FSC-I / Ex 5.3 - 1
Exercise 5.3 (Solutions)
mathcity.org
Textbook of Algebra and Trigonometry for Class XI
Merging man and maths
Available online @ http://www.mathcity.org, Version: 1.0.0
9x − 7 ( x 2 + 1)( x + 3) Resolving it into partial fraction. 9x − 7 Ax + B C = 2 + 2 ( x + 1)( x + 3) ( x + 1) ( x + 3)
Question # 1
Multiplying both sides by ( x 2 + 1)( x + 3) .
9 x − 7 = ( Ax + B)( x + 3) + C ( x2 + 1) ............ (i ) Put x + 3 = 0 ⇒ x = −3 in equation (i). 9(−3) − 7 = ( A(−3) + B )( 0 ) + C ( (−3) 2 + 1) ⇒ − 34 = 10C
⇒ C =−
34 10
⇒
⇒ − 27 − 7 = 0 + C ( 9 + 1)
C =−
17 5
Now equation (i) can be written as 9 x − 7 = A ( x 2 + 3x ) + B ( x + 3) + C ( x 2 + 1) Comparing the coefficients of x 2 , x and x 0 . 0 = A + C …………….…... (ii) 9 = 3A + B ……………..… (iii) −7 = + 3B + C …………...…. (iv) Putting value of C in equation (ii) 17 17 0= A− ⇒ A = 5 5 Now putting value of A in equation (iii) 51 51 17 9 = 3 + B ⇒ 9= +B ⇒ 9 − = B 5 5 5 Hence 17
x−
6
−
⇒
B=−
6 5
17
9x − 7 5 = 52 5 + ( x + 1)( x + 3) x +1 ( x + 3) 2
17 x − 6
= Question # 2
5
x2 + 1
17
−
5
( x + 3)
=
17 x − 6 17 − Answer 5( x 2 + 1) 5( x + 3)
1 ( x + 1)( x + 1) 2
Now Consider
1 Ax + B C = 2 + ( x + 1)( x + 1) x +1 x +1 2
Multiplying both sides by ( x 2 + 1)( x + 1) . 1 = ( Ax + B)( x + 1) + C ( x 2 + 1)................ (i ) Put x + 1 = 0 ⇒ x = −1 in equation (i) 1 = 0 + C ( (−1) 2 + 1) Now eq. (i) can be written as
⇒ 1 = 2C
⇒ C =
1 2
FSC-I / Ex 5.3 - 2
1 = A( x 2 + x) + B ( x + 1) + C ( x 2 + 1) Comparing the coefficients of x 2 , x and x 0 . 0 = A + C …………….…. (ii) 0 = A + B ………………. (iii) 1 = A + C ………………. (iv) Putting value of C in equation (ii) 1 1 0= A+ ⇒ A = − 2 2 Putting value of A in equation (iii) 1 1 0=− +B ⇒ B= 2 2 Hence
1 ( x + 1)( x + 1) 2
1 1 − x+ = 22 2 +
−x + 1
1 2
=
2
1
+
2
x +1 x +1 x +1 x +1 −x +1 1 1− x 1 = + = + 2( x 2 + 1) 2( x + 1) 2( x 2 + 1) 2( x + 1) 2
3x + 7 ( x + 4)( x + 3) Resolving it into partial fraction. 3x + 7 Ax + B C = + ( x 2 + 4)( x + 3) x 2 + 4 x+3 Now do yourself , you will get 33 A = 2 13 , B = 13 and C = − 2 13 Question # 3
Answer
2
x 2 + 15 Question # 4 ( x 2 + 2 x + 5)( x − 1) Resolving it into partial fraction. x 2 + 15 Ax + B C = 2 + 2 ( x + 2 x + 5)( x − 1) x + 2 x + 5 x − 1
⇒ x 2 + 15 = ( Ax + B)( x − 1) + C ( x 2 + 2 x + 5).............. (i ) Put x − 1 = 0 ⇒ x = 1 in equation (i) (1)2 + 15 = ( A(1) + B ) (0) + C ( (1)2 + 2(1) + 5 )
16 =C ⇒ C = 2 8 Now equation (i) can be written as x 2 + 15 = A ( x 2 − x ) + B ( x − 1) + C ( x 2 + 2 x + 5) Comparing the coefficients of x 2 , x and x 0 . 1 = A + C …………..………. (ii) 0 = − A + B + 2C ………….. (iii) 15 = − B + 5C ………….….. (iv) Putting value of C in equation (ii). 1 = A + 2 ⇒ 1− 2 = A ⇒ A = − 1 ⇒ 16 = 8C
