Exeter

  • Uploaded by: api-3830967
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Exeter as PDF for free.

More details

  • Words: 1,671
  • Pages: 47
The distortive tendencies of π electrons in π-delocalized systems

P.C. Hiberty, LCP, Groupe de Chimie Théorique, 91405 Orsay Cedex, France S. Shaik, Department of Organic Chemistry, Hebrew University of Jerusalem, 91904 Jerusalem, Israel  

 

1

What is the driving force for the regular geometry of benzene, allyl, etc… π bonds or (and?) σ bonds?

ÆE < 0

ÆE < 0

­, ¥, +

­, ¥, +

Are π bonds stabilized by delocalization?  

 

2

The traditional view (Hückel): pure π effect ÆE < 0

ÆE < 0

E = 6ß

­, ¥, +

E = 8ß

E = 2ß

­, ¥, +

E= 2.8ß

• paradoxes ¹­bonding energy

• unexplained experimental facts

« π bonds are stabilized by delocalization »    

3

First paradox:results of Hückel with variable β β

β ¥

ÆE < 0

β−δ

β+δ ¥

β

β β+δ

β−δ

ÆE < 0

 

 

4

Some (many) paradoxes: ÆE < 0

H

H H

ÆE < 0 ­ , ¥, +

H

ÆE < 0

H

H

H

H

H H

H3•, H3– distort to H2 + H•, H2 + H–

­ , ¥, +

3­orbital, 3­electron

3­orbital, 3­electron

≡ H- transfert transition state 3­orbital, 4­electron

C

H

C

3­orbital, 4­electron

≡ SN2 transition state  

H

H

X

 

Y

M.J.S. Dewar, Organometallics 1, 1705 (1982) 5

The valence bond model of electronic delocalization: Any delocalized system can be considered as a transition state in an exchange reaction: H

H +

H H

 

¥ H

H H

H

¥ H +

H H

H

H

H

H

H H

 

H

H

H

H

H H

H

H

H H

Etc… 6

Example: the exchange reaction X• + X-X → [X--X--X]• → X–X + X•

X1–X2     X3•

X1•     X2–X3

X1 –X2      X3• X1 X2 .............X3

 

X1 •      X2–X3 X1 .......X2 ......X3

 

X1.............X2 X3

7

Example: the exchange reaction X• + X-X → [X--X--X]• → X–X + X• X1 ––––––X2 X3 •

X1 –X2      X3• X1 X2 .............X3

 

X1 •      X2–X3 X1 .......X2 ......X3

 

X1.............X2 X3

8

Example: the exchange reaction X• + X-X → [X--X--X]• → X–X + X• X1 •  X2––––––X3

X1 ––––––X2 X3 •

X1 –X2      X3• X1 X2 .............X3

 

X1 •      X2–X3 X1 .......X2 ......X3

 

X1.............X2 X3

9

Example: the exchange reaction X• + X-X → [X--X--X]• → X–X + X• X1 •  X2––––––X3

X1 ––––––X2 X3 •

G∝De(X–X)

X1 –X2      X3• X1 X2 .............X3

 

X1 •      X2–X3 X1 .......X2 ......X3

 

X1.............X2 X3

10

Stability or unstability of X3• clusters: X• + X-X → [X--X--X]• → X–X + X• G = ∝ De(X-X)

G

G

G

Strong bonds (H3): Large barrier

Weaker bonds (Cl3): Smaller barrier

Weak bonds (Li3): Stable cluster

De(H2) = 110 kcal/mol H  3 and H6 very unstable

De(Cl2) = 58 kcal/mol Cl3 and  Cl6 unstable

De(Li2) = 21 kcal/mol Li3 and Li6 stable11

Stability or unstability of X3• clusters: X• + X-X → [X--X--X]• → X–X + X• G = ∝ De(X-X)

G

G

Strong bonds (H3): Large barrier

G

Weaker bonds (Cl3): Smaller barrier

π bonds: De (πC-C) = 60 kcal/mol.   Unstable delocalized systems ?  

Weak bonds (Li3): Stable cluster

12

Benzene’s resistance to a Kekulé distortion

Total energy

∆E(tot) = ∆E(σ) + ∆E(π) >0 >0 ? How to probe ∆E(σ) alone? How to « turn off » π-bonding?  

