Ex 4 4 Fsc Part1

  • Uploaded by: Omer Muneer Qazi
  • 0
  • 0
  • July 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Ex 4 4 Fsc Part1 as PDF for free.

More details

  • Words: 2,396
  • Pages: 6
Exercise 4.4 (Solutions)

mathcity.org

Textbook of Algebra and Trigonometry for Class XI

Merging man and maths

Available online @ http://www.mathcity.org, Version: 1.0.0

{ Question # 1 (i) Let x be a cube root of 8 then 1

x  (8)3

 x3  8

 x3  8  0

 (x )3  (2)3  0

 (x  2)(x 2  2x  4)  0

 x 2  0  x 2

or

or

x 2  2x  4  0

Review: 1  3  2 1  3 2  2

2  (2)2  4(1)(4) x 2(1)

2  4  16 2  12  2 2  2  2 3 1  3    2     2 2  1  3   1  3   x  2   or x  2       2 2  x  2 or x  2 2 

Hence cube root of 8 are 2,2 and 2 2 .

(ii) Hint

Considering x as a cube root of 8 and Solving as above you will get the following values of x 2  2 3 2  2 3 x  2 , x  , x 2 2  1  3   1  3   x  2   , x  2       2 2  x  2 2 , x  2 Hence cube root of 8 are 2,  2 and 2 2 .

(iii)

Do yourself as (iv) below.

(iv) Let x be a cube root of 27 then 1

x  (27)3

 x 3  27

 x 3  27  0

 (x )3  (3)3  0

 (x  3)(x 2  3x  9)  0

 x 3  0  x  3

x 2  3x  9  0

or or

3  (3)2  4(1)(9) x 2(1)

3  9  36 3  27 3  3 3   2 2 2 3  3 3 3  3 3  x or x  2 2 

FSC-I - 4.4 - 2

 1  3   x  3    2   x  3 2 or

or

Hence cube root of 27 are 3,  3 and 3 2 .

 1  3  x  3     2 x  3

(v) Let x be a cube root of 64 then 1

x  (64)3

 x 3  64

 x 3  64  0

 (x )3  (4)3  0

 (x  4)(x 2  4x  16)  0

 x 4  0  x 4

x 2  4x  16  0

or

4  (4)2  4(1)(16) x 2(1)

or

4  16  64 4  48  2 2 4  4 3  Q 48  16  3 2 4  4 3 4  4 3  x or x  2 2  1  3   1  3   or x  4    x  4      2 2  x  4 or x  4 2 

Hence cube root of 64 are 4, 4 and 4 2 .

{ Question # 2 8 8 (i) 1    2   1    w 2  2w 2   0  2w 2 

8

Q 1    2  0

 (2)8 (w 2 )8  256 16

 256  15    256  3    5

 256 15    256 

(ii)

Q 3  1

 28  w 29  1   27     27   2  1

  3      3    2  1 9

9

 1    1   2  1 9

9

   2  1  0 Answer

(iii)

Answer

1     2 1     2   1     2  2 2 1     2  2   0  2 2 0  2   2 2 2   4  3  4(1) = 4

Answer

Q 3  1 Q 1    2  0 Q 1    2  0 Q 3  1

Made By: Atiq ur Rehman ([email protected]), http://www.mathcity.org

FSC-I - 4.4 - 3

(iv)

 1  3 7  1  3 7          2 2

  7  (2 )7   7   14

1  3 2 1  3 2  2

Q 

  6    12   2   3      3    2 3

4

 13    14   2     2  1 Answer

(v)

1 

Q 1    2  0

3   1  3  5

5

 1  3 5  1  3 5  2    2       2 2

1  3 2 1  3 2  2

Q 

 2  5  2   2 

5

 32  5  32  10  32  3   2  32  9  1  32(1)   2  32(1)  

 32(  2 )  32(1)  32

Q  9   3   (1)3  1 3

Q 1    2  0

{ Question # 3 (i) R.H.S= x  y x  y  x   2y 

= x  y  x x   2y   y x   2y    2 2 3 2 = x  y  x   xy  xy   y  = x  y  x 2   2    xy  (1)y 2    2 2 = x  y  x  1 xy  y  = x  y  x 2  xy  y 2  =x 3  y 3  L.H.S

(ii)

Q 3  1 Q 1    2  0     2  1

R.H.S= x  y  z  x  y   2z x   2y  z 

= x  y  z [x 2   2xy  xz  xy   3y 2   2yz  2xz   4yz   3z 2 ] = x  y  z [x 2  ( 2   )xy  (   2 )xz  ( 2   4 )yz  3y 2   3z 2 ] = x  y  z [x 2  (1)xy  (1)xz  ( 2  )yz (1)y 2  (1)z 2 ] Q  4   &    2  1 = x  y  z [x 2  y 2  z 2  xy  (1)yz  xz ] = x  y  z [x 2  y 2  z 2  xy  yz  xz ]  x 3  y 3  z 3  3xyz  L.H.S

