MathCity.org Merging man and maths
Exercise 8.3 (Solutions) Textbook of Algebra and Trigonometry for Class XI Available online @ http://www.mathcity.org, Version: 3.5
Binomial Theorem when n is negative or fraction: When n is negative or fraction and x < 1 then n (n − 1) 2 n (n − 1)(n − 2) 3 x + x + ... (1 + x) n = 1 + n x + 2! 3! Where the general term of binomial expansion is n (n − 1)(n − 2)...( n − (r − 1) ) r Tr +1 = x r! Question # 1 Expand the following upto 4 times, taking the values of x such that the expansion in each case is valid. (i) (1 − x)
1 2
(ii) (1 + 2 x )
−1
(iii) (1 + x)
−
1 3
(iv) (4 − 3 x)
−1
(v) (8 − 2 x )
−1
(vi) (2 − 3 x)
−2
(vii)
(1 − x ) 2 (1 + x )
(viii)
(1 + 2 x ) (1 − x )
1
( 4 + 2x)2 (ix) (2 − x) Solution (i)
1 2 2
(x) (1 + x − 2 x )
1 2 2
(xi) (1 − 2 x + 3 x )
11 1 1 1 − 1 − 1 − 2 1 2 2 2 2 2 (− x)3 + ... (1 − x) = 1 + (− x) + (− x)2 + 2 2! 3! 1 1 1 1 3 − − − 1 2 2 2 2 2 2 =1− x + x + (− x 3 ) + ... 2 2 3⋅ 2 1 1 1 = 1 − x − x 2 − x3 + ... 2 8 16 1 2
(ii)
Do yourself as above
(iii)
Do yourself as above 1
(iv)
1
1
1 3x 2 3x 2 3x 2 (4 − 3 x) = 4 1 − = (4) 2 1 − = 2 1 − 4 4 4 1 2
1 2
11 1 1 1 − 1 − 1 − 2 2 3 1 3x 2 2 − 3 x + 2 2 2 − 3x + ... = 2 1 + − + 2! 4 3! 4 2 4
FSc-I / Ex 8.3 - 2
1 1 1 1 3 3 x 2 − 2 9 x 2 2 − 2 − 2 27 x 3 = 2 1 − + + − + ... 8 2 16 3⋅ 2 64 3 x 1 9 x 2 1 27 x3 = 2 1 − − − + ... 8 8 16 16 64 3 x 9 x 2 27 x 3 = 2 1 − − − + ... 8 128 1024 3 x 9 x 2 27 x3 =2− − − + ... 4 64 512 −1
1 2
(v)
1 x 2x (8 − 2 x) = (8) 1 − = 1 − 8 8 4
(vi)
Do yourself
−1
−1
Now do yourself
(1 − x)−1 = (1 − x) −1 (1 + x)−2 (vii) 2 (1 + x) (−1)(−1 − 1) (−1)(−1 − 1)(−1 − 2) = 1 + (−1)(− x) + ( − x) 2 + (− x )3 + … 2! 3! (−2)(−2 − 1) 2 (−2)(−2 − 1)(−2 − 2) 3 × 1 + (−2)( x) + ( x) + ( x) + … 2! 3! (−1)(−2) 2 (−1)(−2)(−3) (x ) + (− x 3 ) + … = 1 + x + 2 3⋅ 2 (−2)(−3) 2 (−2)(−3)(−4) 3 × 1 − 2 x + ( x) + ( x) + … 2 3⋅ 2 2 3 2 = 1 + x + x + x + ................... × 1 − 2 x + 3x − 4 x 3 +…
(
) (
)
= 1 + ( x − 2 x) + ( x 2 − 2 x 2 + 3x 2 ) + ( x3 − 2 x3 + 3x3 − 4 x3 ) + … = 1 − x + 2 x 2 − 2 x 3 +…
Do yourself as above
(viii) 1
1
1 1 (4 + 2 x) 2 2x 2 x = (4 + 2 x) 2 (2 − x) −1 = (4) 2 1 + (2) −1 1 − (ix) 2− x 4 2 1
−1
1
−1
−1
1
x 2 x x 2 x x 2 1 x = (4) 1 + (2) −1 1 − = 2 1 + 1 − = 1 + 1 − 2 2 2 2 2 2 2 1 2
−1
www.mathcity.org
FSc-I / Ex 8.3 - 3 1
−1
x 2 x = 1 + 1 − 2 2 11 11 1 − 2 x 3 1 x 2 2 − 1 x 2 2 2 − 1 2 + … = 1 + + + 2! 2 3! 2 2 2 2 3 x (−1)(−1 − 1) x (−1)(−1 − 1)(−1 − 2) x × 1 + (−1) − + − + − + … 2! 3! 2 2 2 1 1 1 1 3 − x 3 x 2 − 2 x 2 2 − 2 2 = 1 + + + + … 2 4 3⋅ 2 8 4 2 3 x (−1)(−2) x (−1)(−2)(−3) x … × 1 + + + − + 2 2 4 3 ⋅ 2 8 x x2 x3 x x 2 x3 = 1 + − + + … × 1 + + + + … 8 4 32 128 2 4 2 x2 x2 x3 x3 x3 x3 x x x =1+ + + − + + + − + + +… 4 2 32 8 4 128 64 16 8 3 x 11x 2 23 x3 =1+ + + +… 4 32 128 1
1
