Exam Set A.docx

  • Uploaded by: greg
  • 0
  • 0
  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Exam Set A.docx as PDF for free.

More details

  • Words: 1,700
  • Pages: 3
GARCIA COLLEGE OF TECHNOLOGY Kalibo, Aklan Electrical Engineering Department EE 320E (ADVANCED EE MATHEMATICS) FINAL EXAM

Name: ________________________________

Course and Year: ________

Class Schedule: _____

SET A Directions: Encircle the letter of the correct answer. Strictly no erasures. Each item weighs two (2) points. 1. Find the inverse Laplace transform of 1 / [s(s2 + 4)]. a. ¼ (1 – cos 2t) c. ¼ (1 – sin 2t) b. ¼ (1 – cosh 2t) d. ¼ (1 – sinh 2t)

10. Find the product of 11 + 2i and its conjugate. a. 125 c. 130 b. 120 d. 115

3 2. If 𝐴 = ( −2 AATBC.

11. If A = 2(cos 20 + i sin 20) and B = 3(cos 40 + i sin 40), the product AB is ___. a. 6(cos 20 + i sin 20) c. 6(cos 60 + i sin 60) b. sq. rt. of 6(cos 20 + i sin 20) d. sq. rt. of 6(cos 60 + isin 60)

a. (

1 4

2 2 ),𝐵 = ( −2 3

−86 ) 144

−1 −1 ) and 𝐶 = ( ). Find 4 2

c. (

96 b. ( ) −102

86 ) −144

12. If 𝑖 = √−1 and n is a positive integer, which of the following statements is FALSE? a. i4n = 1 c. i4n + 1 = -i 4n + 2 b. i = -1 d. in + 4 = in

−96 d. ( ) 102

3. Find the value of y in (3x + 4yi)(6 – 7i) = 3 + 5i. a. 1/20 c. 1/10 b. 3/20 d. 1/5 2 −2 4. 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝐷 = | 1 −1

5 −3 3 −6

a. -2 b. -3

−3 2 −2 4

𝑤 13. Let: 𝐴 = ( 𝑦 that 2A = 3B – 2C. a. -4 b. -2

−2 −5 2| 3

5. The curl of u = x2i + y2j + z2k at the point (1, 1, 1) is ___. a. 2i + 2j + 2k c. 0 b. i + j + k d. 6 6. Find the Laplace transform of e-2t sin 4t. a. (s – 4) / (s2 + 4s + 20) c. 4 / (s2 + 4s + 20) 2 b. (s + 2) / (s + 4s + 20) d. (2s) / (s2 + 4s + 20)

a. (

−7 29

4 7

7 29

−4 7

b. (

1 4

−2 5

0 ) −36 0 ) −36

3 3 ) and 𝐵 = ( 6 −7 c. (

0 1

2 ). Find 2A – 3B. 8

−7 29

−4 7

0 ) −36

−7 29

−4 7

0 ) −36

d. (

2 ). Find x such −3

c. -5 d. -10

15. Evaluate inverse Laplace of 2s / (s2 + 1)2. a. t sin t c. cos 25t b. sin 2t d. e2t sin t 16. Determine the value of sin h (0.942 + j0.429). a. 0.99 + j0.614 c. 0.919 + j0.416 b. 0.99 + j0.416 d. 0.919 + j0.614 𝑥 17. Solve for z: ( 𝑦

c. -1 + j1 d. -1 + j2

8. Find the unit vector (i.e., the direction vector) associated with the vector 18i + 3j + 29k. a. 0.525i + 0.088j + 0.846k c. 0.892i + 0.178j + 0.416k b. 1.342i + 0.868j + 2.437k d. 6i + j + 9.677k 9. Given: 𝐴 = (

1 −2 )&𝐶=( 6 7

14. Given the points A(3, 4, 5), B(4, -8, 9) and C(3, 5, -8). Find the area of the triangle ABC. a. 72.46 c. 76.28 b. 74.81 d. 70.89

c. -1 d. -4

7. Simplify: j3217 – j427 + j18. a. 1 + j2 b. 1 + j1

𝑥 5 𝑧 ) , 𝐵 = (4

a. 2 b. -1

−1 4 )( 3 −1

𝑤 9 )=( 𝑧 1

8 ) −3

c. 1 d. -2

18. Solve the inverse Laplace transform of (3s + 16) / (s2 – s – 6). a. 3e3t – 4e-2t c. 5e2t – 2e-3t 3t -2t b. 4e – 3e d. 5e3t – 2e-2t

1/3

3 19. Given the matrix (0 2 matrix. a. -5 b. -4

2 −1 0

1 −1), solve the co-factor A21 of the 2 c. -3 d. -6

1 32. 𝐼𝑓 𝐴 = [ 1

20. Find the Laplace transform of t2e3t. a. 2s / (s – 3)3 c. 2 / (s – 3)3 3 b. s / (s – 3) d. (s + 2) / (s – 3)3

a. -6 b. -7

2 2

5 3 ] 𝑎𝑛𝑑 𝐵 = [6 9 4

a. 29 b. 53

6 𝑥 −40 )( ) = ( ). Find y. 5 𝑦 −41

1 21. Given: ( −3

31. Simplify the expression: A x B  C, given A = 3i + 2j; B = 2i + 3j + k; C = 5i + 2k a. 60 c. 180 b. 20 d. 100

1 0], the (2, 1) entry of AB is 7 c. 33 d. 64

33. Determine cosh (0.0454 + j0.357). a. 0.937 + j0.0246 c. 0.937 + j0.0158 b. 0.891 + j0.0158 d. 0.891 + j0.0246

c. -5 d. -4

22. Find the unit vector (i.e., the direction vector) associated with the vector 18i + 3j + 29k. a. 0.521i + 0.088j + 0.846k c. 0.892i + 0.178j + 0.416k b. 1.342i + 0.866j + 2.437k d. 6i + j + 9.667k

