Exercise 4.4 (Solutions)
mathcity.org
Textbook of Algebra and Trigonometry for Class XI
Merging man and maths
Available online @ http://www.mathcity.org, Version: 1.0.0
{ Question # 1 (i) Let x be a cube root of 8 then 1
x (8)3
x3 8
x3 8 0
(x )3 (2)3 0
(x 2)(x 2 2x 4) 0
x 2 0 x 2
or
or
x 2 2x 4 0
Review: 1 3 2 1 3 2 2
2 (2)2 4(1)(4) x 2(1)
2 4 16 2 12 2 2 2 2 3 1 3 2 2 2 1 3 1 3 x 2 or x 2 2 2 x 2 or x 2 2
Hence cube root of 8 are 2,2 and 2 2 .
(ii) Hint
Considering x as a cube root of 8 and Solving as above you will get the following values of x 2 2 3 2 2 3 x 2 , x , x 2 2 1 3 1 3 x 2 , x 2 2 2 x 2 2 , x 2 Hence cube root of 8 are 2, 2 and 2 2 .
(iii)
Do yourself as (iv) below.
(iv) Let x be a cube root of 27 then 1
x (27)3
x 3 27
x 3 27 0
(x )3 (3)3 0
(x 3)(x 2 3x 9) 0
x 3 0 x 3
x 2 3x 9 0
or or
3 (3)2 4(1)(9) x 2(1)
3 9 36 3 27 3 3 3 2 2 2 3 3 3 3 3 3 x or x 2 2
FSC-I - 4.4 - 2
1 3 x 3 2 x 3 2 or
or
Hence cube root of 27 are 3, 3 and 3 2 .
1 3 x 3 2 x 3
(v) Let x be a cube root of 64 then 1
x (64)3
x 3 64
x 3 64 0
(x )3 (4)3 0
(x 4)(x 2 4x 16) 0
x 4 0 x 4
x 2 4x 16 0
or
4 (4)2 4(1)(16) x 2(1)
or
4 16 64 4 48 2 2 4 4 3 Q 48 16 3 2 4 4 3 4 4 3 x or x 2 2 1 3 1 3 or x 4 x 4 2 2 x 4 or x 4 2
Hence cube root of 64 are 4, 4 and 4 2 .
{ Question # 2 8 8 (i) 1 2 1 w 2 2w 2 0 2w 2
8
Q 1 2 0
(2)8 (w 2 )8 256 16
256 15 256 3 5
256 15 256
(ii)
Q 3 1
28 w 29 1 27 27 2 1
3 3 2 1 9
9
1 1 2 1 9
9
2 1 0 Answer
(iii)
Answer
1 2 1 2 1 2 2 2 1 2 2 0 2 2 0 2 2 2 2 4 3 4(1) = 4
Answer
Q 3 1 Q 1 2 0 Q 1 2 0 Q 3 1
Made By: Atiq ur Rehman (
[email protected]), http://www.mathcity.org
FSC-I - 4.4 - 3
(iv)
1 3 7 1 3 7 2 2
7 (2 )7 7 14
1 3 2 1 3 2 2
Q
6 12 2 3 3 2 3
4
13 14 2 2 1 Answer
(v)
1
Q 1 2 0
3 1 3 5
5
1 3 5 1 3 5 2 2 2 2
1 3 2 1 3 2 2
Q
2 5 2 2
5
32 5 32 10 32 3 2 32 9 1 32(1) 2 32(1)
32( 2 ) 32(1) 32
Q 9 3 (1)3 1 3
Q 1 2 0
{ Question # 3 (i) R.H.S= x y x y x 2y
= x y x x 2y y x 2y 2 2 3 2 = x y x xy xy y = x y x 2 2 xy (1)y 2 2 2 = x y x 1 xy y = x y x 2 xy y 2 =x 3 y 3 L.H.S
(ii)
Q 3 1 Q 1 2 0 2 1
R.H.S= x y z x y 2z x 2y z
= x y z [x 2 2xy xz xy 3y 2 2yz 2xz 4yz 3z 2 ] = x y z [x 2 ( 2 )xy ( 2 )xz ( 2 4 )yz 3y 2 3z 2 ] = x y z [x 2 (1)xy (1)xz ( 2 )yz (1)y 2 (1)z 2 ] Q 4 & 2 1 = x y z [x 2 y 2 z 2 xy (1)yz xz ] = x y z [x 2 y 2 z 2 xy yz xz ] x 3 y 3 z 3 3xyz L.H.S