(1 + x − 2 x 2 ) 2 = (1 + ( x − 2 x2 ) ) 2
(x)
11
11 1 − 1 − 1 − 2 1 = 1 + ( x − 2 x 2 ) + 2 2 ( x − 2 x 2 ) 2 + 2 2 2 ( x − 2 x 2 )3 + … 2 2! 3! 1 1 1 1 3 − − − 1 2 2 2 2 2 2 2 3 4 = 1 + ( x − 2x ) + (x − 4x + 4x ) + 2 2 3⋅ 2 x3 + 3( x) 2 (−2 x 2 ) + 3( x)(−2 x 2 ) 2 − (2 x 2 )3 +…
(
(xi)
) 1 + 4x ) + ( x 16
1 1 4 3 = 1 + ( x − 2 x 2 ) − ( x 2 − 4 x3 − 6 x 4 + 12 x5 − 8 x 6 ) + … 2 8 1 2 1 4 4 1 6 12 8 = 1 + x − x 2 − x 2 − x3 + x 4 + x 3 − x 4 + x5 − x 6 + … 2 2 8 8 8 16 16 16 16 1 1 1 1 1 3 3 1 = 1 + x − x2 − x2 − x3 + x4 + x3 − x 4 + x5 − x6 + … 2 8 2 2 16 8 4 8 1 9 9 = 1 + x − x2 − x3 + … 2 8 16 Do yourself as above www.mathcity.org
FSc-I / Ex 8.3 - 4
Question # 2 Use the Binomial theorem find the value of the following to three places of decimials. 1
1
(i) 99
(ii) ( 0.98 ) 2
(v) 4 17
(vi)
(iii) (1.03) 3 1 (vii) 3 998 1 (xi) 6 486
(ix)
7 8
5
31
(x) (0.998)
−
1 3
(iv)
3
65 1 (viii) 5 252 1
(xii) (1280) 4
Solution (i)
1
(ii) (iii)
1
1 2
1 2 99 = ( 99 ) = (100 − 1) = (100) 1 − 100 11 1 1 2 2 − 1 1 2 = 10 1 + − + − + … 2 100 2! 100 1 1 − 1 1 = 10 1 − + 2 2 + … 2 10000 200 1 = 10 1 − 0.005 − ( 0.0001) + … 8 = 10 (1 − 0.005 − 0.0000125 + …) ≈ 10 ( 0.9949875 ) = 9.949875 ≈ 9.950 1 2
1 2
1
( 0.98) 2 = (1 − 0.02 ) 2 (1.03)
1 3
= (1 + 0.03) 1 3
Now do yourself
1 3
Now do yourself 1 3
1
1 3 = ( 64 − 1) = (64) 1 − 64 1 3
3
65 = ( 65 )
(v)
4
1 17 = (17 ) = (16 − 1) = (16) 1 − 16
(vi)
1 5 5 31 = ( 31) = ( 32 − 1) = (32) 1 − 32
(iv)
1 4
1 5
1 4
1 5
1 4
1 5
1 4
Now do yourself Now do yourself
1
Now do yourself
www.mathcity.org
FSc-I / Ex 8.3 - 5
(vii)
3
1 1 = 1 = ( 998 ) 998 ( 998) 3 = (10
1 3 −3
)
1 − 3
1 1 − 500
= (1000 − 2 ) −
1 − 3
2 = (1000 ) 1 − 1000 1 − 3
−
1 3
1 3
1 1 − − − 1 2 1 1 1 3 3 − 1 + … = 1 + − − + 2! 10 3 500 500 1 4 − − 1 1 1 3 3 = 1 + + + … 2 10 1500 250000 2 1 = 1 + ( 0.0006667 ) + ( 0.000004 ) + … 9 10 1 = (1 + 0.0006667 + 0.00000089 + …) 10 1 ≈ (1.00066759 ) = 0.100066759 ≈ 0.100 Answer 10
( viii)
1 1 1 1 1 − − 9 − 5 5 5 1+ = = 252 = 243 + 9 = 243 ( ) ( ) ( ) 1 5 252 ( 252 ) 5 243 1 5 −5
= (3
)
1 1 + 27 1
(ix)
−
1 5
−
1 5
Now do yourself as above 1
7 7 7 2 1 2 = = = 1 − 8 8 8 8 11 − 1 2 1 1 2 2 1 =1+ − + − +… 2 8 2! 8 1 1 − 1 2 2 1 =1− + +… 16 2 64 1 1 1 =1− − +… 16 8 64 1 1 =1− − +… 16 512 = 1 − 0.0625 − 0.00195 +… ≈ 0.93555 ≈ 0.936 Answer www.mathcity.org
FSc-I / Ex 8.3 - 6
(x)
(0.998)
−
1 3
= (1 − 0.002)
−
1 3
Now do yourself as above
1 1 1 1 1 − − 243 − 6 6 6 1− = = 486 = 729 − 243 = 729 ( ) ( ) ( ) 1 6 486 ( 486 ) 6 729
(xi)
1 6 −6
= (3
)
1 1 − 3
1 4
−
1 4
1 6
−
1 6
Now do yourself 1
1
1 16 4 1 4 4 4 (1280) = (1296 − 16) = (1296 ) 1 − = 6 ( ) 1 − 1296 81 Now do yourself
(xii)
1 4
Question # 3 Find the coefficient of x n in the expansion of 2 1 + x2 ) ( 1 + x) ( (ii) (i) 2 2 (1 + x ) (1 − x )
(1 + x)3 (iii) (1 − x) 2
2
(iv)
