Exercices

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Exercices as PDF for free.

More details

  • Words: 766
  • Pages: 3
Vendredi 11 avril 2008

Universit´e d’Ottawa

MAT 1730C

Exercices d’entraˆınement Exercice 1 : Calculer la d´eriv´ee de chacune des fonctions suivantes : ln x – f (x) = 2 x cos x – g(x) = sin x r x+3 – h(x) = x−2 – i(x) = e

√ x+3

– j(x) = x2 cos(x3 + 2x2 ) – k(x) = ln(cos(x2 ) + 1) Exercice 2 : Calculer les limites suivantes, si elles existent : ln x + 3 cos2 x cos x lim x→0 x2 1 lim ln( ) x→+∞ x 2 1 lim ( + 10 + e−4x ) x→+∞ x ln x lim x→1 sin(πx) √ x + x1 lim x→+∞ x2 x lim e cos x

– lim

x→1

– – – – – –

x→+∞

Exercice 3 : Calculer les int´egrales suivantes : Z √ 1 – I1 (x) = ( 3 x + x2 − 2 ) dx x Z π – I2 = (e2x + cos(3x)) dx par substitution 0

2π (t − φ))] dt T

– I3 (t) =

Z

[A + B cos(

– I4 (x) =

Z

√ (cos x) sin x dx

par substitution

– I5 (x) =

Z

√ x ( x + ex ) dx

par int´egration par parties

par substitution

(A, B, T, φ sont des constantes)

Vendredi 11 avril 2008

Universit´e d’Ottawa

MAT 1730C

Correction des exercices Correction exercice 1 : x2 x

− 2x ln x 1 − 2 ln x = 4 x x3 − sin x sin x − cos x cos x 1 – g ′ (x) = =− 2 sin2 x sin x ′

– f (x) =

1 x − 2 − (x + 3) 5 × q – h (x) = =− (x − 2)2 x+3 2(x − 2)2 2 x−2 ′

r

x−2 x+3

√ 1 – i′ (x) = √ e x+3 2 x+3

– j ′ (x) = 2x cos(x3 + 2x2 ) + x2 (3x2 + 4x)(− sin(x3 + 2x2 )) = 2x cos(x3 + 2x2 ) − (3x4 + 4x3 ) sin(x3 + 2x2 ) – k ′ (x) = −

2x sin(x2 ) cos(x2 ) + 1

Correction exercice 2 : 3 ln x + 3 = 2 x→1 cos x cos2 1 cos x = +∞ – lim x→0 x2 1 – lim ln( ) = lim (− ln x) = −∞ x→+∞ x→+∞ x 2 1 – lim ( + 10 + e−4x ) = 10 x→+∞ x – lim

1 1 ln x x = lim =− x→1 π cos(πx) x→1 sin(πx) π √ 1 √ − x12 x + x1 2 x = lim =0 – lim x→+∞ x→+∞ x2 2x

– lim



lim ex cos x n’existe pas car cos x prend des valeurs parfois n´egatives, parfois positives

x→+∞

et parfois nulles lorsque x tend vers l’infini. Correction exercice 3 : 3 x3 1 – I1 (x) = x4/3 + + +c 4 3 x Z π Z π – I2 = e2x dx + cos(3x) dx 0

0

En posant u = 2x et v = 3x on obtient :

Vendredi 11 avril 2008

Universit´e d’Ottawa

I2 =

Z



0

1 u e du + 2

Z



0

MAT 1730C

1 cos v dv 3

1 1 3π = [eu ]2π 0 + [sin v]0 2 3 1 2π 1 e − 2 2 Remarque : On pouvait aussi trouver la primitive directement, sans passer par une substitution. Z Z 2π – I3 (t) = A dt + B cos( (t − φ)) dt T =

En posant u =

2π T (t

I3 (t) = At + B

Z

− φ) on obtient :

T cos u du 2π

= At +

BT sin u + c 2π

= At +

BT 2π sin( (t − φ)) + c 2π T

– I4 (x) =

Z

√ (cos x) sin x dx

En posant u = sin x on obtient : I4 (x) = =

Z

√ u du

2 3/2 u +c 3

2 (sin x)3/2 + c 3 Z √ – I5 (x) = x ( x + ex ) dx =

√ En posant f (x) = x et g ′ (x) = x + ex on obtient : Z 2 2 I5 (x) = x( x3/2 + ex ) − ( x3/2 + ex ) dx 3 3 =

2 5/2 4 x + xex − x5/2 − ex + c 3 15

=

2 5/2 x + (x − 1)ex + c 5

Related Documents

Exercices
December 2019 58
Exercices
December 2019 48
Exercices
June 2020 25
Exercices
May 2020 33
Exercices
May 2020 30
Marketing Exercices
June 2020 25