(iii)
L.H.S= (1 )(1 2 )(1 4 )(1 8 )............2n factors [(1 )(1 2 )][(1 4 )(1 8 )]............ n factors [(1 )(1 2 )][(1 3 )(1 6 2 )]............ n factors [(1 )(1 2 )][(1 3 )(1 ( 3 )2 2 )]............ n factors
FSC-I - 4.4 - 4
[(1 )(1 2 )][(1 1 )(1 (1)2 2 )]............ n factors [(1 )(1 2 )][(1 )(1 2 )]............ n factors
n n (1 )(1 2 ) 1 2 3 0 1n Q 1 2 0 , 3 1
1n
1 R.H.S
{ Question # 4 (i)
x 2 x 1 0 ...........(i )
Let
Since is root of (i ) therefore
2 1 0...........(ii )
To prove 2 is root of (i )
2
2
Consider
2 1 4 2 2 1 2
2 1 2 2 1 2 1 2
2
2
0 2 1
from (i )
2 1 0 ...........(iii )
2 is the root of the equation (i ) .
Now subtracting (ii ) from (iii )
2
2
4
2
1 0
2 1 0
0
3 1 0 3 1 0
as
0
3 1
{ Question # 5
Let x be a cube root of 1 then 1
x (1)3
x 3 1
x3 1 0
(x )3 (1)3 0
(x 1)(x 2 x 1) 0
x 1 0 x 1
or
x2 x 1 0
or
(1) (1)2 4(1)(1) x 2(1)
1 1 4 1 3 2 2 1 3 1 3 x or x 2 2 1 3i 1 3i x or x 2 2 1 3i 1 3i Hence complex cube root of 1 are and . 2 2
FSC-I - 4.4 - 5
{ Question # 6
Since 2 and 2 2 are roots of required equation, therefore x 2 x 2 2 0 x 2 2x 2 2x 4 3 0 x 2 2x ( 2 ) 4(1) 0
Q 3 1
x 2 2x (1) 4 0
Q 1 2 0
x 2 2x 4 0 is the required equation.
{ Question # 7 (i) Let x be a fourth root of 16 then x
1 (16)4
x 4 16
x 4 16 0
x 2
2
x 2 4x 2 4 0
(4)2 0
x2 4 0
or
x2 4 0
x 2 4
or
x2 4
x 4 or
x 2i
or
x 4 x 2
Hence the four fourth root of 16 are 2, 2,2i , 2i .
(ii)
Hint: 81 (9)2
Do yourself as above.
(iii) Let x be a fourth root of 625 then x
1 (625)4
x 4 625
x 4 625 0
x 2 25x 2 25 0
x 2
2
(25)2 0
x 2 25 0
or
x 2 25 0
x 2 25
or
x 2 25
x 25 or
x 25i
or
x 25 x 25
Hence the four fourth root of 625 are 25, 25,25i , 25i .
Question # 8 (i) 2x 4 32 0
2(x 4 16) 0
x 4 16 0
Now do you as in Question # 7 (i)
(ii)
3y 5 243y 0
3y y 4 81 0
3y 0
or
y 4 81 0
FSC-I - 4.4 - 6
y 2 (9)2 0 y 2 9y 2 9 0
y0
2
or
y2 9 0
or
y2 9 0
y 2 9
or
y2 9
y 9
or
y 9
y 3i
y 3
or
Hence S.Set 0, 3, 3i
(iii)
x3 x2 x 1 0 x 2 x 1 1(x 1) 0 (x 1)(x 2 1) 0
x 1 0
or
x2 1 0
x 1
or
x 2 1
Hence S.Set 1, i
(iv)
x i
5x 5 5x 0 5x (x 4 1) 0
5x 0
or
x 0
or
Hence S.Set 0, 1, i
x4 1 0
x 2 (1)2 0 x 2 1x 2 1 0 2
x2 1 0
or
x2 1 0
x 2 1
or
x2 1
x i
or
Error Analyst Waiting for Someone
ﮐﺘﻢ ﺷﺪ
x 1