Ex-8-3-fsc-part1-ver3-5.pdf

  • Uploaded by: Qais Raza
  • 0
  • 0
  • August 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Ex-8-3-fsc-part1-ver3-5.pdf as PDF for free.

More details

  • Words: 8,425
  • Pages: 20
MathCity.org Merging man and maths

Exercise 8.3 (Solutions) Textbook of Algebra and Trigonometry for Class XI Available online @ http://www.mathcity.org, Version: 3.5

Binomial Theorem when n is negative or fraction: When n is negative or fraction and x < 1 then n (n − 1) 2 n (n − 1)(n − 2) 3 x + x + ... (1 + x) n = 1 + n x + 2! 3! Where the general term of binomial expansion is n (n − 1)(n − 2)...( n − (r − 1) ) r Tr +1 = x r! Question # 1 Expand the following upto 4 times, taking the values of x such that the expansion in each case is valid. (i) (1 − x)

1 2

(ii) (1 + 2 x )

−1

(iii) (1 + x)



1 3

(iv) (4 − 3 x)

−1

(v) (8 − 2 x )

−1

(vi) (2 − 3 x)

−2

(vii)

(1 − x ) 2 (1 + x )

(viii)

(1 + 2 x ) (1 − x )

1

( 4 + 2x)2 (ix) (2 − x) Solution (i)

1 2 2

(x) (1 + x − 2 x )

1 2 2

(xi) (1 − 2 x + 3 x )

11  1  1  1  − 1 − 1 − 2    1 2 2  2 2  2  (− x)3 + ... (1 − x) = 1 + (− x) +  (− x)2 +  2 2! 3! 1 1 1  1  3  −    −  −  1 2  2  2 2  2  2  =1− x + x + (− x 3 ) + ... 2 2 3⋅ 2 1 1 1 = 1 − x − x 2 − x3 + ... 2 8 16 1 2

(ii)

Do yourself as above

(iii)

Do yourself as above 1

(iv)

1

1

1   3x   2  3x  2  3x  2 (4 − 3 x) =  4 1 −   = (4) 2  1 −  = 2  1 −  4  4  4      1 2

1 2

 11  1  1  1   − 1 − 1 − 2 2 3       1  3x  2 2    − 3 x  + 2  2  2   − 3x  + ... = 2 1 +  −  +      2!  4  3!  4   2 4    

FSc-I / Ex 8.3 - 2

 1 1 1  1  3    3 x 2  − 2   9 x 2  2  − 2  − 2   27 x 3        = 2 1 − +  + −  + ... 8 2  16  3⋅ 2    64     3 x 1  9 x 2  1  27 x3   = 2 1 − −  − + ...     8 8  16  16  64     3 x 9 x 2 27 x 3  = 2 1 − − − + ... 8 128 1024   3 x 9 x 2 27 x3 =2− − − + ... 4 64 512 −1

1 2

(v)

1 x   2x  (8 − 2 x) = (8) 1 −  = 1 −  8  8 4  

(vi)

Do yourself

−1

−1

Now do yourself

(1 − x)−1 = (1 − x) −1 (1 + x)−2 (vii) 2 (1 + x) (−1)(−1 − 1) (−1)(−1 − 1)(−1 − 2)   = 1 + (−1)(− x) + ( − x) 2 + (− x )3 + …  2! 3!   (−2)(−2 − 1) 2 (−2)(−2 − 1)(−2 − 2) 3   × 1 + (−2)( x) + ( x) + ( x) + …  2! 3!   (−1)(−2) 2 (−1)(−2)(−3)   (x ) + (− x 3 ) + …  = 1 + x + 2 3⋅ 2   (−2)(−3) 2 (−2)(−3)(−4) 3   × 1 − 2 x + ( x) + ( x) + …  2 3⋅ 2   2 3 2 = 1 + x + x + x + ................... × 1 − 2 x + 3x − 4 x 3 +…

(

) (

)

= 1 + ( x − 2 x) + ( x 2 − 2 x 2 + 3x 2 ) + ( x3 − 2 x3 + 3x3 − 4 x3 ) + … = 1 − x + 2 x 2 − 2 x 3 +…

Do yourself as above

(viii) 1

1

1 1 (4 + 2 x) 2 2x 2  x = (4 + 2 x) 2 (2 − x) −1 = (4) 2 1 +  (2) −1 1 −  (ix) 2− x 4    2 1

−1

1

−1

−1

1

x 2  x   x 2  x  x 2 1  x   = (4) 1 +  (2) −1 1 −  = 2 1 +  1 −  = 1 +  1 −   2  2  2  2 2   2  2 1 2

