Ex 5 3 Fsc Part1

  • Uploaded by: Omer Muneer Qazi
  • 0
  • 0
  • July 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Ex 5 3 Fsc Part1 as PDF for free.

More details

  • Words: 2,858
  • Pages: 6
FSC-I / Ex 5.3 - 1

Exercise 5.3 (Solutions)

mathcity.org

Textbook of Algebra and Trigonometry for Class XI

Merging man and maths

Available online @ http://www.mathcity.org, Version: 1.0.0

9x − 7 ( x 2 + 1)( x + 3) Resolving it into partial fraction. 9x − 7 Ax + B C = 2 + 2 ( x + 1)( x + 3) ( x + 1) ( x + 3)

Question # 1

Multiplying both sides by ( x 2 + 1)( x + 3) .

9 x − 7 = ( Ax + B)( x + 3) + C ( x2 + 1) ............ (i ) Put x + 3 = 0 ⇒ x = −3 in equation (i). 9(−3) − 7 = ( A(−3) + B )( 0 ) + C ( (−3) 2 + 1) ⇒ − 34 = 10C

⇒ C =−

34 10



⇒ − 27 − 7 = 0 + C ( 9 + 1)

C =−

17 5

Now equation (i) can be written as 9 x − 7 = A ( x 2 + 3x ) + B ( x + 3) + C ( x 2 + 1) Comparing the coefficients of x 2 , x and x 0 . 0 = A + C …………….…... (ii) 9 = 3A + B ……………..… (iii) −7 = + 3B + C …………...…. (iv) Putting value of C in equation (ii) 17 17 0= A− ⇒ A = 5 5 Now putting value of A in equation (iii) 51 51  17  9 = 3  + B ⇒ 9= +B ⇒ 9 − = B 5 5  5 Hence 17

x−

6





B=−

6 5

17

9x − 7 5 = 52 5 + ( x + 1)( x + 3) x +1 ( x + 3) 2

17 x − 6

= Question # 2

5

x2 + 1

17



5

( x + 3)

=

17 x − 6 17 − Answer 5( x 2 + 1) 5( x + 3)

1 ( x + 1)( x + 1) 2

Now Consider

1 Ax + B C = 2 + ( x + 1)( x + 1) x +1 x +1 2

Multiplying both sides by ( x 2 + 1)( x + 1) . 1 = ( Ax + B)( x + 1) + C ( x 2 + 1)................ (i ) Put x + 1 = 0 ⇒ x = −1 in equation (i) 1 = 0 + C ( (−1) 2 + 1) Now eq. (i) can be written as

⇒ 1 = 2C

⇒ C =

1 2

FSC-I / Ex 5.3 - 2

1 = A( x 2 + x) + B ( x + 1) + C ( x 2 + 1) Comparing the coefficients of x 2 , x and x 0 . 0 = A + C …………….…. (ii) 0 = A + B ………………. (iii) 1 = A + C ………………. (iv) Putting value of C in equation (ii) 1 1 0= A+ ⇒ A = − 2 2 Putting value of A in equation (iii) 1 1 0=− +B ⇒ B= 2 2 Hence

1 ( x + 1)( x + 1) 2

1 1 − x+ = 22 2 +

−x + 1

1 2

=

2

1

+

2

x +1 x +1 x +1 x +1 −x +1 1 1− x 1 = + = + 2( x 2 + 1) 2( x + 1) 2( x 2 + 1) 2( x + 1) 2

3x + 7 ( x + 4)( x + 3) Resolving it into partial fraction. 3x + 7 Ax + B C = + ( x 2 + 4)( x + 3) x 2 + 4 x+3  Now do yourself , you will get  33  A = 2 13 , B = 13 and C = − 2 13 Question # 3

Answer

2

  

x 2 + 15 Question # 4 ( x 2 + 2 x + 5)( x − 1) Resolving it into partial fraction. x 2 + 15 Ax + B C = 2 + 2 ( x + 2 x + 5)( x − 1) x + 2 x + 5 x − 1

⇒ x 2 + 15 = ( Ax + B)( x − 1) + C ( x 2 + 2 x + 5).............. (i ) Put x − 1 = 0 ⇒ x = 1 in equation (i) (1)2 + 15 = ( A(1) + B ) (0) + C ( (1)2 + 2(1) + 5 )

16 =C ⇒ C = 2 8 Now equation (i) can be written as x 2 + 15 = A ( x 2 − x ) + B ( x − 1) + C ( x 2 + 2 x + 5) Comparing the coefficients of x 2 , x and x 0 . 1 = A + C …………..………. (ii) 0 = − A + B + 2C ………….. (iii) 15 = − B + 5C ………….….. (iv) Putting value of C in equation (ii). 1 = A + 2 ⇒ 1− 2 = A ⇒ A = − 1 ⇒ 16 = 8C



Putting value of A and C in equation (iii)

⇒ 1 + 15 = 0 + C (1 + 2 + 5)

FSC-I / Ex 5.3 - 3

0 = − (−1) + B + 2(2)

