiere la forma de una suspensión. Este fenómeno se llama licuefacción y se produce principalmente en suelos arenosos saturados. También se ha observado este fenómeno en suelos cohesivos, pero requiere de una mayor energía para producirse, gracias a que la cohesión los previene frente a la licuefacción. El potencial de licuefacción depende de dos factores: la naturaleza de la sacudida (intensidad y duración del terremoto) y de la susceptibilidad del material a licuefactar. Este fenómeno induce daños severos en estructuras, edificios y líneas vitales (infraestructuras de transporte de personas, distribución de mercancías y telecomunicaciones). Por lo tanto, la zonación de la licuefacción es uno de los aspectos vitales para la reducción del daño sísmico. Asimismo las roturas de taludes durante los terremotos son frecuentes y también inducen daños en estructuras situadas cerca de los taludes. Estos fenómenos incluyen caídas de rocas, deslizamientos, avalanchas, flujos de tierra, etc. y dependen de dos factores: las fuerzas externas (gravitacionales y sísmicas) y la resistencia al movimiento del material. La zonación de la inestabilidad de los taludes requiere información topográfica, geotécnica y geológica detallada, hecho que, en muchas ocasiones, representa una gran limitación (dificultad de acceso a la zona de estudio, falta de estudios del terreno in situ, etc.). El análisis de los efectos inducidos no forma parte de los objetivos del presente trabajo.
Impacto del movimiento del suelo Los efectos de un sismo traen como consecuencia el sacudimiento del suelo, los incendios, las olas marinas sísmicas y los derrumbes, así como la interrupción de los servicios vitales, el pánico y el choque psicológico. Los daños dependen de la hora en que ocurre el sismo, la magnitud, la distancia del epicentro, la geología del área, el tipo de construcción de las diversas estructuras, densidad de la población y duración del sacudimiento. Para cuantificar o medir el tamaño de un temblor se utilizan las escalas de intensidad y magnitud. La escala de Intensidad o de Mercalli está asociada a un lugar determinado y se asigna en función a los daños o efectos causados al hombre y a sus construcciones. La escala de
Magnitud o Richter está relacionada con la energía que se libera durante un temblor y se obtiene en forma numérica a partir de los registros obtenidos con los sismógrafos, esta es la manera más conocida y más ampliamente utilizada para clasificar los sismos. Premonitorios. Frecuentemente algunos temblores grandes son precedidos por temblores de menor magnitud generados al inicio del fracturamiento alrededor de lo que será la región focal del gran temblor, conocidos como temblores premonitorios. No es fácil determinarlos ya que no es posible diferenciarlos de la sismicidad normal de una región, por lo que en la generalidad de los casos, se sabe que un temblor es premonitorio sólo en el contexto de la actividad posterior. Replicas. Los sismólogos también han observado que, inmediatamente después de que ocurre un gran temblor, éste es seguido por temblores de menor magnitud llamados réplicas y que ocurren en las vecindades del foco del temblor principal. Como estos sismos ocurren en la zona de ruptura del temblor principal, su ocurrencia se debe probablemente al reajuste mecánico de la región afectada que no recupera su estado de equilibrio inmediatamente después del temblor principal. Inicialmente, la frecuencia de ocurrencia es grande pero decae gradualmente con el tiempo. El estudio de las réplicas de un gran temblor se ha aprovechado para estimar las dimensiones de la zona de ruptura y otros estudios científicos, pero desde el punto de vista social es necesario conocer su ocurrencia para adoptar una actitud previsora. Las réplicas son de menor magnitud y pueden ocurrir minutos, días y hasta años después del evento principal, el número de estas puede variar desde unos cuantos sismos hasta cientos de eventos. Predicciones sísmicas. Los sismos son un fenómeno recurrente. La acumulación suficiente de energía en cualquier lugar tendrá que liberarse reiteradamente mediante la ocurrencia de un nuevo sismo. Los eventos símicos ocurren periódicamente en las mismas regiones geográficas; a medida que pasa el tiempo en una región donde no ha ocurrido un temblor fuerte, mayor es la probabilidad de que ahí ocurra uno. Es de esperarse que en las regiones donde ya se han presentado sismos fuertes, vuelvan a presentarse en el futuro. La predicción como resultado de la comprensión de un proceso de la naturaleza es una de las metas de toda ciencia, por lo que la sismología no es ajena a estas aspiraciones. Hasta hoy no existe una técnica eficaz que permita predecir los sismos ni en los países como Estados Unidos y Japón cuya tecnología es muy
avanzada. Pero los adelantos logrados y el conocimiento adquirido nos permiten aseverar que llegará pronto el día que la posibilidad de anticipar la ocurrencia de un terremoto sea una realidad cotidiana. Los Sistemas de Alerta Sísmica (SAS) implantados en algunos países dan la oportunidad de conocer el inicio de un sismo fuerte cerca de su epicentro, la diferente velocidad de propagación de las ondas sísmicas y eléctricas, y la distancia entre el sitio del epicentro sísmico y el lugar donde se desea prevenir sus efectos. La eficacia de esta tecnología depende del resultado de las acciones como captar el sismo, pronosticar su magnitud e informar oportunamente a la población en riesgo para que responda adecuadamente, todas estas acciones tienen posibilidad de falla. El SAS es capaz de brindar, por medio de la radio y la televisión, un aviso de entre 50 y 70 segundos, previo a la llegada de un macrosismo de 6 grados o más en la escala de Richter.