 

13

First try: distort the bare σ frame

+

+ +

+ +

+

+

+ + 1.4627

1.40

1.34

D6h

D3h

∆E(tot) = 7.2 kcal/mol

 

+

+ +

∆E(σ) + ∆E(π)

 

14

First try: distort the bare σ frame

+

+ +

+ +

+

+

+ + 1.4627

1.40

1.34

D6h

D3h

∆E(tot) = 7.2 kcal/mol

 

+

+ +

∆E(σ) + ∆E(π) 14.1 -6.9

 

15

Second try: distort the high spin state



↑ ↑

↑ ↑ ↑

↑ ↑ ↑

D6h

∆E(tot) = 7.2 kcal/mol

 

↑ ↑



D3h

∆E(σ) + ∆E(π) 14.5 -7.3

 

16

Third try: distort the « quasi-classical » state ↑













D6h

 



↑ ↓





D3h

 

17

E

Dissociation curve of H2

(kcal/mole)

Quasi­classical state (nonbonding)

RH­H ­20 ­40

+

­60

Covalent bond

Physical origin of the bond: spin exchange between AOs

­80 ­100  

Ψexact

 

18

Third try: distort the « quasi-classical » state ↑













D6h

∆E(tot) = 7.2 kcal/mol

 



↑ ↓





D3h

∆E(σ) + ∆E(π) 12.5 -5.3

 

19

Schaefer et al.: orbital energy derivative study

Nuclear repulsion

Electron-nuclei attraction

 

Orbital energies

Q= Kekulean distortion  

20

Schaefer et al.: orbital energy derivative study

Nuclear repulsion

Electron-nuclei attraction

 

Orbital energies

Q= Kekulean distortion  

21

Schaefer et al.: orbital energy derivative study

Nuclear repulsion

Electron-nuclei attraction

 

Orbital energies

Q= Kekulean distortion  

22

Results (hartree/Å2)

Allyl cation

1.442

-0.576

Allyl anion

0.501

-0.995

Benzene

1.727

-1.649 επ

εσ  

- DQ

 

+∆Q

- DQ

+∆Q

23

Experimental consequence: shape of the excited potential surface π energies

π energies

total energies K2*

K1* 1B

K2*

K1*

2u(¹) 1B

K1

1A (¹) 1g

K2

2u

K1

RC

K2 1A 1g

RC

Traditional view  

Challenging view  

24

Frequency of the Kekulean (b2u) mode in the 1B2u state of benzene π energies

π energies

total energies K2*

K1* 1B

K2*

K1*

2u(¹) 1B

K1

1A (¹) 1g

RC

K2

2u

K1

K2 1A 1g

RC

Symmetrizing π system 1A1g 1B2u Reduced b2u frequency  

Distortive π system 1A1g 1B2u  

Exalted b2u frequency

25

Experimental results: benzene (1A1g –> 1B2u) the Kekulé (b2u) mode: 1B2u

All vibrational frequencies are decreased, but one ...

ω(b2u) = 1310 cm-1

1A1g Symmetrizing π system 1A1g 1B2u Reduced b2u frequency  

ω(b2u) = 1571 cm-1

Distortive π system 1A1g 1B2u  

Exalted b2u frequency

26

Experimental results: benzene (1A1g –> 1B2u)

1B2u

All vibrational frequencies are decreased, but the Kekulé mode

1A1g

Naphthalene (1A1g –> 1B2u) ∆ω(b2u): + 189 cm-1

Weakening the π bonds increases benzene’s resistance to distortion  

 

Anthracene, etc…

27

Naphthalene (1A1g –> 1B2u)

K1

K2

Kc

Ψ∗  K1 ­ K2 (B2u)  

K1 + K2 (Ag)

Ψ0  

 

 

28

Naphthalene (1A1g –> 1B2u)

K1



K2

Kc Ψ∗ 



Ψ  

K1 ­ K2 (B2u)

K1 ­ K2 (B2u)  

K1 + K2 (Ag)

Ψ0  

  K1 + K2 (Ag)

Kekulean distortion Ψ0  

 

 

29

Naphthalene (1A1g –> 1B2u) ∆ω(b2u): + 189 cm-1 : frequency exaltation



Ψ∗ 



Ψ  

K1 ­ K2 (B2u)

K1 ­ K2 (B2u)  

K1 + K2 (Ag)

Ψ0  

  K1 + K2 (Ag)

Kekulean distortion Ψ0  

 

 

30

Naphthalene (1A1g –> 1B2u)

Anthracene, etc….

