Examen Parcial De Metodos Numericos

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Examen Parcial De Metodos Numericos as PDF for free.

More details

  • Words: 249
  • Pages: 2
1.-La funcion: f(x)=e-x+4x3-5 tiene una raiz en x=1,05151652. Empesando con x1= 1 y x2 =2, usar ocho intearaciones del metodo de la biseccion para aproximar a la raiz ITERACION

XL 1 2 3 4 5 6 7 8

XU

1 1 1 1 1 1.03 1.05 1.05

Xr 2 1.5 1.25 1.13 1.06 1.06 1.06 1.05

F(XL) 1.5 1.25 1.13 1.06 1.03 1.05 1.05 1.05

xi 1 2 3 4

Iteracion

xi+1 1 0.71 0.56 0.5

xl 1 2 3 4 5 6 7 8

f(xi+1)

1 0.86 0.79 0.75 0.73 0.72 0.72 0.72

EMPEZANDO CON Xo=

100 27.74 11.35 1.61

xr 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71

8.72 3.1 1.02 0.14 -0.26 -0.06 0.04 -0.01

Ea

0.71 -1.07 0.56 -0.23 0.5 -0.03 0.49 0

xu

F(Xr)

27.14 8.72 3.1 1.02 0.14 0.14 0.14 0.04

f ( x) = e x −1 − 5 x 3

2.- ENCONTRAR LA RAIZ CERCA DE: x= 1 de:

Iteracion

F(XU)

-0.63 -0.63 -0.63 -0.63 -0.63 -0.26 -0.06 -0.06

f(xl) 0.86 0.79 0.75 0.73 0.72 0.72 0.72 0.72

f(xu) -4 -2.28 -1.62 -1.33 -1.2 -1.13 -1.1 -1.09

f(xr) -1.07 -1.07 -1.07 -1.07 -1.07 -1.07 -1.07 -1.07

-2.28 -1.62 -1.33 -1.2 -1.13 -1.1 -1.09 -1.08

do con x1= 1 y x2 =2, Ev -42.65 -18.88 -6.99 -1.04 1.93 0.44 -0.3 0.07

Ea 100 20 11.11 5.88 3.03 1.49 0.74 0.37

EMPEZANDO CON Xo= 1

Ea 100 -9.09 -4.76 -2.44 -1.23 -0.62 -0.31 -0.16

Et -0.45 -0.2 -0.07 -0.01 0.02 0 0 0

Related Documents