−1

www.mathcity.org

FSc-I / Ex 8.3 - 3 1

−1

x 2  x   = 1 +  1 −   2  2 11 11     1 − 2    x 3  1  x  2  2 − 1   x  2 2  2 − 1  2    + … = 1 +   + +      2!  2  3! 2  2  2     2 3    x  (−1)(−1 − 1)  x  (−1)(−1 − 1)(−1 − 2)  x  ×  1 + (−1)  −  + − + − + …       2! 3!  2  2  2   1 1 1  1  3     −   x 3   x 2  − 2   x 2  2  − 2   2 = 1 + + + + …      2  4 3⋅ 2  8  4    2 3   x (−1)(−2)  x  (−1)(−2)(−3)  x  … × 1 + + + − +      2 2 4 3 ⋅ 2 8           x x2 x3 x x 2 x3 = 1 + − + + …  × 1 + + + + …  8  4 32 128   2 4  2 x2 x2   x3 x3 x3 x3  x x  x =1+  +  + − + +  +  − + +  +… 4 2 32 8 4 128 64 16 8       3 x 11x 2 23 x3 =1+ + + +… 4 32 128 1

1

(1 + x − 2 x 2 ) 2 = (1 + ( x − 2 x2 ) ) 2

(x)

11

11   1  − 1 − 1  − 2    1 = 1 + ( x − 2 x 2 ) + 2  2  ( x − 2 x 2 ) 2 + 2  2  2  ( x − 2 x 2 )3 + … 2 2! 3! 1 1 1  1  3  −    −  −  1 2 2 2 2  2  2  2 3 4 = 1 + ( x − 2x ) + (x − 4x + 4x ) + 2 2 3⋅ 2 x3 + 3( x) 2 (−2 x 2 ) + 3( x)(−2 x 2 ) 2 − (2 x 2 )3 +…

(

(xi)

) 1 + 4x ) + ( x 16

1 1 4 3 = 1 + ( x − 2 x 2 ) − ( x 2 − 4 x3 − 6 x 4 + 12 x5 − 8 x 6 ) + … 2 8 1 2 1 4 4 1 6 12 8 = 1 + x − x 2 − x 2 − x3 + x 4 + x 3 − x 4 + x5 − x 6 + … 2 2 8 8 8 16 16 16 16 1 1 1 1 1 3 3 1 = 1 + x − x2 − x2 − x3 + x4 + x3 − x 4 + x5 − x6 + … 2 8 2 2 16 8 4 8 1 9 9 = 1 + x − x2 − x3 + … 2 8 16 Do yourself as above www.mathcity.org

FSc-I / Ex 8.3 - 4

Question # 2 Use the Binomial theorem find the value of the following to three places of decimials. 1

1

(i) 99

(ii) ( 0.98 ) 2

(v) 4 17

(vi)

(iii) (1.03) 3 1 (vii) 3 998 1 (xi) 6 486

(ix)

7 8

5

31

(x) (0.998)



1 3

(iv)

3

65 1 (viii) 5 252 1

(xii) (1280) 4

Solution (i)

1

(ii) (iii)

1

1 2

1 2  99 = ( 99 ) = (100 − 1) = (100)  1 −   100  11     1  1  2  2 − 1   1  2  = 10 1 +  − + − + …     2 100 2! 100         1 1   −     1  1  = 10 1 − + 2 2 + …   2  10000   200    1   = 10 1 − 0.005 − ( 0.0001) + …  8   = 10 (1 − 0.005 − 0.0000125 + …) ≈ 10 ( 0.9949875 ) = 9.949875 ≈ 9.950 1 2

1 2

1

( 0.98) 2 = (1 − 0.02 ) 2 (1.03)

1 3

= (1 + 0.03) 1 3

Now do yourself

1 3

Now do yourself 1 3

1

1 3  = ( 64 − 1) = (64) 1 −   64  1 3

3

65 = ( 65 )

(v)

4

1  17 = (17 ) = (16 − 1) = (16)  1 −   16 

(vi)

1 5  5 31 = ( 31) = ( 32 − 1) = (32)  1 −   32 

(iv)

1 4

1 5

1 4

1 5

1 4

1 5

1 4

Now do yourself Now do yourself

1

Now do yourself

www.mathcity.org

FSc-I / Ex 8.3 - 5

(vii)

3

1 1 = 1 = ( 998 ) 998 ( 998) 3 = (10

1 3 −3

)

1 − 3

1   1 −   500 

= (1000 − 2 ) −

1 − 3

2   = (1000 )  1 −   1000  1 − 3



1 3

1 3

1 1   −  − − 1  2  1  1  1  3 3   − 1  + … =   1 +  −  − +     2!  10    3  500   500      1 4   −  −    1   1  1  3 3  =   1 +  + + …     2  10    1500   250000      2  1   =  1 + ( 0.0006667 ) + ( 0.000004 ) + …  9  10   1 =   (1 + 0.0006667 + 0.00000089 + …)  10  1 ≈   (1.00066759 ) = 0.100066759 ≈ 0.100 Answer  10 

( viii)

1 1 1 1 1 − − 9  −  5 5 5 1+ = = 252 = 243 + 9 = 243 ( ) ( ) ( ) 1   5 252 ( 252 ) 5  243  1 5 −5

= (3

)

1   1 +    27  1

(ix)