−1 9 34. 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝐷 = | 2 0

23. Find the inverse Laplace transform of 1 / (s2 + 2s). a. ½ (1 – e-2t) c. 2 – e-2t 2t b. ½ (1 + e ) d. 1 – e-2t

a. -44 b. -42

c. -46 d. -40

35. Simplify: i1996 + i2003 + i2010. a. 1 b. -1 – i

c. 1 + i d. – i

24. Solve the value of x which satisfies the following linear system. 3 7 𝑥 2 ( ) ( ) = ( ). 2 6 𝑦 4 a. 2 b. 4

a. (

2 −12

b. (

−4 2

2 4

−1 −1 ),𝐵 = ( 3 2

4 ) −14 6 ) −8

1 ), find BTAT. −4 c. (

2 4

d. (

−4 6

−12 ) −14 2 ) −8

28. What is the rationalized value of the complex number

6+2.5𝑖 ? 3+4𝑖

c. 28/25 – 33/50 i d. 50/51 – 34/25 i

29. Find the value of x so that 2i + 4j + 5k and i + xj – 2k are perpendicular. a. 1 c. 3 b. 2 d. 4 2 30. If 𝐴 = [ 4 2B – 4C.

−1 −1 ],𝐵 = [ 3 2

39. Find the adjoint matrix of matrix A if 𝐴 = (

1 1 ],𝐶 = [ −4 −2

0 a. [ −24

17 ] 5

c. [

0 b. [ −24

17 ] −5

d. [

4 −2

−3 ) 1

c. (

4 −3

−2 ) 1

d. (

b. (

c. -1 d. -i

a. 50/51 + 34/25 i b. 28/25 + 33/50 i

38. The divergence of the vector function, u = xyi + 2y 2j – yzk at the point (0, 1, 1) is ___. a. -4 c. 0 b. -1 d. 4

a. (

1−𝑖 10 (1+𝑖) .

a. 1 b. i

−1 3 1| −1

37. Determine the general value of ln (1 - j3)3. a. 0.693 + j12.522 c. 2.941 + j12.184 b. 1.047 + j15.439 d. 2.079 + j15.708

26. If A = 3<30, B = 3e–3i and C = 3 – 4i, find the absolute value of ABC. a. 45 c. 50 b. 60 d. 55 27. 𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑦:

1 −1 3 −2

36. Find the Laplace transform of (t sin t). a. 2 / (s2 +1)2 c. s / (s2 +1)2 2 2 b. 1 / (s +1) d. 2s / (s2 +1)2

c. -2 d. -4

25. If 𝐴 = (

−1 1 −2 3

0 24

−17 ] 5

0 24

17 ] −5

4 ] . Find 3A + −1

1 3

1 −2

−3 ) 4

3 −1

−4 ) 2

2 ). 4

40. Which of the following is a negative number? a. i25 c. i75 50 b. i d. i100 41. Evaluate: tanh-1 (j0.5). a. j0.785 b. j0.464 42. Find AAT where 𝐴 = ( a. (

−5 1

b. (

5 1

1 ) −26 1 ) 26

1 3

c. j0.927 d. j0.393 2 −1

0 ). 4 c. (

5 −1

−1 ) 26

1 26

5 ) 1

d. (

43. Find a unit vector perpendicular to the plane of the vectors A =3i – 2j + 4k and B = i + j – 2k. a. (2j + k) / 5 c. (j + 2k) / 5 b. (j + k) / 2 d. (j – k) / 2 2/3

44. Solve for b: (3 + bi) (a – 2i) = 13 + 0i. a. 4 c. 1 b. 3 d. 2 45. Find the area of a parallelogram with the sides identified by vectors from the origin, A = 3i + 4j and B = 8i. a. 40 c. 36 b. 32 d. 24 5 −1 46. 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝐷 = | 8 2

1 1 6 2

5 −3 −2 2

1 −4 1| −3

a. -240 b. -220

c. -200 d. -250

47. Evaluate: tanh-1 (1 – j2). a. 0.1732 – j1.178 b. 1.4142 – j1.178

c. 0.1732 – j2.356 d. 1.4142 – j2.356

48. The Laplace transform of e-2t (3 cos 6t – 5 sin 6t). a. (3s – 30) / (s2 + 36) c. (3s – 24) / (s2 + 4s + 40) 2 b. (s – 5) / (s + 36) d. (3s – 5) / (s2 + 4s + 40) 49. If A = 40ej120, B = 20<-40, C = 26.46 + j0, solve for the magnitude of (A + B + C). a. 30.8 c. 35.4 b. 39.2 d. 33.7 50. Simplify: i1997 + i1999. a. 1 + i b. -1

c. 1 – i d. 0

***END***

3/3

Related Documents


More Documents from ""