Exercise4.pdf

  • Uploaded by: Raveena
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Exercise4.pdf as PDF for free.

More details

  • Words: 853
  • Pages: 4
First- and higher-order ODE Exercises

1. Find the general solution for y(x) using separation of variable, y 0 = X(x)Y (y) → R dy R = X(x)dx. Y (y) (a) y 0 = 3x2 e−y (b) y 0 = 6x2 + 5 (c) y 0 + 4y = 0 (d) y 0 − (y 2 − y)ex = 0 (e) y 0 − 3(y + 1) sin x = 0

2. Solve the initial value problem for x(t) and find limt→∞ x(t). (a) x0 = −2x2 ; x(1) = −1 1 (b) x0 + e−t = 0; x(0) = 3 2 x 0 (c) x = ; x(4) = 8 2t 3. Test if the equation is exact (that is, test if ∂M (x, y)/∂y = ∂N (x, y)/∂x in M (x, y) + N (x, y)y 0 = 0). If exact, solve the initial value problem. (a) x − 2y − (2x − y)y 0 = 0; y(−3) = 5 (b) 3 − y 0 = 0; y(0) = 6 (c) ye−x + 1 + (xe−x )y 0 = 0; y(0) = e (d) 3x2 sin 2y − 2xy + (2x3 cos 2y − x2 )y 0 = 0; y(1) = π/4 (e) 2xy + (y 2 − x2 )y 0 = 0; y(3) = 0 (f) 3x2 y ln y + (x3 ln y + x3 − 2y)y 0 = 0; y(1) = e (g) 4 cos 2x − e−5y y 0 = 0; y(0) = −6 4. Test if the functions in a set are linearly dependent or independent by calculating the Wronskian. (a) {1, x, x2 } (b) {ex , cos x, sin x} (c) {ex , xex , e4x } (d) {ex , e−x , sinh x}

HINT: (sinh x)0 = cosh x, (cosh x)0 = sinh x

5. Find a general solution of the following homogeneous differential equation with constant coefficients. (a) y 00 − 3y 0 + 2y = 0 (b) y 00 − 2y 0 + 3y = 0 (c) y 00 + 2y 0 + 2y = 0 (d) y 00 + 6y 0 + 9y = 0 (e) y 000 + 3y 0 − 4y = 0 (f) y 000 + 5y 00 = 0 (g) y 000 + 3y 00 + 3y 0 + y = 0

6. Find a general solution of the following non-homogeneous differential equation with constant coefficients. (a) y 00 − y 0 = 5 sin 2x (b) y 00 − y 0 = 2xex (c) y 00 − y 0 = x2 ex (d) y 00 + y 0 = 5 − e−x (e) y 00 − 2y 0 + 3y = 2xex + 3 (f) y 00 + y 0 − 2y = 4x2 − 10 sin x (g) y 00 + 2y 0 = 12x2 + 8e2x

Answers 1. (a) y = ln(x3 + C) (b) y = 2x3 + 5x + C (c) y = Ce−4x 1 1 (d) y = ex +C when 0 < y ≤ 1, ex +C when y < 0 or y ≥ 1 e +1 −e +1 (e) y = Ce−3 cos x − 1 2. (a) x(t) = 1/(2t − 3), lim x(t) = 0 t→∞

−t

(b) x(t) = (5 + e )/2, lim x(t) = 2.5 t→∞ √ (c) x(t) = 4 t, lim x(t) = ∞ t→∞

3. (a) x2 + y 2 − 4xy = 94 (b) y = 3x + 6 (c) Not exact (d) x3 sin 2y − x2 y = 1 −

π 4

(e) Not exact (f) x3 y ln y − y 2 = e − e2 (g) 10 sin 2x + e−5y = e30 4. (a) W (b) W (c) W (d) W

= 2, linearly independent = 2ex , linearly independent = 9e6x , linearly independent = 0, linearly dependent

5. (a) y = C1 ex + C2 e2x √ √  (b) y = ex C1 sin ( 2x) + C2 cos ( 2x) (c) y = e−x {C1 sin x + C2 cos x} (d) y = C1 e−3x + C2 xe−3x n  √15   √15 o (e) y = C1 ex + e−x/2 C2 cos x + C3 sin x 2 2 (f) y = C1 e−5x + C2 + C3 x (g) y = C1 e−x + C2 xe−x + C3 x2 e−x 6.

1 cos 2x − sin 2x 2 (b) y = C1 ex + C2 + ex x2 − 2ex x 1 (c) y = C1 ex + C2 + ex x3 − ex x2 + 2ex x 3 −x (d) y = C1 + C2 e + e−x x + 5x √ √  (e) y = ex C1 cos ( 2x) + C2 sin ( 2x) + ex x + 1 (f) y = C1 ex + C2 e−2x − 2x2 − 2x − 3 + 3 sin x + cos x (g) y = C1 + C2 e−2x + e2x + 2x3 − 3x2 + 3x (a) y = C1 ex + C2 +

More Documents from "Raveena"