⇒ 0 =1+ B + 4 ⇒ 0 = B + 5

x 2 + 15 (−1) x − 5 2 = 2 + 2 ( x + 2 x + 5)( x − 1) x + 2 x + 5 x − 1 −x − 5 2 = 2 + x + 2x + 5 x −1

Hence



B =−5

Answer

x2 ( x 2 + 4)( x + 2) Resolving it into partial fraction. x2 Ax + B C = 2 + 2 ( x + 4)( x + 2) x +4 x+2  Now do yourself , you will get   1 , B = − 1 and C = − 1  A =  2 2  Question # 5

Question # 6

x2 + 1 x3 + 1

x2 + 1 = ( x + 1)( x 2 − x + 1)

Q x 3 + 1 = ( x + 1)( x 2 − x + 1)

Now consider x2 + 1 A Bx + C = + ( x + 1)( x 2 − x + 1) x + 1 x 2 − x + 1  Now do yourself , you will get  2 1 1  A = 3 , B = 3 and C = 3 Question # 7

  

x2 + 2x + 2 ( x 2 + 3)( x + 1)( x − 1)

Consider x2 + 2 x + 2 Ax + B C D = 2 + + 2 ( x + 3)( x + 1)( x − 1) x +3 x +1 x −1

⇒ x 2 + 2 x + 2 = ( Ax + B)( x + 1)( x − 1) + C ( x 2 + 3)( x −1) + D ( x 2 + 3)( x + 1)............. (i ) Put x + 1 = 0 ⇒ x = −1 in equation (i) (−1)2 + 2(−1) + 2 = 0 + C ( (−1)2 + 3 ) ( (−1) −1) + 0

⇒ 1 − 2 + 2 = C ( 4 )( −2 )

1 8 Now put x − 1 = 0 ⇒ x = 1 in equation (i) ⇒ 1 = − 8C



C=−

⇒ (1)2 + 2(1) + 2 = 0 + 0 + D ( (1)2 + 3) ( (1) + 1) ⇒ 5= 8D



D=

⇒ 1 + 2 + 2 = D ( 4 )( 2 )

5 8

Equation (i) can be written as x 2 + 2 x + 2 = ( Ax + B)( x 2 − 1) + C ( x 3 − x 2 + 3x − 3) + D ( x 3 + x 2 + 3x + 3) ⇒ x 2 + 2 x + 2 = A( x 3 − x) + B ( x 2 − 1) + C ( x3 − x 2 + 3x − 3) + D ( x 3 + x 2 + 3x + 3) Comparing the coefficients of x 3 , x 2 , x and x 0 . 0 = A + C + D ……………...…. (ii) 1= B − C + D ……………….…. (iii) 2 = − A + 3C + 3D ……………. (iv)

FSC-I / Ex 5.3 - 4

2 = − B − 3C + 3D ………….…. (v) Putting values of C and D in (ii) 1 5 1 1 0= A− + ⇒ 0= A+ ⇒ A=− 8 8 2 2 Putting values of C and D in (iii) 1 5 3  1 5 1= B −−  + ⇒ 1= B + + ⇒ 1= B + 8 8 4  8 8 ⇒ 1−

3 =B 4



B=

1 4

Hence 1

− x+

1



1

5

x + 2x + 2 4 + 8 + 8 = 22 ( x + 3)( x + 1)( x − 1) x +3 x +1 x −1 2

2

−2 x + 1

= =

4

x2 + 3

+

1 − 2x

4( x + 3) 2



1

5

8 +

8

x +1 −

x −1

1

8( x + 1)

+

=

−2 x + 1 −1 5 + + 4( x 2 + 3) 8( x + 1) 8( x − 1) 5

8( x − 1)

Answer

1 ( x − 1)2 ( x 2 + 2) Resolving it into partial fraction. 1 A B Cx+D = + + 2 2 2 2 ( x − 1) ( x + 2) x − 1 ( x − 1) x +2 Question # 8

⇒ 1 = A ( x − 1)( x 2 + 2) + B ( x 2 + 2) + (C x + D)( x − 1)2 ............. (i ) Put x − 1 = 0 ⇒ x = 1 in equation (i) 1 = 0 + B ( (1) 2 + 2 ) + 0

⇒ 1 = 3B



B=

1 3

Now equation (i) can be written as 1 = A ( x 3 − x 2 + 2 x − 2) + B ( x 2 + 2) + (C x + D)( x 2 − 2 x + 1)

⇒ 1 = A ( x3 − x 2 + 2 x − 2) + B ( x 2 + 2) + C ( x3 − 2 x 2 + x ) + D ( x 2 − 2 x + 1) Comparing the coefficients of x 3 , x 2 , x and x 0 . 0 = A + C ……………………. (ii) 0 = − A + B − 2C + D …..…….. (iii) 0 = 2 A + C − 2 D …………..… (iv) 1 = −2 A + 2 B + D ……………. (v) Multiplying eq. (iii) by 2 and adding in (iv) 0 = −2 A + 2 B − 4C + 2 D 0 = 2A + C − 2D 0= 2 B − 3C Putting value of B in above 2 2 2 1 0 = 2   − 3C ⇒ 0 = − 3C ⇒ 3C = ⇒ C= 3 3 9  3 Putting value of C in eq. (ii) 2 2 0= A+ ⇒ A=− 9 9