1 5



1 5

Now do yourself as above 1

7 7  7 2  1 2 = =   = 1 −  8 8  8 8 11  − 1 2  1 1 2 2  1 =1+  −  + −  +… 2 8 2!  8  1 1 − 1 2  2   1  =1− +   +… 16 2  64  1 1 1  =1− −   +… 16 8  64  1 1 =1− − +… 16 512 = 1 − 0.0625 − 0.00195 +… ≈ 0.93555 ≈ 0.936 Answer www.mathcity.org

FSc-I / Ex 8.3 - 6

(x)

(0.998)



1 3

= (1 − 0.002)



1 3

Now do yourself as above

1 1 1 1 1 − − 243  −  6 6 6 1− = = 486 = 729 − 243 = 729 ( ) ( ) ( ) 1   6 486 ( 486 ) 6  729 

(xi)

1 6 −6

= (3

)

 1 1 −   3

1 4



1 4

1 6



1 6

Now do yourself 1

1

1 16  4 1 4  4 4 (1280) = (1296 − 16) = (1296 )  1 − = 6  ( ) 1 −   1296   81  Now do yourself

(xii)

1 4

Question # 3 Find the coefficient of x n in the expansion of 2 1 + x2 ) ( 1 + x) ( (ii) (i) 2 2 (1 + x ) (1 − x )

(1 + x)3 (iii) (1 − x) 2

2

(iv)

(1 + x ) 3 (1 − x )

(v) (1 − x + x 2 − x 3 + …)

2

Solution 1 + x2 ) ( −2 (i) = (1 + x 2 ) (1 + x ) 2 (1 + x )

(−2)(−2 − 1) 2 (−2)(−2 − 1)(−2 − 2) 3   = (1 + x 2 ) 1 + (−2)( x) + ( x) + ( x) + …  2! 3!   (−2)(−3) 2 (−2)(−3)(−4) 3   = (1 + x 2 ) 1 − 2 x + x + x + … 2 3⋅ 2  

= (1 + x 2 )(1 − 2 x + 3x 2 − 4 x 3 + …) = (1 + x 2 )(1 + (−1)2 x + (−1) 2 3x 2 + (−1)3 4 x3 + …) Following in this way we can write (1 + x2 ) = 1 + x 2 (1 + (−1)2 x + (−1)2 3x 2 + (−1)3 4 x3 + … + (−1)n−2 (n − 1) xn−2 + ( ) 2 (1 + x ) ( −1) n−1 ( n) x n −1 + ( −1) n ( n + 1) x n + …)

So taking only terms involving x n we get ( −1) n ( n + 1) x n + ( −1) n −2 ( n − 1) x n = ( −1) n ( n + 1) x n + ( −1) n ( −1) −2 ( n − 1) x n = ( −1) n ( n + 1) x n + ( −1) n ( n − 1) x n = ( n + 1 + n − 1)( −1) n x n = (2n)( −1) n x n

∵ ( −1) −2 = 1

www.mathcity.org

FSc-I / Ex 8.3 - 7

Thus the coefficient of term involving x n is (2n)( −1) n (ii)

Hint: After solving you will get

(1 + x ) = 2

(1 − x )

2

(1 + x ) (1 + 2 x + 3x 2

2

+ 4 x 3 + … + (n − 1) x n−2 + (n) x n−1 + (n + 1) x n + …) Do yourself as above

(iii)

(1 + x)3 = (1 + x)3 (1 − x)−2 2 (1 − x) (−2)(−2 − 1) (−2)(−2 − 1)(−2 − 2) 3  = (1 + x ) 1 + (−2)(− x) + (− x) 2 + ( − x )3 + …  2! 3!   (−2)(−3) 2 (−2)(−3)(−4) 3  = (1 + x ) 1 + 2 x + ( x) + (− x3 ) + …  2 3⋅ 2  

= (1 + 3x + 3x 2 + x3 )(1 + 2 x + 3x 2 + 4 x3 + …) Following in this way we can write (1 + x)3 = 1 + 3x + 3x 2 + x 3 (1 + 2 x + 3x 2 + 4 x 3 + … + (n − 2) x n−3 + (n − 1) x n−2 2 (1 − x) + ( n) x n −1 + ( n + 1) x n + …) So taking only terms involving x n we have term ( n + 1) x n + 3( n) x n + 3( n − 1) x n + ( n − 2) x n = ( (n + 1) + 3(n) + 3(n − 1) + (n − 2) ) x n

(

)

= ( n + 1 + 3n + 3n − 3 + n − 2 ) x n = ( 8n − 4 ) x n

Thus the coefficient of term involving x n is ( 8n − 4 ) . 2

(iv)

(1 + x ) = 1 + x 2 1 − x −3 ( )( ) 3 (1 − x ) (−3)(−3 − 1) (−3)(−3 − 1)(−3 − 2) 2  = (1 + x ) 1 + (−3)(− x) + ( − x) 2 + (− x)3 + ........  2! 3!   (−3)(−4) (−3)(−4)(−5) 2  = (1 + x ) 1 + (−3)(− x) + (− x ) 2 + (− x)3 + ...................  2 3⋅ 2   (3)(4) 2 (4)(5) 3   = (1 + 2 x + x 2 ) 1 + 3 x + (x ) + ( x ) + ...................  2 2   (3)(4) 2 (4)(5) 3  (2)(3)  = (1 + 2 x + x 2 ) 1 + x+ x + x + ...................  2 2 2   www.mathcity.org