⇒
Putting value of A and C in equation (iii)
⇒ 1 + 15 = 0 + C (1 + 2 + 5)
FSC-I / Ex 5.3 - 3
0 = − (−1) + B + 2(2)
⇒ 0 =1+ B + 4 ⇒ 0 = B + 5
x 2 + 15 (−1) x − 5 2 = 2 + 2 ( x + 2 x + 5)( x − 1) x + 2 x + 5 x − 1 −x − 5 2 = 2 + x + 2x + 5 x −1
Hence
⇒
B =−5
Answer
x2 ( x 2 + 4)( x + 2) Resolving it into partial fraction. x2 Ax + B C = 2 + 2 ( x + 4)( x + 2) x +4 x+2 Now do yourself , you will get 1 , B = − 1 and C = − 1 A = 2 2 Question # 5
Question # 6
x2 + 1 x3 + 1
x2 + 1 = ( x + 1)( x 2 − x + 1)
Q x 3 + 1 = ( x + 1)( x 2 − x + 1)
Now consider x2 + 1 A Bx + C = + ( x + 1)( x 2 − x + 1) x + 1 x 2 − x + 1 Now do yourself , you will get 2 1 1 A = 3 , B = 3 and C = 3 Question # 7
x2 + 2x + 2 ( x 2 + 3)( x + 1)( x − 1)
Consider x2 + 2 x + 2 Ax + B C D = 2 + + 2 ( x + 3)( x + 1)( x − 1) x +3 x +1 x −1
⇒ x 2 + 2 x + 2 = ( Ax + B)( x + 1)( x − 1) + C ( x 2 + 3)( x −1) + D ( x 2 + 3)( x + 1)............. (i ) Put x + 1 = 0 ⇒ x = −1 in equation (i) (−1)2 + 2(−1) + 2 = 0 + C ( (−1)2 + 3 ) ( (−1) −1) + 0
⇒ 1 − 2 + 2 = C ( 4 )( −2 )
1 8 Now put x − 1 = 0 ⇒ x = 1 in equation (i) ⇒ 1 = − 8C
⇒
C=−
⇒ (1)2 + 2(1) + 2 = 0 + 0 + D ( (1)2 + 3) ( (1) + 1) ⇒ 5= 8D
⇒
D=
⇒ 1 + 2 + 2 = D ( 4 )( 2 )
5 8
Equation (i) can be written as x 2 + 2 x + 2 = ( Ax + B)( x 2 − 1) + C ( x 3 − x 2 + 3x − 3) + D ( x 3 + x 2 + 3x + 3) ⇒ x 2 + 2 x + 2 = A( x 3 − x) + B ( x 2 − 1) + C ( x3 − x 2 + 3x − 3) + D ( x 3 + x 2 + 3x + 3) Comparing the coefficients of x 3 , x 2 , x and x 0 . 0 = A + C + D ……………...…. (ii) 1= B − C + D ……………….…. (iii) 2 = − A + 3C + 3D ……………. (iv)
FSC-I / Ex 5.3 - 4
2 = − B − 3C + 3D ………….…. (v) Putting values of C and D in (ii) 1 5 1 1 0= A− + ⇒ 0= A+ ⇒ A=− 8 8 2 2 Putting values of C and D in (iii) 1 5 3 1 5 1= B −− + ⇒ 1= B + + ⇒ 1= B + 8 8 4 8 8 ⇒ 1−
3 =B 4
⇒
B=
1 4
Hence 1
− x+
1
−
1
5
x + 2x + 2 4 + 8 + 8 = 22 ( x + 3)( x + 1)( x − 1) x +3 x +1 x −1 2
2
−2 x + 1
= =
4
x2 + 3
+
1 − 2x
4( x + 3) 2
−
1
5
8 +
8
x +1 −
x −1
1
8( x + 1)
+
=
−2 x + 1 −1 5 + + 4( x 2 + 3) 8( x + 1) 8( x − 1) 5
8( x − 1)
Answer
1 ( x − 1)2 ( x 2 + 2) Resolving it into partial fraction. 1 A B Cx+D = + + 2 2 2 2 ( x − 1) ( x + 2) x − 1 ( x − 1) x +2 Question # 8
⇒ 1 = A ( x − 1)( x 2 + 2) + B ( x 2 + 2) + (C x + D)( x − 1)2 ............. (i ) Put x − 1 = 0 ⇒ x = 1 in equation (i) 1 = 0 + B ( (1) 2 + 2 ) + 0
⇒ 1 = 3B
⇒
B=
1 3
Now equation (i) can be written as 1 = A ( x 3 − x 2 + 2 x − 2) + B ( x 2 + 2) + (C x + D)( x 2 − 2 x + 1)