(1 + x ) 3 (1 − x )
(v) (1 − x + x 2 − x 3 + …)
2
Solution 1 + x2 ) ( −2 (i) = (1 + x 2 ) (1 + x ) 2 (1 + x )
(−2)(−2 − 1) 2 (−2)(−2 − 1)(−2 − 2) 3 = (1 + x 2 ) 1 + (−2)( x) + ( x) + ( x) + … 2! 3! (−2)(−3) 2 (−2)(−3)(−4) 3 = (1 + x 2 ) 1 − 2 x + x + x + … 2 3⋅ 2
= (1 + x 2 )(1 − 2 x + 3x 2 − 4 x 3 + …) = (1 + x 2 )(1 + (−1)2 x + (−1) 2 3x 2 + (−1)3 4 x3 + …) Following in this way we can write (1 + x2 ) = 1 + x 2 (1 + (−1)2 x + (−1)2 3x 2 + (−1)3 4 x3 + … + (−1)n−2 (n − 1) xn−2 + ( ) 2 (1 + x ) ( −1) n−1 ( n) x n −1 + ( −1) n ( n + 1) x n + …)
So taking only terms involving x n we get ( −1) n ( n + 1) x n + ( −1) n −2 ( n − 1) x n = ( −1) n ( n + 1) x n + ( −1) n ( −1) −2 ( n − 1) x n = ( −1) n ( n + 1) x n + ( −1) n ( n − 1) x n = ( n + 1 + n − 1)( −1) n x n = (2n)( −1) n x n
∵ ( −1) −2 = 1
www.mathcity.org
FSc-I / Ex 8.3 - 7
Thus the coefficient of term involving x n is (2n)( −1) n (ii)
Hint: After solving you will get
(1 + x ) = 2
(1 − x )
2
(1 + x ) (1 + 2 x + 3x 2
2
+ 4 x 3 + … + (n − 1) x n−2 + (n) x n−1 + (n + 1) x n + …) Do yourself as above
(iii)
(1 + x)3 = (1 + x)3 (1 − x)−2 2 (1 − x) (−2)(−2 − 1) (−2)(−2 − 1)(−2 − 2) 3 = (1 + x ) 1 + (−2)(− x) + (− x) 2 + ( − x )3 + … 2! 3! (−2)(−3) 2 (−2)(−3)(−4) 3 = (1 + x ) 1 + 2 x + ( x) + (− x3 ) + … 2 3⋅ 2
= (1 + 3x + 3x 2 + x3 )(1 + 2 x + 3x 2 + 4 x3 + …) Following in this way we can write (1 + x)3 = 1 + 3x + 3x 2 + x 3 (1 + 2 x + 3x 2 + 4 x 3 + … + (n − 2) x n−3 + (n − 1) x n−2 2 (1 − x) + ( n) x n −1 + ( n + 1) x n + …) So taking only terms involving x n we have term ( n + 1) x n + 3( n) x n + 3( n − 1) x n + ( n − 2) x n = ( (n + 1) + 3(n) + 3(n − 1) + (n − 2) ) x n
(
)
= ( n + 1 + 3n + 3n − 3 + n − 2 ) x n = ( 8n − 4 ) x n
Thus the coefficient of term involving x n is ( 8n − 4 ) . 2
(iv)
(1 + x ) = 1 + x 2 1 − x −3 ( )( ) 3 (1 − x ) (−3)(−3 − 1) (−3)(−3 − 1)(−3 − 2) 2 = (1 + x ) 1 + (−3)(− x) + ( − x) 2 + (− x)3 + ........ 2! 3! (−3)(−4) (−3)(−4)(−5) 2 = (1 + x ) 1 + (−3)(− x) + (− x ) 2 + (− x)3 + ................... 2 3⋅ 2 (3)(4) 2 (4)(5) 3 = (1 + 2 x + x 2 ) 1 + 3 x + (x ) + ( x ) + ................... 2 2 (3)(4) 2 (4)(5) 3 (2)(3) = (1 + 2 x + x 2 ) 1 + x+ x + x + ................... 2 2 2 www.mathcity.org
FSc-I / Ex 8.3 - 8
Following in this way we can write 2 (1 + x ) = 1 + 2 x + x 2 1 + (2)(3) x + (3)(4) x 2 + (4)(5) x 3 + .................. ( ) 3 2 2 2 (1 − x )
(n − 1)(n) n−2 (n)(n + 1) n−1 (n + 1)(n + 2) n x + x + x + ....... 2 2 2 n So taking only terms involving x we have term (n + 1)(n + 2) n (n)(n + 1) n (n − 1)(n) n x +2 x + x 2 2 2 xn = ( (n + 1)(n + 2) + 2(n)(n + 1) + (n − 1)(n) ) 2 n x = ( n 2 + n + 2n + 2 + 2n 2 + 2 n + n 2 − n ) 2 n x xn = ( 4n 2 + 4 n + 2 ) = 2 ( 2n 2 + 2n + 1) 2 2 2 n = 2n + 2n + 1 x Thus the coefficient of term involving x n is 2n 2 + 2n + 1 .