FSc-I / Ex 8.3 - 8

Following in this way we can write 2 (1 + x ) = 1 + 2 x + x 2 1 + (2)(3) x + (3)(4) x 2 + (4)(5) x 3 + .................. ( )  3 2 2 2 (1 − x )

(n − 1)(n) n−2 (n)(n + 1) n−1 (n + 1)(n + 2) n  x + x + x + .......  2 2 2  n So taking only terms involving x we have term (n + 1)(n + 2) n (n)(n + 1) n (n − 1)(n) n x +2 x + x 2 2 2 xn = ( (n + 1)(n + 2) + 2(n)(n + 1) + (n − 1)(n) ) 2 n x = ( n 2 + n + 2n + 2 + 2n 2 + 2 n + n 2 − n ) 2 n x xn = ( 4n 2 + 4 n + 2 ) = 2 ( 2n 2 + 2n + 1) 2 2 2 n = 2n + 2n + 1 x Thus the coefficient of term involving x n is 2n 2 + 2n + 1 .

+

(

(v)

)

(

)

Since we know that (1 + x )−1 = 1 − x + x 2 − x 3 + ............... Therefore

(1 − x + x

2

2

2

− x 3 + .............) = ( (1 + x ) −1 ) = (1 + x )

−2

(−2)(−2 − 1) 2 (−2)(−2 − 1)(−2 − 2) 3 ( x) + ( x) + ....... 2! 3! (−2)(−3) 2 (−2)(−3)(−4) 3 = 1 − 2x + ( x) + ( x) + ................... 2 3⋅ 2 = 1 − 2 x + 3 x 2 − 4 x 3 + ................... = 1 + (−1) 2 x + (−1) 2 3 x 2 (−1)3 4 x 3 + ................... Following in this way we can write = 1 + (−1) 2 x + (−1) 2 3 x 2 (−1)3 4 x 3 + ................... + (−1)n (n + 1) x n + ......... So the term involving x n = (−1)n (n + 1) x n And hence coefficient of term involving x n is (−1) n (n + 1) = 1 + (−2)( x) +

Question # 4 If x so small that its square and higher powers can be neglected, then show that 1− x 3 1 + 2x 3 ≈1+ x (i) ≈= 1 − x (ii) 2 2 1− x 1− x 1

1

(9 + 7 x) 2 − (16 + 3 x) 4 1 17 ≈ − x (iii) 4 + 5x 4 384

(iv)

4+ x 25 ≈ 2 + x (1 − x)3 4 www.mathcity.org

FSc-I / Ex 8.3 - 9 1

(v)

1

(8 + 5x ) (vii)

1

 5x  ≈ 1 −  6  

(1 + x) 2 (4 − 3 x) 4 1 3

4 − x + (8 − x)

1 3

1

≈2−

(8 − x )3

(vi)

1

(1 − x) 2 (9 − 4 x) 2

(8 + 3x )

1 3



3 61 − x 2 48

1 x 12

Solution (i) 1 1 1− 1− x 1− x 2 = = (1 − x) 2 L.H.S = 1 = (1 − x ) 1 − x (1 − x ) 2

1 = 1 +   (− x) + squares and higher power of x. 2 3 = 1 − x = R.H.S Proved 2 (ii)

1 1 1 + 2x − = (1 + 2 x ) 2 (1 − x ) 2 1− x 1 1 Now (1 + 2 x ) 2 = 1 +   (2 x) + squares and higher power of x. 2 ≈1+ x 1 −  1 Now (1 − x ) 2 = 1 +  −  (− x) + squares and higher power of x.  2 1 ≈1+ x 2 1 + 2x  1  ≈ (1 + x ) 1 + x  1− x  2  1 =1+ x + x ignoring term involving x 2 . 2 3 = 1 + x Proved. 2

Since

1

(iii)

1

1 1 (9 + 7 x) 2 − (16 + 3 x) 4 = (9 + 7 x) 2 − (16 + 3 x) 4 4 + 5x

(

)( 4 + 5x )

−1

1

 7x 2 Now (9 + 7 x) = 9 1 +  9   1 2

1 2

1    1  7 x  = (32 ) 2 1 +    + squres and higher of x.    2  9   7x  7x   7x  ≈ 3 1 +  = 3 + 3  = 3 + 6  18   18 

www.mathcity.org

FSc-I / Ex 8.3 - 10 1

 3x  4 = (16) 1 +   16  1    1  3 x  = (24 ) 4 1 +    + square and higher power of x    4  16   3x  3x   3x  ≈ (2) 1 +  = 2 + 2   = 2 + 32  64   64 