⇒ 1 = A ( x3 − x 2 + 2 x − 2) + B ( x 2 + 2) + C ( x3 − 2 x 2 + x ) + D ( x 2 − 2 x + 1) Comparing the coefficients of x 3 , x 2 , x and x 0 . 0 = A + C ……………………. (ii) 0 = − A + B − 2C + D …..…….. (iii) 0 = 2 A + C − 2 D …………..… (iv) 1 = −2 A + 2 B + D ……………. (v) Multiplying eq. (iii) by 2 and adding in (iv) 0 = −2 A + 2 B − 4C + 2 D 0 = 2A + C − 2D 0= 2 B − 3C Putting value of B in above 2 2 2 1 0 = 2 − 3C ⇒ 0 = − 3C ⇒ 3C = ⇒ C= 3 3 9 3 Putting value of C in eq. (ii) 2 2 0= A+ ⇒ A=− 9 9
FSC-I / Ex 5.3 - 5
Putting value of A and B in eq. (v) 4 2 4 2 2 1 1 = −2 − + 2 + D ⇒ 1 = + + D ⇒ 1 − − = D 9 3 9 3 9 3 Hence 2 x+ − 1 1 −2 1 9 9 3 = + + 9 2 2 2 2 ( x − 1) ( x + 2) x − 1 ( x − 1) x +2
( ) (
=
−2
9+
1
x − 1 ( x − 1)
2
+
9
x +2 2
D=−
1 9
)
2x − 1 3
⇒
=
−2 1 2x − 1 + + 2 9( x − 1) 3( x − 1) 9( x 2 + 2)
x4 Question # 9 1 − x4 1 1 1 = −1 + = − + 1 − x4 (1 − x 2 )(1 + x 2 ) 1 = −1 + (1 − x)(1 + x)(1 + x 2 )
−1 1 − x 4 x4 x 4 −1 −
+
1
Now consider
1 A B Cx + D = + + 2 (1 − x)(1 + x )(1 + x ) 1 − x 1 + x 1 + x 2 Now find values of A, B, C and D yourself . 1 1 1 You will get A = 4 , B = 4 , C = 0 and D = 2
So 1 1 (0) x + 12 1 4 4 = + + (1 − x)(1 + x )(1 + x 2 ) 1 − x 1 + x 1 + x2 1 1 1 = + + 4(1 − x) 4(1 + x) 2(1 + x 2 )
Hence x4 1 1 1 = −1 + + + 4 1− x 4(1 − x) 4(1 + x ) 2(1 + x 2 )
Answer
x2 − 2 x + 3 Question # 10 Q x 4 + x 2 + 1 = x4 + 2 x 2 + 1 − x 2 x 4 + x2 + 1 = ( x 2 + 1) 2 − x 2 2 x − 2x + 3 = ( x 2 + 1 + x )( x 2 + 1 − x) = 2 2 ( x + x + 1)( x − x + 1) = ( x 2 + x + 1)( x 2 − x + 1) Now Consider x2 − 2 x + 3 Ax + B Cx+D = + ( x 2 + x + 1)( x 2 − x + 1) x 2 + x + 1 x 2 − x + 1
⇒ x 2 − 2 x + 3 = ( Ax + B)( x 2 − x + 1) + (Cx + D)( x 2 + x + 1).............. (i ) ⇒ x 2 − 2 x + 3 = A( x 3 − x 2 + x ) + B ( x 2 − x + 1) + C ( x3 + x 2 + x) + D( x 2 + x + 1) Comparing the coefficients of x 3 , x 2 , x and x 0 . 0 = A + C ……………………..… (ii) 1 = − A + B + C + D ……………. (iii) −2 = A − B + C + D …………...… (iv)
FSC-I / Ex 5.3 - 6
3 = B + D …………………….... (v) Subtracting (ii) and (iv) 0= A +C − 2 = A− B + C + D +
−
+
−
−
B −D 2= ⇒ 2 = B − D …………… (vi) Adding (v) and (vi) 3= B+ D 2=B−D 5 = 2B ⇒ B=
5 2
Putting value of B in (v) 5 5 1 3= + D ⇒3− = D ⇒ D= 2 2 2 Putting value of B and D in (iii) 5 1 5 1 1= − A + + C + ⇒ 1− − =− A + C 2 2 2 2 ⇒ − 2 = − A + C ……………. (vii) Adding (ii) and (vii) 0= A+C −2 = − A + C −2 = 2C ⇒ C = −1 Putting value of C in equation (ii) 0 = A −1 ⇒ A=1 Hence (1) x +
5
(−1) x +
1
x − 2x + 3 2 + 2 = 2 2 2 ( x + x + 1)( x − x + 1) x + x + 1 x − x + 1 2
2
2x + 5
= = =
2
x + x +1 2
−2 x + 1
+
2x + 5
2( x 2 + x + 1) 2x + 5
2( x + x + 1) 2
2
x − x +1 2
+ +
−2 x + 1
2( x 2 − x + 1) 1 − 2x
2( x 2 − x + 1)
For updates and news visit http://www.mathcity.org
Error Analyst Waiting for Someone
Answer