+
(
(v)
)
(
)
Since we know that (1 + x )−1 = 1 − x + x 2 − x 3 + ............... Therefore
(1 − x + x
2
2
2
− x 3 + .............) = ( (1 + x ) −1 ) = (1 + x )
−2
(−2)(−2 − 1) 2 (−2)(−2 − 1)(−2 − 2) 3 ( x) + ( x) + ....... 2! 3! (−2)(−3) 2 (−2)(−3)(−4) 3 = 1 − 2x + ( x) + ( x) + ................... 2 3⋅ 2 = 1 − 2 x + 3 x 2 − 4 x 3 + ................... = 1 + (−1) 2 x + (−1) 2 3 x 2 (−1)3 4 x 3 + ................... Following in this way we can write = 1 + (−1) 2 x + (−1) 2 3 x 2 (−1)3 4 x 3 + ................... + (−1)n (n + 1) x n + ......... So the term involving x n = (−1)n (n + 1) x n And hence coefficient of term involving x n is (−1) n (n + 1) = 1 + (−2)( x) +
Question # 4 If x so small that its square and higher powers can be neglected, then show that 1− x 3 1 + 2x 3 ≈1+ x (i) ≈= 1 − x (ii) 2 2 1− x 1− x 1
1
(9 + 7 x) 2 − (16 + 3 x) 4 1 17 ≈ − x (iii) 4 + 5x 4 384
(iv)
4+ x 25 ≈ 2 + x (1 − x)3 4 www.mathcity.org
FSc-I / Ex 8.3 - 9 1
(v)
1
(8 + 5x ) (vii)
1
5x ≈ 1 − 6
(1 + x) 2 (4 − 3 x) 4 1 3
4 − x + (8 − x)
1 3
1
≈2−
(8 − x )3
(vi)
1
(1 − x) 2 (9 − 4 x) 2
(8 + 3x )
1 3
≈
3 61 − x 2 48
1 x 12
Solution (i) 1 1 1− 1− x 1− x 2 = = (1 − x) 2 L.H.S = 1 = (1 − x ) 1 − x (1 − x ) 2
1 = 1 + (− x) + squares and higher power of x. 2 3 = 1 − x = R.H.S Proved 2 (ii)
1 1 1 + 2x − = (1 + 2 x ) 2 (1 − x ) 2 1− x 1 1 Now (1 + 2 x ) 2 = 1 + (2 x) + squares and higher power of x. 2 ≈1+ x 1 − 1 Now (1 − x ) 2 = 1 + − (− x) + squares and higher power of x. 2 1 ≈1+ x 2 1 + 2x 1 ≈ (1 + x ) 1 + x 1− x 2 1 =1+ x + x ignoring term involving x 2 . 2 3 = 1 + x Proved. 2
Since
1
(iii)
1
1 1 (9 + 7 x) 2 − (16 + 3 x) 4 = (9 + 7 x) 2 − (16 + 3 x) 4 4 + 5x
(
)( 4 + 5x )
−1
1
7x 2 Now (9 + 7 x) = 9 1 + 9 1 2
1 2
1 1 7 x = (32 ) 2 1 + + squres and higher of x. 2 9 7x 7x 7x ≈ 3 1 + = 3 + 3 = 3 + 6 18 18
www.mathcity.org
FSc-I / Ex 8.3 - 10 1
3x 4 = (16) 1 + 16 1 1 3 x = (24 ) 4 1 + + square and higher power of x 4 16 3x 3x 3x ≈ (2) 1 + = 2 + 2 = 2 + 32 64 64
1 (16 + 3 x) 4
1 4
−1
( 4 + 5x )
−1
5 = 4 1 + x 4 1 5 = 1 + ( −1) x + squares and higher power of x 4 4 1 5 1 5 ≈ 1 − x = − x 4 4 4 16 −1
1
So
1
(9 + 7 x) 2 − (16 + 3 x) 4 7 x 3x 1 5 ≈ 3 + − 2 + − x 4 + 5x 6 32 4 16 3 x 1 5 103 1 5 7x = 3 + − 2 − − x = 1+ x − x 6 32 4 16 96 4 16 1 103 5 1 17 = + x− x = − x Proved 4 384 16 4 384
Do yourself
(iv)
3
1
(v)
(1 + x ) 2 ( 4 − 3x ) 2 = 1 + x 12 4 − 3x 23 8 + 5 x − 13 ( ) ( ) ( ) 1 3 (8 + 5x ) 1 1 Now (1 + x ) 2 = 1 + ( x) + square and higher power of x 2 1 ≈1+ x 2