1 (16 + 3 x) 4

1 4

−1

( 4 + 5x )

−1

 5  = 4 1 + x   4  1  5  = 1 + ( −1)  x  + squares and higher power of x  4 4   1 5  1 5 ≈ 1 − x  = − x 4 4  4 16 −1

1

So

1

(9 + 7 x) 2 − (16 + 3 x) 4  7 x   3x    1 5  ≈  3 +  −  2 +    − x  4 + 5x 6   32    4 16   3 x   1 5   103  1 5   7x = 3 + − 2 −   − x  =  1+ x  − x  6 32   4 16   96  4 16   1 103 5 1 17 = + x− x = − x Proved 4 384 16 4 384

Do yourself

(iv)

3

1

(v)

(1 + x ) 2 ( 4 − 3x ) 2 = 1 + x 12 4 − 3x 23 8 + 5 x − 13 ( ) ( ) ( ) 1 3 (8 + 5x ) 1 1 Now (1 + x ) 2 = 1 +   ( x) + square and higher power of x 2 1 ≈1+ x 2

3

( 4 − 3x )

(8 + 5x )

3 2

 3 2 = 4 1 − x   4  3   3  3   = ( 22 ) 2 1 +   − x  + square and higher power of x    2  4   9  3  9  ≈ ( 2 ) 1 − x  = 8 1 − x   8   8 

−1 3

3 2

−1

 5  3 = ( 8 ) 1 + x   8  −1    1  5  = ( 23 ) 3 1 +  −  x  + square and higher power of x    3  8   −1 3

www.mathcity.org

FSc-I / Ex 8.3 - 11

5  1 5   ≈ (2)−1 1 − x  = 1 − x  2  24   24  3

1

So

(1 + x ) 2 ( 4 − 3x ) 2 1 (8 + 5x ) 3

5   1   9  1 ≈ 1 + x  8 1 − x  1 − x   2   8  2  24  8 1   9 5  = 1 + x   1 − x − x  2 2   8 24  4   1  4   1  5  = 4 1 + x  1 − x  = 4 1 + x − x  = 4 1 − x  Proved 3   2  3   2  6  Do yourself as above Same as Question #4 (iii)

(vi) (vii)

Question # 5 If x is so small that its cube and higher power can be neglected, then show that 1 9 1+ x 1 = 1 + x + x2 (i) 1 − x − 2 x 2 = 1 − x − x 2 (ii) 1− x 2 2 8 Solution 1

(i) 1 − x − 2 x 2 = (1 − ( x + 2 x 2 ) ) 2

(

)

1 1 −1 2 1 2 = 1 +   ( −( x + 2 x ) ) + 2 2 −( x + 2 x 2 ) ) + cube & higher power of x. ( 2! 2 1 −1 1 2 ≈ 1 −   ( x + 2 x ) + 2 2 ( x + 2 x 2 )2 2 2 1 1 1 1 1 ≈ 1 − x − (2 x 2 ) − x 2 = 1 − x − x 2 − x 2 2 2 8 2 8 1 9 = 1 − x − x2 Proved 2 8

( )

(ii) 1

1 1 − 1 + x (1 + x) 2 2 = = (1 + x) (1 − x) 2 1 − x (1 − x) 12

Now

(

)

1 1 −1 1 (1 + x) = 1 +   x + 2 2 x 2 + cube & higher power of x. 2! 2 1 −1 1 1 1 ≈ 1 + x + 2 2 x2 = 1 + x − x2 2 2 2 8 1 − 12 − 12 − 1 −  1 2 (1 − x) = 1 +  −  (− x) + (− x)2 + cube & higher power of x. 2!  2 1 2

( )

( )(

)

www.mathcity.org

FSc-I / Ex 8.3 - 12

( )( )

− 12 − 23 2 1 3 1 ≈1+ x + x = 1 + x + x2 2 2 2 8 So 1+ x  1 1  1 3  = 1 + x − x 2 1 + x + x 2  1− x  2 8  2 8  1 1 1 1 3 1 = 1 + x − x2 + x + x2 + x2 = 1 + x + x2 2 2 8 2 4 8

Proved

Question # 6 If x is very nearly equal 1, then prove that px p − qx q = ( p − q ) x p + q Solution Since x is nearly equal to 1 so suppose x = 1 + h , where h is so small that its square and higher powers be neglected L.H.S = px p − qx q = p (1 + h) p − q (1 + h) q = p (1 + ph + square & higher power of x ) −q (1 + qh + square & higher power of h) ≈ p (1 + ph) − q (1 + qh) = p + p 2 h − q − q 2 h …………….. (i) Now R.H.S = ( p − q ) x p + q = ( p − q )(1 + h) p + q = ( p − q ) (1 + ( p + q )h + square & higher power of h ) ≈ ( p − q ) (1 + ( p + q )h ) = ( p − q ) (1 + ph + qh ) = p + p 2 h + pqh − q − pqh − q 2 h = p + p 2 h − q − q 2 h …………….. (ii) From (i) and (ii) L.H.S ≈ R.H.S Proved