FSC-I / Ex 5.3 - 5

Putting value of A and B in eq. (v) 4 2 4 2  2 1 1 = −2  −  + 2   + D ⇒ 1 = + + D ⇒ 1 − − = D 9 3 9 3  9 3 Hence 2 x+ − 1 1 −2 1 9 9 3 = + + 9 2 2 2 2 ( x − 1) ( x + 2) x − 1 ( x − 1) x +2

( ) (

=

−2

9+

1

x − 1 ( x − 1)

2

+

9

x +2 2

D=−

1 9

)

2x − 1 3



=

−2 1 2x − 1 + + 2 9( x − 1) 3( x − 1) 9( x 2 + 2)

x4 Question # 9 1 − x4 1 1 1 = −1 + = − + 1 − x4 (1 − x 2 )(1 + x 2 ) 1 = −1 + (1 − x)(1 + x)(1 + x 2 )

−1 1 − x 4 x4 x 4 −1 −

+

1

Now consider

1 A B Cx + D = + + 2 (1 − x)(1 + x )(1 + x ) 1 − x 1 + x 1 + x 2  Now find values of A, B, C and D yourself .  1 1 1  You will get A = 4 , B = 4 , C = 0 and D = 2

  

So 1 1 (0) x + 12 1 4 4 = + + (1 − x)(1 + x )(1 + x 2 ) 1 − x 1 + x 1 + x2 1 1 1 = + + 4(1 − x) 4(1 + x) 2(1 + x 2 )

Hence x4 1 1 1 = −1 + + + 4 1− x 4(1 − x) 4(1 + x ) 2(1 + x 2 )

Answer

x2 − 2 x + 3 Question # 10 Q x 4 + x 2 + 1 = x4 + 2 x 2 + 1 − x 2 x 4 + x2 + 1 = ( x 2 + 1) 2 − x 2 2 x − 2x + 3 = ( x 2 + 1 + x )( x 2 + 1 − x) = 2 2 ( x + x + 1)( x − x + 1) = ( x 2 + x + 1)( x 2 − x + 1) Now Consider x2 − 2 x + 3 Ax + B Cx+D = + ( x 2 + x + 1)( x 2 − x + 1) x 2 + x + 1 x 2 − x + 1

⇒ x 2 − 2 x + 3 = ( Ax + B)( x 2 − x + 1) + (Cx + D)( x 2 + x + 1).............. (i ) ⇒ x 2 − 2 x + 3 = A( x 3 − x 2 + x ) + B ( x 2 − x + 1) + C ( x3 + x 2 + x) + D( x 2 + x + 1) Comparing the coefficients of x 3 , x 2 , x and x 0 . 0 = A + C ……………………..… (ii) 1 = − A + B + C + D ……………. (iii) −2 = A − B + C + D …………...… (iv)

FSC-I / Ex 5.3 - 6

3 = B + D …………………….... (v) Subtracting (ii) and (iv) 0= A +C − 2 = A− B + C + D +



+





B −D 2= ⇒ 2 = B − D …………… (vi) Adding (v) and (vi) 3= B+ D 2=B−D 5 = 2B ⇒ B=

5 2

Putting value of B in (v) 5 5 1 3= + D ⇒3− = D ⇒ D= 2 2 2 Putting value of B and D in (iii) 5 1 5 1 1= − A + + C + ⇒ 1− − =− A + C 2 2 2 2 ⇒ − 2 = − A + C ……………. (vii) Adding (ii) and (vii) 0= A+C −2 = − A + C −2 = 2C ⇒ C = −1 Putting value of C in equation (ii) 0 = A −1 ⇒ A=1 Hence (1) x +

5

(−1) x +

1

x − 2x + 3 2 + 2 = 2 2 2 ( x + x + 1)( x − x + 1) x + x + 1 x − x + 1 2

2

2x + 5

= = =

2

x + x +1 2

−2 x + 1

+

2x + 5

2( x 2 + x + 1) 2x + 5

2( x + x + 1) 2

2

x − x +1 2

+ +

−2 x + 1

2( x 2 − x + 1) 1 − 2x

2( x 2 − x + 1)

For updates and news visit http://www.mathcity.org

Error Analyst Waiting for Someone

Answer

Related Documents

Ex 3 5 Fsc Part1
July 2020 6
Ex 5 3 Fsc Part1
July 2020 7
Ex 5 1 Fsc Part1
July 2020 4
Ex 4 7 Fsc Part1
July 2020 7
Ex 4 4 Fsc Part1
July 2020 10

More Documents from "Qais Raza"

Ex 3 5 Fsc Part1
July 2020 6
Ex 4 4 Fsc Part1
July 2020 10
Ex 5 3 Fsc Part1
July 2020 7
Ex 4 7 Fsc Part1
July 2020 7
Ex 5 1 Fsc Part1
July 2020 4
Vee_real
April 2020 8