EL MOV IMIENTO SÍSMIC O La magnitud es una medida de la energía producida por un sismo y no es una medida del movimiento que se sintió. Lo que usted sienta es muy complicado - fuerte o suave, largo o corto, brusco o en vaivén – y no es posible describirlo por medio de un número. Algunos de los aspectos del movimiento pueden ser descritos por la velocidad (qué tan rápido se mueve el suelo), la aceleración (qué tan rápido está cambiando la velocidad del suelo), la frecuencia (ondas sísmicas vibran en diferentes frecuencias igual que las ondas sonoras), y la duración (qué tanto dura el movimiento fuerte). Lo que sienta durante un terremoto es controlado por tres factores principales: magnitud, distancia y condiciones locales del suelo.
Magnitud Típicamente, usted sentirá un movimiento más intenso por un terremoto grande que por uno pequeño. Los terremotos mayores también descargan su energía sobre una área más extensa y por un período de tiempo más largo. Un terremoto comienza en el hipocentro, y de ahí el frente de la ruptura viaja a lo largo de la falla, produciendo ondas todo el tiempo que esté en movimiento. Cada punto que el frente de la ruptura atraviesa, produce movimiento, así que, las fallas más largas producen terremotos más grandes que tienen duraciones más largas. Las duraciones de 15 terremotos son mostradas en la página anterior. Para un evento de magnitud 5, el proceso de ruptura de la falla, en sí, se termina en unos cuantos segundos, aunque usted continúe sintiendo el temblor por más tiempo, porque algunas ondas le llegan después de que rebotan y producen un eco dentro de la Tierra. El terremoto de magnitud 7.8 en la falla de San Andrés en 1857 rompió casi 360 kilómetros (220 millas) de la falla. A 3 kilómetros (2 millas) por segundo, se tomó dos
minutos para que esa distancia de la falla se rompiera, así que usted hubiera sentido el temblor por varios minutos. Si la idea de un terremoto de dos minutos le asusta, recuerde que parte de la energía estará viajando desde 400 kilómetros (250 millas) de distancia o más. En casi todos los casos, solamente de 10-15 segundos del temblor, que se origine en la parte de la falla más cercana a usted, será muy fuerte.
Imagen más grande Los terremotos Nisqually en el 2001 (M6.8) y Northridge en 1994 (M6.7) mostrados arriba proveen un ejemplo interesante de cómo la distancia de un terremoto afecta el nivel de movimiento que se sienta. Aunque el terremoto Nisqually fue un poco más grande que el Northridge en la escala de magnitud, el daño resultante fue mucho menor. Una razón es que la sección de falla que se movió fue mucho más profunda que la falla que se movió en el terremoto Northridge. Así que cada casa estaba por lo menos a 50 kilómetros (30 millas) de la falla.
Distancia Las ondas del terremoto disminuyen en intensidad mientras viajan por la tierra, por eso el temblor es menos intenso mientras más lejos esté de la falla. Las ondas de baja frecuencia disminuyen con menos rapidez con la distancia que las ondas de alta frecuencia (así como puede oír sonidos de tono bajo desde más lejos que los sonidos de tono alto). Si se encuentra cerca de un terremoto, usted experimentará todo el movimiento producido por el terremoto y se sentirá “sacudido”. Más lejos, las más altas frecuencias se habrán disipado y usted sentirá un movimiento en vaivén.
La cantidad de daños a una estructura no depende solamente de qué tan fuerte sea sacudida. En general, las estructuras más pequeñas como las casas quedan más dañadas por las frecuencias altas, así que usualmente las casas deberán de estar relativamente cerca al hipocentro para que sean severamente dañadas. Las estructuras
más grandes como los rascacielos y los puentes son dañados más por frecuencias bajas y serán más notablemente afectados por los terremotos mayores, aun a distancias considerables. El movimiento disminuye más rápido con la distancia en el oeste de los Estados Unidos que en la corteza más vieja y rígida del este de los Estados Unidos.
Condiciones locales de la tierra Ciertos tipos de tierra amplifican grandemente el movimiento durante un terremoto. Pasando de roca a tierra, las ondas sísmicas reducen su velocidad pero se hacen más grandes. Así que, una tierra suelta y suave puede temblar más intensamente que la roca dura, estando a la misma distancia del mismo terremoto. Un ejemplo extremo de este tipo de amplificación fue en el distrito de la Marina de San Francisco durante el terremoto Loma Prieta en 1989. Ese terremoto ocurrió a 100 kilómetros (60 millas) de San Francisco, y casi toda el área de la Bahía escapó de daños serios. Sin embargo, algunos sitios en el área de la Bahía, en vertederos de basura o suelos blandos, experimentaron un movimiento significante. Este movimiento amplificado fue uno de los motivos del desplome de la autopista elevada Nimitz. El movimiento del suelo en esos sitios fue más de 10 veces mayor que en sitios cercanos que están sobre roca. Los mismos factores también se aplican a las áreas cubiertas por sedimento grueso – como la cuenca de Los Ángeles en el Sur de California donde los sedimentos pueden llegar a medir hasta 10 kilómetros (6 millas) de espesor. El movimiento de un terremoto en la región puede ser 5 ó más veces más grande en un sitio en la cuenca que el nivel de movimiento en las montañas cercanas.