Question # 7 If p − q is small when compared with p or q , show that 1

(2n + 1) p + (2n − 1)q  p + q  n . = (2n − 1) p + (2n + 1)q  2q  Solution Since p − q is small when compare Therefore let p − q = h ⇒ p = q + h (2n + 1) p + (2n − 1)q (2n + 1)(q + h) + (2n − 1)q L.H.S = = (2n − 1) p + (2n + 1)q (2n − 1)(q + h) + (2n + 1)q 2nq + q + 2nh + h + 2nq − q 4nq + 2nh + h = = 2nq − q + 2nh − h + 2nq + q 4nq + 2nh − h

www.mathcity.org

FSc-I / Ex 8.3 - 13

4nq + 2nh + h 4nq + 2nh + h  2nh − h  = = 1 +   2nh − h  4nq 4nq   4nq 1 + 4nq  

−1

 2nh − h  4nq + 2nh + h  2 & + square higher power of x 1 + (−1)    4nq 4 nq     4nq + 2nh + h  2nh − h  4nq + 2nh + h  4nq − 2nh + h  = 1 − =     4nq 4nq  4nq 4nq    =

16n 2 q 2 + 8n 2 hq + 4nhq − 8n 2 hq + 4nhq ≈ 16n 2 q 2 16n 2 q 2 + 8nhq 16n 2 q 2 8nhq = + = 16n 2 q 2 16n 2 q 2 16n 2 q 2 h =1+ …………….. (i) 2nq 1

1

1

1

ignoring squares of h

 p + q n  q + h + q n Now R.H.S =   =  2q  2 q     1

 2q + h  n  2 q h  n  h n = +  =  = 1 + 2q   2q   2 q 2q     1  h  = 1 +    + square & higher power of h .  n   2q  h ≈1+ …………….. (ii) 2nq Form (i) and (ii) L.H.S ≈ R.H.S Proved

Question # 8 1 2

  n 8n n+ N Show that  − where n and N are nearly equal.  ≈ 9n − N 4n  2(n + N )  Solution Since n and N are nearly equal therefore consider N = n + h , where h is so small that its squares and higher power be neglected. 1 2

    n n L.H.S =   =   2(n + N )   2(n + n + h)  1 2

   2(2n + h)  n =   = n   2(2n + h)   1 2

 2h  = (4) 1 +   4n  −



1 2

1 2



1 2

 4n + 2h  =   n 

h   = (22 )  1 +   2n  −

1 2





1 2

2h   = 4+  n  



1 2

1 2

www.mathcity.org

FSc-I / Ex 8.3 - 14

  1 h  = (2) −1 1 +  −  + square & higher power of h    2  2n  1 h  1 h = 1 −  = − …………….. (i) 2  4n  2 8n 8n n+ N Now R.H.S = − 9n − N 4n 8n n+n+h 8n n + ( n + h) = − = − 9n − ( n + h ) 4n 9n − n − h 4n −1

8n 2n + h h  2n + h 8n 2n + h  = − = 1 −  − = − 4n 8n − h 4n 4n  8n  8n 1 − h 8n    2n h   h  = 1 + (−1)  −  + square & higher power of h  −  +   8n     4n 4n  h  1 h  h 1 h  = 1 +  −  +  = 1 + − − 8n 2 4n  8n   2 4 n  1 h = − …………….. (ii) 2 8n From (i) and (ii) L.H.S = R.H.S Proved Question # 9 Identify the following series as binomial expansion and find the sum in each case. 2 3 1  1  1⋅ 3  1  1⋅ 3 ⋅ 5  1  (i) 1 −   +   −   +… 2  4  2! ⋅ 4  4  3! ⋅ 8  4 

(

)

2

3

2

3

1  1  1⋅ 3  1  1⋅ 3 ⋅ 5  1  (ii) 1 −   +   −   +… 2  2  2⋅4  2  2.4.6  2  3 3⋅5 3⋅5⋅7 (iii) 1 + + + +… 4 4 ⋅8 4 ⋅ 8 ⋅ 12 1  1  1⋅ 3  1  1⋅ 3 ⋅ 5  1  (iv) 1 −   +   −   +… 2  3  2⋅ 4  3  2.4.6  3  Solution 2 3 1  1  1⋅ 3  1  1⋅ 3 ⋅ 5  1  (i) 1−   +   −   +… 2  4  2! ⋅ 4  4  3! ⋅ 8  4  Suppose the given series be identical with n(n − 1) 2 (1 + x) n = 1 + nx + x +… 2! 11 nx = −   ……………….…… (i) This implies 2 4 2 n(n − 1) 2 1 ⋅ 3  1  x =   …………. (ii) 2! 2! ⋅ 4  4  www.mathcity.org

FSc-I / Ex 8.3 - 15

nx = −

From (i)