3
( 4 − 3x )
(8 + 5x )
3 2
3 2 = 4 1 − x 4 3 3 3 = ( 22 ) 2 1 + − x + square and higher power of x 2 4 9 3 9 ≈ ( 2 ) 1 − x = 8 1 − x 8 8
−1 3
3 2
−1
5 3 = ( 8 ) 1 + x 8 −1 1 5 = ( 23 ) 3 1 + − x + square and higher power of x 3 8 −1 3
www.mathcity.org
FSc-I / Ex 8.3 - 11
5 1 5 ≈ (2)−1 1 − x = 1 − x 2 24 24 3
1
So
(1 + x ) 2 ( 4 − 3x ) 2 1 (8 + 5x ) 3
5 1 9 1 ≈ 1 + x 8 1 − x 1 − x 2 8 2 24 8 1 9 5 = 1 + x 1 − x − x 2 2 8 24 4 1 4 1 5 = 4 1 + x 1 − x = 4 1 + x − x = 4 1 − x Proved 3 2 3 2 6 Do yourself as above Same as Question #4 (iii)
(vi) (vii)
Question # 5 If x is so small that its cube and higher power can be neglected, then show that 1 9 1+ x 1 = 1 + x + x2 (i) 1 − x − 2 x 2 = 1 − x − x 2 (ii) 1− x 2 2 8 Solution 1
(i) 1 − x − 2 x 2 = (1 − ( x + 2 x 2 ) ) 2
(
)
1 1 −1 2 1 2 = 1 + ( −( x + 2 x ) ) + 2 2 −( x + 2 x 2 ) ) + cube & higher power of x. ( 2! 2 1 −1 1 2 ≈ 1 − ( x + 2 x ) + 2 2 ( x + 2 x 2 )2 2 2 1 1 1 1 1 ≈ 1 − x − (2 x 2 ) − x 2 = 1 − x − x 2 − x 2 2 2 8 2 8 1 9 = 1 − x − x2 Proved 2 8
( )
(ii) 1
1 1 − 1 + x (1 + x) 2 2 = = (1 + x) (1 − x) 2 1 − x (1 − x) 12
Now
(
)
1 1 −1 1 (1 + x) = 1 + x + 2 2 x 2 + cube & higher power of x. 2! 2 1 −1 1 1 1 ≈ 1 + x + 2 2 x2 = 1 + x − x2 2 2 2 8 1 − 12 − 12 − 1 − 1 2 (1 − x) = 1 + − (− x) + (− x)2 + cube & higher power of x. 2! 2 1 2
( )
( )(
)
www.mathcity.org
FSc-I / Ex 8.3 - 12
( )( )
− 12 − 23 2 1 3 1 ≈1+ x + x = 1 + x + x2 2 2 2 8 So 1+ x 1 1 1 3 = 1 + x − x 2 1 + x + x 2 1− x 2 8 2 8 1 1 1 1 3 1 = 1 + x − x2 + x + x2 + x2 = 1 + x + x2 2 2 8 2 4 8
Proved
Question # 6 If x is very nearly equal 1, then prove that px p − qx q = ( p − q ) x p + q Solution Since x is nearly equal to 1 so suppose x = 1 + h , where h is so small that its square and higher powers be neglected L.H.S = px p − qx q = p (1 + h) p − q (1 + h) q = p (1 + ph + square & higher power of x ) −q (1 + qh + square & higher power of h) ≈ p (1 + ph) − q (1 + qh) = p + p 2 h − q − q 2 h …………….. (i) Now R.H.S = ( p − q ) x p + q = ( p − q )(1 + h) p + q = ( p − q ) (1 + ( p + q )h + square & higher power of h ) ≈ ( p − q ) (1 + ( p + q )h ) = ( p − q ) (1 + ph + qh ) = p + p 2 h + pqh − q − pqh − q 2 h = p + p 2 h − q − q 2 h …………….. (ii) From (i) and (ii) L.H.S ≈ R.H.S Proved
Question # 7 If p − q is small when compared with p or q , show that 1
(2n + 1) p + (2n − 1)q p + q n . = (2n − 1) p + (2n + 1)q 2q Solution Since p − q is small when compare Therefore let p − q = h ⇒ p = q + h (2n + 1) p + (2n − 1)q (2n + 1)(q + h) + (2n − 1)q L.H.S = = (2n − 1) p + (2n + 1)q (2n − 1)(q + h) + (2n + 1)q 2nq + q + 2nh + h + 2nq − q 4nq + 2nh + h = = 2nq − q + 2nh − h + 2nq + q 4nq + 2nh − h
