Exo

  • Uploaded by: Kimo
  • 0
  • 0
  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Exo as PDF for free.

More details

  • Words: 200
  • Pages: 1
1

Préliminaires

Soient ϕ ∈ R, p ∈ N. Démontrer que : sin ((2p + 1)ϕ) =

p X

(−1)k

k=0

2



 2p + 1 . cos2p−2k (ϕ). sin2k+1 (ϕ) 2k + 1

Liminaires ( Lol !)

ϕ

Soient ϕ ∈ R, p ∈ N tel que 6∈ Z. π Démontrer que : sin ((2p + 1)ϕ) = sin2p+1 (ϕ).

p X

(−1)k

k=0



2p + 1 2k + 1



p−k cotan2 ϕ

Soient p ∈ N∗ et P le polynôme déni par : P (X) =

p X

k

(−1)

k=0



 2p + 1 .X p−k 2k + 1

 hπ a) Pour tout entier h ∈ [|1, p|], on pose αh = cotan . Calculer P (αh ) pour tout entier h ∈ [|1, p|]. 2p + 1   2 b) Montrer que la fonction cotan est strictement décroissante sur 0, π2 En déduire que P admet p racines 2



distinctes que l'on déterminera. c) En déduire :

p X

cotan2

k=1



kπ 2p + 1



=

p(2p − 1) 3

et p X

k=1

2

sin

1 

kπ 2p+1

=

-guigui-

1

2p(p + 1) 3

Related Documents

Exo
October 2019 47
Exo
October 2019 37
Exo-algo
December 2019 70
Topologie Exo
April 2020 21
Suite Exo
April 2020 15
Agel Exo
October 2019 37

More Documents from ""

Rubiii
October 2019 8
Exo
October 2019 47