1 1 ⇒ x=− …………… (iii) 8 8n

Putting value of x in (ii) 2 2 n(n − 1)  1  1⋅ 3  1  −  =   2!  8n  2! ⋅ 4  4  n(n − 1)  1  3 1 ⇒ =    2  2  64n  2 ⋅ 4  16  (n − 1) 3 3 ⇒ = ⇒ (n − 1) = ⋅ 128n ⇒ n − 1 = 3 n 128n 128 128 1 ⇒ n − 3n = 1 ⇒ − 2n = 1 ⇒ n = − 2 Putting value of n in equation (iii) 1 1 x=− ⇒ x= 4 8 −1 2 So

( )



(ii)

1

 1 2 5 (1 + x) n =  1 +  =    4 4 Do yourself as above



1 2

1

4  4 2 =  = 5 5

3 3⋅5 3⋅5⋅7 + + +… 4 4 ⋅8 4 ⋅ 8 ⋅ 12 Suppose the given series be identical with n(n − 1) 2 (1 + x) n = 1 + nx + x +… 2! 3 nx = ……………….…… (i) This implies 4 n(n − 1) 2 3 ⋅ 5 x = …………. (ii) 2! 4 ⋅8 3 3 nx = From (i) ⇒ x= …………… (iii) 4 4n Putting value of x in (ii) 2 n(n − 1)  3  3 ⋅ 5 n(n − 1)  9  15 ⇒   =  = 2!  4n  4 ⋅8 2  16 n 2  32 15 9(n − 1) 15 ⇒ = ⇒ 9( n − 1) = ⋅ 32 n ⇒ 9n − 9 = 15 n 32 n 32 32

(iii)

1+

⇒ 9n − 15n = 9 ⇒ − 6n = 9 ⇒ n = −

9 6

⇒ n=−

3 2

Putting value of n in equation (iii) www.mathcity.org

FSc-I / Ex 8.3 - 16

x=−

3

( )

4 −3 2 −



3

x=− −

1 2

3

3 3  1 2 1 2 So (1 + x) n =  1 −  =   = ( 2 ) 2 = 2 = 2 2 Answer  2 2 (iv) Do yourself as above Question # 10 1 1⋅ 3 1⋅ 3 ⋅ 5 Use binomial theorem to show that 1 + + + +… = 2 4 4 ⋅8 4 ⋅ 8 ⋅ 12 1 1⋅ 3 1⋅ 3 ⋅ 5 1+ + Solution + +… 4 4 ⋅8 4 ⋅ 8 ⋅ 12 Suppose the given series be identical with n(n − 1) 2 (1 + x) n = 1 + nx + x +… 2! This implies 1 nx = ……………….…… (i) 4 n(n − 1) 2 1 ⋅ 3 x = …………. (ii) 2! 4 ⋅8 1 1 nx = From (i) ⇒ x= …………… (iii) 4 4n Putting value of x in (ii) 2 n(n − 1)  1  1 ⋅ 3 n(n − 1)  1  3 ⇒   =  = 2!  4n  4 ⋅8 2  16 n 2  32 3 (n − 1) 3 ⇒ = ⇒ (n − 1) = ⋅ 32 n ⇒ n − 1 = 3 n 32 n 32 32

( )

⇒ n − 3n = 1 ⇒ − 2n = 1

Putting value of n in equation (iii) 1 x= ⇒ 1 4 − 2

x=−

( )



So Hence

1 2



⇒ n=−

1 2

1 2

1 2

1  1 1 (1 + x) n =  1 −  =   = ( 2 ) 2 = 2  2 2 1 1⋅ 3 1⋅ 3 ⋅ 5 1+ + + +… = 2 Proved 4 4 ⋅8 4 ⋅ 8 ⋅ 12

Question # 11 2 3 1 1⋅ 3  1  1⋅ 3 ⋅ 5  1  2 If y = +   +   + … , then prove that y + 2 y − 2 = 0 . 3 2!  3  3!  3  www.mathcity.org

FSc-I / Ex 8.3 - 17 2

3

1 1⋅ 3  1  1⋅ 3 ⋅ 5  1  Solution y= +   +   +… 3 2!  3  3!  3  Adding 1 on both sides 2 3 1 1⋅ 3  1  1⋅ 3 ⋅ 5  1  1+ y =1+ +   +   +… 3 2!  3  3!  3  Let the given series be identical with n(n − 1) 2 (1 + x) n = 1 + nx + x +… 2! This implies 1 nx = ……………….…… (i) 3 2 n(n − 1) 2 1 ⋅ 3  1  x =   …………. (ii) 2! 2!  3  1 1 From (i) nx = ⇒ x= …………… (iii) 3 3n Putting value of x in (ii) 2 2 n(n − 1)  1  1 ⋅ 3  1    =   2!  3n  2!  3  n(n − 1)  1  3 1 ⇒  = ⋅ 2  9 n2  2 9 1 n −1 1 ⇒ = ⇒ n − 1 = ⋅ 18 n 18 n 6 6 ⇒ n − 1 = 3 n ⇒ n − 3n = 1 ⇒ − 2n = 1 ⇒ n = −