www.mathcity.org
FSc-I / Ex 8.3 - 13
4nq + 2nh + h 4nq + 2nh + h 2nh − h = = 1 + 2nh − h 4nq 4nq 4nq 1 + 4nq
−1
2nh − h 4nq + 2nh + h 2 & + square higher power of x 1 + (−1) 4nq 4 nq 4nq + 2nh + h 2nh − h 4nq + 2nh + h 4nq − 2nh + h = 1 − = 4nq 4nq 4nq 4nq =
16n 2 q 2 + 8n 2 hq + 4nhq − 8n 2 hq + 4nhq ≈ 16n 2 q 2 16n 2 q 2 + 8nhq 16n 2 q 2 8nhq = + = 16n 2 q 2 16n 2 q 2 16n 2 q 2 h =1+ …………….. (i) 2nq 1
1
1
1
ignoring squares of h
p + q n q + h + q n Now R.H.S = = 2q 2 q 1
2q + h n 2 q h n h n = + = = 1 + 2q 2q 2 q 2q 1 h = 1 + + square & higher power of h . n 2q h ≈1+ …………….. (ii) 2nq Form (i) and (ii) L.H.S ≈ R.H.S Proved
Question # 8 1 2
n 8n n+ N Show that − where n and N are nearly equal. ≈ 9n − N 4n 2(n + N ) Solution Since n and N are nearly equal therefore consider N = n + h , where h is so small that its squares and higher power be neglected. 1 2
n n L.H.S = = 2(n + N ) 2(n + n + h) 1 2
2(2n + h) n = = n 2(2n + h) 1 2
2h = (4) 1 + 4n −
−
1 2
1 2
−
1 2
4n + 2h = n
h = (22 ) 1 + 2n −
1 2
−
−
1 2
2h = 4+ n
−
1 2
1 2
www.mathcity.org
FSc-I / Ex 8.3 - 14
1 h = (2) −1 1 + − + square & higher power of h 2 2n 1 h 1 h = 1 − = − …………….. (i) 2 4n 2 8n 8n n+ N Now R.H.S = − 9n − N 4n 8n n+n+h 8n n + ( n + h) = − = − 9n − ( n + h ) 4n 9n − n − h 4n −1
8n 2n + h h 2n + h 8n 2n + h = − = 1 − − = − 4n 8n − h 4n 4n 8n 8n 1 − h 8n 2n h h = 1 + (−1) − + square & higher power of h − + 8n 4n 4n h 1 h h 1 h = 1 + − + = 1 + − − 8n 2 4n 8n 2 4 n 1 h = − …………….. (ii) 2 8n From (i) and (ii) L.H.S = R.H.S Proved Question # 9 Identify the following series as binomial expansion and find the sum in each case. 2 3 1 1 1⋅ 3 1 1⋅ 3 ⋅ 5 1 (i) 1 − + − +… 2 4 2! ⋅ 4 4 3! ⋅ 8 4
(
)
2
3
2
3
1 1 1⋅ 3 1 1⋅ 3 ⋅ 5 1 (ii) 1 − + − +… 2 2 2⋅4 2 2.4.6 2 3 3⋅5 3⋅5⋅7 (iii) 1 + + + +… 4 4 ⋅8 4 ⋅ 8 ⋅ 12 1 1 1⋅ 3 1 1⋅ 3 ⋅ 5 1 (iv) 1 − + − +… 2 3 2⋅ 4 3 2.4.6 3 Solution 2 3 1 1 1⋅ 3 1 1⋅ 3 ⋅ 5 1 (i) 1− + − +… 2 4 2! ⋅ 4 4 3! ⋅ 8 4 Suppose the given series be identical with n(n − 1) 2 (1 + x) n = 1 + nx + x +… 2! 11 nx = − ……………….…… (i) This implies 2 4 2 n(n − 1) 2 1 ⋅ 3 1 x = …………. (ii) 2! 2! ⋅ 4 4 www.mathcity.org
FSc-I / Ex 8.3 - 15
nx = −
From (i)
1 1 ⇒ x=− …………… (iii) 8 8n
Putting value of x in (ii) 2 2 n(n − 1) 1 1⋅ 3 1 − = 2! 8n 2! ⋅ 4 4 n(n − 1) 1 3 1 ⇒ = 2 2 64n 2 ⋅ 4 16 (n − 1) 3 3 ⇒ = ⇒ (n − 1) = ⋅ 128n ⇒ n − 1 = 3 n 128n 128 128 1 ⇒ n − 3n = 1 ⇒ − 2n = 1 ⇒ n = − 2 Putting value of n in equation (iii) 1 1 x=− ⇒ x= 4 8 −1 2 So