(iii)

L.H.S= (1  )(1   2 )(1   4 )(1   8 )............2n factors  [(1   )(1   2 )][(1   4 )(1   8 )]............ n factors  [(1   )(1   2 )][(1   3   )(1   6   2 )]............ n factors  [(1   )(1   2 )][(1   3  )(1  ( 3 )2   2 )]............ n factors

FSC-I - 4.4 - 4

 [(1   )(1   2 )][(1  1  )(1  (1)2   2 )]............ n factors  [(1  )(1   2 )][(1   )(1   2 )]............ n factors

n n  (1  )(1   2 )  1     2   3    0  1n Q 1    2  0 , 3  1

 1n

 1  R.H.S

{ Question # 4 (i)

x 2  x  1  0 ...........(i )

Let

Since  is root of (i ) therefore

 2    1  0...........(ii )

To prove  2 is root of (i )

 2 

2

Consider



  2  1   4  2 2  1   2

  2  1   2   2  1    2  1    2

 2 

2

 0   2  1   

from (i )

  2  1  0 ...........(iii )

  2 is the root of the equation (i ) .

Now subtracting (ii ) from (iii )

 2 

2



4

 2 

1  0

2    1  0 





0

   3  1  0  3  1  0

as

0

 3  1

{ Question # 5

Let x be a cube root of 1 then 1

x  (1)3

 x 3  1

 x3 1  0

 (x )3  (1)3  0

 (x  1)(x 2  x  1)  0

 x 1  0  x  1

or

x2  x 1  0

or

(1)  (1)2  4(1)(1) x 2(1)

1 1 4 1  3  2 2 1  3 1  3  x or x  2 2 1  3i 1  3i  x or x  2 2 1  3i 1  3i Hence complex cube root of 1 are and . 2 2 

FSC-I - 4.4 - 5

{ Question # 6

Since 2 and 2 2 are roots of required equation, therefore x  2 x  2 2   0  x 2  2x  2 2x  4  3  0  x 2  2x (   2 )  4(1)  0

Q 3  1

 x 2  2x (1)  4  0

Q 1    2  0

 x 2  2x  4  0 is the required equation.

{ Question # 7 (i) Let x be a fourth root of 16 then x

1 (16)4

 x 4  16

 x 4  16  0 



x 2 

2

x 2  4x 2  4  0

 (4)2  0

 x2  4  0

or

x2  4  0

 x 2  4

or

x2  4

 x   4 or

 x  2i

or

x  4 x  2

Hence the four fourth root of 16 are 2,  2,2i ,  2i .

(ii)

Hint: 81  (9)2

Do yourself as above.

(iii) Let x be a fourth root of 625 then x

1 (625)4

 x 4  625

 x 4  625  0 



x 2  25x 2  25  0

x 2 

2

 (25)2  0

 x 2  25  0

or

x 2  25  0

 x 2  25

or

x 2  25

 x   25 or

 x  25i

or

x   25 x  25

Hence the four fourth root of 625 are 25,  25,25i ,  25i .

Question # 8 (i) 2x 4  32  0

 2(x 4  16)  0

 x 4  16  0

Now do you as in Question # 7 (i)

(ii)

3y 5  243y  0

 3y y 4  81  0

 3y  0

or

y 4  81  0

FSC-I - 4.4 - 6

y 2   (9)2  0 y 2  9y 2  9  0

 y0 

2

or

 y2  9  0

or

y2  9  0

 y 2  9

or

y2  9

 y   9

or

y 9

 y  3i



y  3

or



Hence S.Set  0, 3,  3i

(iii)

x3  x2  x  1  0  x 2 x  1  1(x  1)  0  (x  1)(x 2  1)  0

 x 1  0

or

x2  1  0

 x  1

or

x 2  1

Hence S.Set  1, i 

(iv)

 x  i

5x 5  5x  0  5x (x 4  1)  0

 5x  0

or

 x 0

or 



Hence S.Set  0, 1, i



x4 1  0

x 2   (1)2  0 x 2  1x 2  1  0 2

 x2  1  0

or

x2 1  0

 x 2  1

or

x2  1

 x  i

or

Error Analyst Waiting for Someone

‫ﮐﺘﻢ ﺷﺪ‬

x  1

Related Documents

Ex 4 4 Fsc Part1
July 2020 10
Ex 4 7 Fsc Part1
July 2020 7
Ex 3 5 Fsc Part1
July 2020 6
Ex 5 1 Fsc Part1
July 2020 4
Ex 5 3 Fsc Part1
July 2020 7
Ex-4
April 2020 13

More Documents from ""

Ex 3 5 Fsc Part1
July 2020 6
Ex 4 4 Fsc Part1
July 2020 10
Ex 5 3 Fsc Part1
July 2020 7
Ex 4 7 Fsc Part1
July 2020 7
Ex 5 1 Fsc Part1
July 2020 4
Vee_real
April 2020 8