Imagen más grande Amplificación de Movimiento Sísmico en el Sur de California
Imagen más grande Movimiento Relativo en Terremotos Futuros En estas imágenes de la cuenca de Los Ángeles, la imagen de abajo muestra el espesor de cuencas sedimentarias, y la imagen de en medio muestra la suavidad de las rocas y sedimentos cerca de la superficie. La imagen de arriba es la amplificación total esperada en terremotos futuros a causa de estas características.
Posdata Varios otros factores pueden tener un efecto en el movimiento. Las ondas de un terremoto no viajan en forma pareja en todas las direcciones desde la superficie de ruptura; la orientación de la falla y la dirección de movimiento pueden cambiar las
características de las ondas en diferentes direcciones. Esto se llama modelo de radiación. Cuando la ruptura de un terremoto se mueve a lo largo de la falla, ésta enfoca su energía en la dirección en la cual se está moviendo, así que una localidad que quede en esa dirección recibirá más movimiento que un sitio localizado a la misma distancia de la falla pero en dirección opuesta. Esto se llama directividad.
En las zonas de subducción es en donde se registran los temblores más profundos. A lo largo de las trincheras generalmente existe una gran cantidad de sismos, delimitando una zona que se conoce como “zona de Benioff”. Las trincheras, en sí, se asocian a una gran cantidad de sismos y volcanes.
¿Qué pasa en la zona de subducción? La placa subducida avanza sin resbalar, la deformación aumenta hasta que los esfuerzos son más grandes que la fricción entre ellas, el contacto se rompe y ambos lados de la ruptura se desplazan (dando lugar a un sismo) permitiendo el avance de las placas; posteriormente, el contacto entre las placas sana y comienzan de nuevo a acumular energía de deformación y el ciclo se repite. La explicación a muchos de los fenómenos sísmicos y volcánicos que han ocurrido en los últimos años es que son consecuencia de Fallas Tectónicas y obviamente del movimiento de las Placas Tectónicas. Desde al punto de vista geológico, las zonas conocidas como las más activas del mundo en estos términos forman dos grandes alineaciones de miles de kilómetros de longitud y sólo unos pocos de ancho:
Cinturón Circumpacífico (conocido como "Cinturón de Fuego"). Rodea casi totalmente el Pacifico, se extiende a los largo de las costas de América del Sur, México y California hasta Alaska; después continúa por las islas Aleutianas, antes de dirigirse hacia el sur a través de Japón y las Indias orientales. La mayor parte de la energía sísmica se libera en esta región, libera entre 80 y 90% de la energía sísmica anual de la Tierra.
Cinturón Eurasiático-Melanésico, (Alpino-Himalaya) que incluye las cordilleras alpinas de Europa y Asia, conectando con el anterior en el archipiélago de Melanesia. Desde España se prolonga por el Mediterráneo hasta Turquía, el Himalaya y las Indias Orientales. Esta inmensa falla se produce por las plataformas Africana e India que se mueven hacía el norte rozando levemente la plataforma Euroasiática. Aunque la energía liberada aquí es menor que en el del Pacífico, a lo largo
de los años ha producido devastadores terremotos, como el ocurrido en China en 1976, donde murieron más de 650 mil personas.
Una tercera región altamente sísmica la formaría la Dorsal Mesoatlántica ubicada en el centro del Océano Atlántico.
Si comparamos la distribución mundial de epicentros (sismicidad mundial) con las principales Placas Tectónicas, vemos inmediatamente que las franjas sísmicas corresponden, en su gran mayoría y de forma impresionante, con las fronteras entre las placas, esto es, cada tipo de interacción entre placas produce sismos.
Características El punto exacto en donde se origina el sismo se llama foco o hipocentro, se sitúa debajo de la superficie terrestre a unos pocos kilómetros hasta un máximo de unos 700 km de profundidad. El epicentro es la proyección del foco a nivel de tierra, es decir, el punto de la superficie terrestre situada directamente sobre el foco, donde el sismo alcanza su mayor intensidad. El fallamiento (falla) de una roca es causado precisamente por la liberación repentina de los esfuerzos (compresión, tensión o de cizalla) impuestos al terreno, de esta manera, la tierra es puesta en vibración; esta vibración se debe a que las ondas sísmicas se propagan en todas las direcciones y trasmiten la fuerza que se genera en el foco sísmico hasta el epicentro en proporción a la intensidad y magnitud de cada sismo.