( )
−
(ii)
1
1 2 5 (1 + x) n = 1 + = 4 4 Do yourself as above
−
1 2
1
4 4 2 = = 5 5
3 3⋅5 3⋅5⋅7 + + +… 4 4 ⋅8 4 ⋅ 8 ⋅ 12 Suppose the given series be identical with n(n − 1) 2 (1 + x) n = 1 + nx + x +… 2! 3 nx = ……………….…… (i) This implies 4 n(n − 1) 2 3 ⋅ 5 x = …………. (ii) 2! 4 ⋅8 3 3 nx = From (i) ⇒ x= …………… (iii) 4 4n Putting value of x in (ii) 2 n(n − 1) 3 3 ⋅ 5 n(n − 1) 9 15 ⇒ = = 2! 4n 4 ⋅8 2 16 n 2 32 15 9(n − 1) 15 ⇒ = ⇒ 9( n − 1) = ⋅ 32 n ⇒ 9n − 9 = 15 n 32 n 32 32
(iii)
1+
⇒ 9n − 15n = 9 ⇒ − 6n = 9 ⇒ n = −
9 6
⇒ n=−
3 2
Putting value of n in equation (iii) www.mathcity.org
FSc-I / Ex 8.3 - 16
x=−
3
( )
4 −3 2 −
⇒
3
x=− −
1 2
3
3 3 1 2 1 2 So (1 + x) n = 1 − = = ( 2 ) 2 = 2 = 2 2 Answer 2 2 (iv) Do yourself as above Question # 10 1 1⋅ 3 1⋅ 3 ⋅ 5 Use binomial theorem to show that 1 + + + +… = 2 4 4 ⋅8 4 ⋅ 8 ⋅ 12 1 1⋅ 3 1⋅ 3 ⋅ 5 1+ + Solution + +… 4 4 ⋅8 4 ⋅ 8 ⋅ 12 Suppose the given series be identical with n(n − 1) 2 (1 + x) n = 1 + nx + x +… 2! This implies 1 nx = ……………….…… (i) 4 n(n − 1) 2 1 ⋅ 3 x = …………. (ii) 2! 4 ⋅8 1 1 nx = From (i) ⇒ x= …………… (iii) 4 4n Putting value of x in (ii) 2 n(n − 1) 1 1 ⋅ 3 n(n − 1) 1 3 ⇒ = = 2! 4n 4 ⋅8 2 16 n 2 32 3 (n − 1) 3 ⇒ = ⇒ (n − 1) = ⋅ 32 n ⇒ n − 1 = 3 n 32 n 32 32
( )
⇒ n − 3n = 1 ⇒ − 2n = 1
Putting value of n in equation (iii) 1 x= ⇒ 1 4 − 2
x=−
( )
−
So Hence
1 2
−
⇒ n=−
1 2
1 2
1 2
1 1 1 (1 + x) n = 1 − = = ( 2 ) 2 = 2 2 2 1 1⋅ 3 1⋅ 3 ⋅ 5 1+ + + +… = 2 Proved 4 4 ⋅8 4 ⋅ 8 ⋅ 12
Question # 11 2 3 1 1⋅ 3 1 1⋅ 3 ⋅ 5 1 2 If y = + + + … , then prove that y + 2 y − 2 = 0 . 3 2! 3 3! 3 www.mathcity.org
FSc-I / Ex 8.3 - 17 2
3
1 1⋅ 3 1 1⋅ 3 ⋅ 5 1 Solution y= + + +… 3 2! 3 3! 3 Adding 1 on both sides 2 3 1 1⋅ 3 1 1⋅ 3 ⋅ 5 1 1+ y =1+ + + +… 3 2! 3 3! 3 Let the given series be identical with n(n − 1) 2 (1 + x) n = 1 + nx + x +… 2! This implies 1 nx = ……………….…… (i) 3 2 n(n − 1) 2 1 ⋅ 3 1 x = …………. (ii) 2! 2! 3 1 1 From (i) nx = ⇒ x= …………… (iii) 3 3n Putting value of x in (ii) 2 2 n(n − 1) 1 1 ⋅ 3 1 = 2! 3n 2! 3 n(n − 1) 1 3 1 ⇒ = ⋅ 2 9 n2 2 9 1 n −1 1 ⇒ = ⇒ n − 1 = ⋅ 18 n 18 n 6 6 ⇒ n − 1 = 3 n ⇒ n − 3n = 1 ⇒ − 2n = 1 ⇒ n = −
1 2
Putting value of n in equation (iii) 1 2 x= ⇒ x=− 3 3 −1 2
( )
2 So (1 + x) n = 1 − 3
−
1 2
1 = 3
−
1 2
1
= ( 3) 2 = 3 This implies 1+ y = 3 On squaring both sides
(1 + y )
2
=
( 3)
2
⇒ 1 + 2 y + y2 = 3 ⇒ 1 + 2 y + y2 − 3 = 0 ⇒ y 2 + 2 y − 2 = 0 Proved. www.mathcity.org