1 2

Putting value of n in equation (iii) 1 2 x= ⇒ x=− 3 3 −1 2

( )

 2 So (1 + x) n =  1 −   3



1 2

1 =  3



1 2

1

= ( 3) 2 = 3 This implies 1+ y = 3 On squaring both sides

(1 + y )

2

=

( 3)

2

⇒ 1 + 2 y + y2 = 3 ⇒ 1 + 2 y + y2 − 3 = 0 ⇒ y 2 + 2 y − 2 = 0 Proved. www.mathcity.org

FSc-I / Ex 8.3 - 18

Question # 12 1 1⋅ 3 1 1⋅ 3 ⋅ 5 1 If 2 y = 2 + ⋅ 4+ ⋅ 6 + ... , then prove that 4 y 2 + 4 y − 1 = 0 . 2 2! 2 3! 2 1 1⋅ 3 1 1⋅ 3 ⋅ 5 1 Solution 2y = 2 + ⋅ + ⋅ + ... 2 2! 24 3! 26 Adding 1 on both sides 1 1⋅ 3 1 1⋅ 3 ⋅ 5 1 1+ 2y =1+ 2 + ⋅ + ⋅ + ... 2 2! 24 3! 26 Let the given series be identical with n(n − 1) 2 x + ... (1 + x)n = 1 + nx + 2! This implies 1 nx = 2 ……………….…… (i) 2 n(n − 1) 2 1 ⋅ 3 1 x = ⋅ …………. (ii) 2! 2! 24 1 1 nx = ⇒ x= …………… (iii) From (i) 4 4n Putting value of x in (ii) 2 n(n − 1)  1  1 ⋅ 3 1 ⋅   = 2!  4n  2! 24 n(n − 1)  1  3 1 ⇒  = ⋅ 2  16 n 2  2 16 n −1 ⇒ = 3 ⇒ n − 1 = 3n n 1 ⇒ n − 3n = 1 ⇒ − 2n = 1 ⇒ n = − 2 Putting value of n in equation (iii) 1 1 x= ⇒ x=− 2 4 −1 2 So

( )

 1 (1 + x) n =  1 −   2 1 =  2



1 2

1 2



= ( 2)

1 2

= 2

This implies 1+ 2y = 2 On squaring both sides

(1 + 2 y )

2

=

( )

2

2

www.mathcity.org

FSc-I / Ex 8.3 - 19

⇒ 1 + 4 y + 4 y2 = 4

⇒ 1 + 4 y + 4 y2 − 2 = 0 Proved

⇒ 4 y2 + 4 y −1 = 0

Question # 13 2 3 2 1⋅ 3  2  1⋅ 3 ⋅ 5  2  2 If y = +   +   + … , then prove that y + 2 y − 4 = 0 . 5 2!  5  3!  5  2

3

2 1⋅ 3  2  1⋅ 3 ⋅ 5  2  y= + Solution   +   +… 5 2!  5  3!  5  Adding 1 on both sides 2 3 2 1⋅ 3  2  1⋅ 3 ⋅ 5  2  1+ y =1+ +   +   +… 5 2!  5  3!  5  Let the given series be identical with n(n − 1) 2 (1 + x) n = 1 + nx + x +… 2! This implies 2 nx = ……………….…… (i) 5 2 n(n − 1) 2 1 ⋅ 3  2  x =   …………. (ii) 2! 2!  5  2 2 nx = ⇒ x= …………… (iii) From (i) 5 5n Putting value of x in (ii) 2 2 n(n − 1)  2  1 ⋅ 3  2    =   2!  5n  2!  5  n(n − 1)  4  3  4  ⇒  =   2  25n 2  2  25  n −1 ⇒ = 3 ⇒ n − 1 = 3 n ⇒ n − 3n = 1 n 1 ⇒ − 2n = 1 ⇒ n = − 2 Putting value of n in equation (iii) 2 4 x= ⇒ x=− 5 5 −1 2

( )

 4 So (1 + x) n =  1 −   5



1 2

1 =  5



1 2

1

= ( 5) 2 = 5 This implies 1+ y = 5 www.mathcity.org

FSc-I / Ex 8.3 - 20

On squaring both sides 2

(1 + y ) =

( )

2

5

⇒ 1 + 2 y + y2 = 5 ⇒ 1 + 2 y + y2 − 5 = 0 ⇒ y 2 + 2 y − 4 = 0 Proved. If you found any error, please report us at www.mathcity.org/error

Book:

Exercise 8.3 (Page 283) Text Book of Algebra and Trigonometry Class XI Punjab Textbook Board, Lahore. Edition: May 2017 Available online at http://www.MathCity.org in PDF Format (Picture format to view online). Page setup: A4 (8.27 in × 11.02 in). Updated: November 13,2017.

These resources are shared under the licence AttributionNonCommercial-NoDerivatives 4.0 International https://creativecommons.org/licenses/by-nc-nd/4.0/ Under this licence if you remix, transform, or build upon the material, you may not distribute the modified material.

www.mathcity.org

More Documents from "Qais Raza"