Exan Primitive

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Exan Primitive as PDF for free.

More details

  • Words: 701
  • Pages: 2
D´eterminer une primitive ......: (une primitive de f (x) est not´ee

R

f (x)dx

19.

R

(tan x + tan3 x)dx

20.

R

tan2 xdx 1 dx tan2 x

1.

R

(x + 1)(x2 + 2x − 1)4 dx

21.

R

1+

2.

R

1 − 2x dx (2x2 − 2x + 1)3

22.

R

b x dx(ind:´ecrire sous la forme :a+ ) x−1 x−1

3.

R

23.

R 4x + 5 b dx(ind:´ecrire sous la forme :a+ ) 2x + 1 2x + 1

4.

R

5.

R



1−x dx − 2x + 2

x2

(−2x + 1)5 dx

R 2x2 − 3x − 4 dx(ind:´ecrire sous la forme :ax + x−2 c b+ ) x−2 R 1 1 + dx 25. x−3 x+3 24.

2 dx 3x + 1

x2 dx x3 − 1 R cos x 7. dx sin x R 8. e2x+1 dx R 9. 2e−3x+2 dx 6.

R

26.

2 R 1 − x 10. e dx x2 11.

R

2x + 1 1 e x + 1 dx (x + 1)2

12.

R

sin x + x cos xdx

13.

R sin x − x cos x dx x2

R ln x − 1 dx x2 R√ x 15. x+1+ √ dx 2 x+1 14.

R ln x dx x R 1 17. dx x ln x 16.

18.

R ex − e−x dx ex + e−x 1

R (x + 3)2 dx (x + 2)2

Solution:

19.

R

(x + 1)(x2 + 2x − 1)4 dx =

2.

R

1 1 − 2x dx = 2 2 (2x2 − 2x + 1)3 4 (2x − 2x + 1)

3.

R

4.

R

5.

R



p 1−x dx = − (x2 − 2x + 2) − 2x + 2

x2

22.

R

x 1 x dx = x + ln |x − 1| ( =1+ ) x−1 x−1 x−1

ln |3x + 1|

R

11.

R

2x + 1 2x + 1 1 e x + 1 dx = e x + 1 (x + 1)2

12.

R

sin x

13.

R sin x − x cos x sin x dx = − x2 x

+

x cos xdx

R 4x + 5 dx = 2x + 2x + 1 3 ) 2x + 1

3 2

ln |2x + 1| (

4x + 5 = 2+ 2x + 1

R 2x2 − 3x − 4 dx = x2 + x − 2 ln |x − 2| x−2 2 2x2 − 3x − 4 = 2x + 1 − ) ( x−2 x−2 R 1 1 25. + dx = ln |(x − 3)(x + 3)| x−3 x+3 24.

2 2 R 1 − − x dx = 12 e x 10. e x2

26.

=

x sin x

R ln x − 1 1 dx = − ln x 2 x x R√ √ x 15. x+1+ √ dx = x x + 1 2 x+1 14.

R ln x ln x 1 dx = 12 ln2 x ( = ln x) x x x R 1 dx = ln |ln x| 17. x ln x

16.

18.

1 +

23.

3 x2 1 x − 1 dx = ln 3 x3 − 1 R cos x dx = ln |sin x| 7. sin x R 8. e2x+1 dx = 12 e2x+1 R 9. 2e−3x+2 dx = − 23 e−3x+2

6.

−1 (mettre au mˆeme tan x

1 dx = tan2 x d´enominateur)

R

6

2 3

tan2 x (penser `a mettre 2

21.

1 (−2x + 1)5 dx = − 12 (1 − 2x)

2 dx = 3x + 1

(tan x + tan3 x)dx =

tan x en facteur) R 20. tan2 xdx = tan x − x (tan2 x = 1 + tan2 x − 1)

1 2 (x + 2x − 1)5 10

1.

R

R ex − e−x dx = ln (ex + e−x ) ex + e−x 2

R (x + 3)2 1 dx = x − + 2 ln |x + 2| (x + 2)2 x+2 2 1 2 (x + 3) =1+ + ) ( 2 2 (x + 2) x+2 (x + 2)

Related Documents