FSc-I / Ex 8.3 - 18
Question # 12 1 1⋅ 3 1 1⋅ 3 ⋅ 5 1 If 2 y = 2 + ⋅ 4+ ⋅ 6 + ... , then prove that 4 y 2 + 4 y − 1 = 0 . 2 2! 2 3! 2 1 1⋅ 3 1 1⋅ 3 ⋅ 5 1 Solution 2y = 2 + ⋅ + ⋅ + ... 2 2! 24 3! 26 Adding 1 on both sides 1 1⋅ 3 1 1⋅ 3 ⋅ 5 1 1+ 2y =1+ 2 + ⋅ + ⋅ + ... 2 2! 24 3! 26 Let the given series be identical with n(n − 1) 2 x + ... (1 + x)n = 1 + nx + 2! This implies 1 nx = 2 ……………….…… (i) 2 n(n − 1) 2 1 ⋅ 3 1 x = ⋅ …………. (ii) 2! 2! 24 1 1 nx = ⇒ x= …………… (iii) From (i) 4 4n Putting value of x in (ii) 2 n(n − 1) 1 1 ⋅ 3 1 ⋅ = 2! 4n 2! 24 n(n − 1) 1 3 1 ⇒ = ⋅ 2 16 n 2 2 16 n −1 ⇒ = 3 ⇒ n − 1 = 3n n 1 ⇒ n − 3n = 1 ⇒ − 2n = 1 ⇒ n = − 2 Putting value of n in equation (iii) 1 1 x= ⇒ x=− 2 4 −1 2 So
( )
1 (1 + x) n = 1 − 2 1 = 2
−
1 2
1 2
−
= ( 2)
1 2
= 2
This implies 1+ 2y = 2 On squaring both sides
(1 + 2 y )
2
=
( )
2
2
www.mathcity.org
FSc-I / Ex 8.3 - 19
⇒ 1 + 4 y + 4 y2 = 4
⇒ 1 + 4 y + 4 y2 − 2 = 0 Proved
⇒ 4 y2 + 4 y −1 = 0
Question # 13 2 3 2 1⋅ 3 2 1⋅ 3 ⋅ 5 2 2 If y = + + + … , then prove that y + 2 y − 4 = 0 . 5 2! 5 3! 5 2
3
2 1⋅ 3 2 1⋅ 3 ⋅ 5 2 y= + Solution + +… 5 2! 5 3! 5 Adding 1 on both sides 2 3 2 1⋅ 3 2 1⋅ 3 ⋅ 5 2 1+ y =1+ + + +… 5 2! 5 3! 5 Let the given series be identical with n(n − 1) 2 (1 + x) n = 1 + nx + x +… 2! This implies 2 nx = ……………….…… (i) 5 2 n(n − 1) 2 1 ⋅ 3 2 x = …………. (ii) 2! 2! 5 2 2 nx = ⇒ x= …………… (iii) From (i) 5 5n Putting value of x in (ii) 2 2 n(n − 1) 2 1 ⋅ 3 2 = 2! 5n 2! 5 n(n − 1) 4 3 4 ⇒ = 2 25n 2 2 25 n −1 ⇒ = 3 ⇒ n − 1 = 3 n ⇒ n − 3n = 1 n 1 ⇒ − 2n = 1 ⇒ n = − 2 Putting value of n in equation (iii) 2 4 x= ⇒ x=− 5 5 −1 2
( )
4 So (1 + x) n = 1 − 5
−
1 2
1 = 5
−
1 2
1
= ( 5) 2 = 5 This implies 1+ y = 5 www.mathcity.org
FSc-I / Ex 8.3 - 20
On squaring both sides 2
(1 + y ) =
( )
2
5
⇒ 1 + 2 y + y2 = 5 ⇒ 1 + 2 y + y2 − 5 = 0 ⇒ y 2 + 2 y − 4 = 0 Proved. If you found any error, please report us at www.mathcity.org/error
Book:
Exercise 8.3 (Page 283) Text Book of Algebra and Trigonometry Class XI Punjab Textbook Board, Lahore. Edition: May 2017 Available online at http://www.MathCity.org in PDF Format (Picture format to view online). Page setup: A4 (8.27 in × 11.02 in). Updated: November 13,2017.
These resources are shared under the licence AttributionNonCommercial-NoDerivatives 4.0 International https://creativecommons.org/licenses/by-nc-nd/4.0/ Under this licence if you remix, transform, or build upon the material, you may not distribute the modified material.
www.mathcity.org