∆ω(b2u): + 189 cm-1 : frequency exaltation



Ψ∗ 



Ψ  

K1 ­ K2 (B2u)

K1 ­ K2 (B2u)  

K1 + K2 (Ag)

Ψ0  

  K1 + K2 (Ag)

Kekulean distortion Ψ0  

 

 

31

Mills-Nixon effect





 











∆ 

 

 





 







∆ 

 (  )

  

 

1 ( B2u )

32

Mills-Nixon effect





 











∆ 

 

 





 







∆ 

 (  )

  

 

1 ( B2u )

33

Mills-Nixon effect 





 

∆  

 

∆ 

 (  )

  

1 ( B2u )

Alterned geometry in the ground state, Restored symmetry in the π → π* excited state  

 

34

An apparent contradiction: π distortivity vs allyl ’s barrier to rotation

1)

π bonds are forced by the σ frame to delocalize

2)

 

or

 

35

An apparent contradiction: π distortivity vs allyl ’s barrier to rotation K2*

K1*

× K1

 

π

×

ground state

= K1 ↔ K2

K2

 

36

An apparent contradiction: π distortivity vs allyl ’s barrier to rotation K2*

K1*

• K1

 

π

×

×

ground state



symmetrical rotated

= K1 ↔ K2

K2

 

37

An apparent contradiction: π distortivity vs allyl ’s barrier to rotation K2*

K1*

• K1

 

π

×

×

ground state



symmetrical rotated

= K1 ↔ K2

K2

 

relaxed rotated

38

An apparent contradiction: π distortivity vs allyl ’s barrier to rotation K1*

K2*

K1*

• K1

π

×

K1

K2



K2

× σ+π

σ

×

•  

K2*

ground state symmetrical rotated relaxed rotated  

39

What is the role of resonance energy? K1 *

K2 *

¹

K1

σ+π

K2 σ

Weak resonance energy (CBD, linear polyenes): alternated geometry  

 

40

What is the role of resonance energy? K1 *

K2 *

¹

K1

¹

σ+π

K2 σ

Weak resonance energy (CBD, linear polyenes): alternated geometry  

K2 *

K1 *

K1

σ+π

K2

σ

Large resonance energy (benzene, aromatics): regular geometry

RE diminishes π distortivity but does not change its sign  

41

Summary and Conclusion ,

, aromatic systems...

­ , ¥, +

Duality of the π component Distortive towards a localizing distortion

Stabilized by resonance

Experimental consequences: Thermodynamic stability, aromaticity  

 

S0 → S1 increases resistance to distortion, or restores symmetry 42

A unique law for π and σ delocalized systems: • Strong or medium binders are distortive (Hn, π bonds, organic TSs…) • Weak binders are stable aggregates (Lin, Nan…) H

π

H

H

H H

H

3­orbital, 3­electron

3­orbital, 3­electron

H

H

H

C

H

C

H-transfer transition state 3­orbital, 4­electron

3­orbital, 4­electron

H

H

H

X

Y

SN2 transition state  

 

43

Sason Shaik Hebrew University, Jerusalem

David Danovitch Hebrew University, Jerusalem Avital Shurki Hebrew University, Jerusalem  

 

44

 

 

45

Israël

Hebrew University, Jerusalem • Sason Shaik • David Danovitch • Avital Shurki Beer Sheva University • Rony Bar

France

 

Université de Paris-Sud • Jean-Michel Lefour • Philippe Maître • Avital Shurki  

46

Strong or medium bonds:unstable delocalized systems - De(H2) = 110 kcal/mol H3 and H6 very unstable - De(Cl2) = 58 kcal/mol Cl3 and Cl6 unstable

Weak bonds: stable delocalized systems - De(Li2) = 21 kcal/mol Li3 and Li6 stable

π bonds: De (πC-C) = 60 kcal/mol. Unstable delocalized systems ?  

 

47

Related Documents

Exeter
November 2019 13
Exeter Hc Zoning Code
June 2020 10
Exeter 3k Oct
October 2019 8
Exeter 3k Nov
November 2019 7