1.
LA LEY DE OHM
La Ley de Ohm, postulada por el físico y matemático alemán George Simón Ohm, es una de las leyes fundamentales de la electrodinámica, estrechamente vinculada a los valores de las unidades básicas presentes en cualquier circuito eléctrico como son:
Tensión o voltaje (E), en volt (V). Intensidad de la corriente (I), en ampere (A) o sus submúltiplos. Resistencia (R) de la carga o consumidor conectado al circuito en ohm o sus múltiplos. Debido a la existencia de materiales que dificultan más
Circuito eléctrico compuesto por una pila de 1,5 volt, una resistencia o carga eléctrica y el flujo de una< intensidad de corriente. Por otro lado, de acuerdo con la propia Ley, el valor de la tensión es directamente proporcional a la intensidad de la corriente; por tanto, si el voltaje aumenta o disminuye el amperaje de la corriente que circula por el circuito aumentará o disminuirá en la misma proporción, siempre y cuando el valor de la resistencia conectada al circuito se mantenga constante.
La Resistencia •
•
•
•
•
Una resistencia o resistor es un elemento que causa oposición al paso de la corriente, causando que en sus terminales aparezca una diferencia de tensión (un voltaje). Las resistencias o resistores son fabricadas en una amplia variedad de valores. Hay resistencias con valores de Kilohmios (KΩ), Megaohmios (MΩ). Estás dos últimas unidades se utilizan para representar resistencias muy grandes. En la siguiente tabla vemos las equivalencias entre ellas 1 Kilohmio (KΩ) = 1,000 Ohmios (Ω) 1 Megaohmio (MΩ) = 1, 000,000 Ohmios (Ω) 1 Megaohmio (MΩ) = 1,000 Kilohmios (KΩ) Para poder saber el valor de las resistencias sin tener que medirlas, existe un
La Conductancia La recíproca (inverso) de la resistencia es la conductancia. Se representa generalmente por la letra G. Un circuito con elevada conductancia tiene baja resistencia, y viceversa. Una resistencia de 1 Ohmio (ohm) posee una conductancia de 1 mho Una resistencia de 1000 Ohmios (ohms) posee una conductancia de 0.001 mho. Hay básicamente dos tipos de Resistencias: Las resistencias de valores fijos y las Resistencias variables, que a su vez se subdividen dependiendo de características propias.
Resistores Fijos Tienen un valor nominal fijo. Se dividen en resistores de película y bobinadas Resistores de Película (químicas): se utilizan en potencias bajas, que van desde 1/8 watts hasta los 3 watts y consisten en películas que se colocan sobre bases de cerámica especial. Este tipo de resistores depende del material, sea carbón o compuestos metálicos. Resistores bobinados: se fabrican con hilos resistivos que son esmaltados, cementados, vitrificados o son recubiertos de un material cerámico.Estos resistores por lo general pueden disipar potencias que van desde los 5 watts (vatios) hasta los 100 watts o más.
Resistores Variables Tienen un valor que se varía intencionalmente. Se dividen en: ajustables y dependientes de magnitudes Resistores Ajustables Potenciómetro de ajuste Potenciómetro giratorio Potenciómetro de cursor Resistores Dependientes de magnitudes De presión De luz: (Fotorresistencias) De temperatura (termistor) De voltaje (varistor) De campo magnético
Las resistencias son fabricadas en una gran variedad de formas y tamaños. En las más grandes, el valor de la resistencia se imprime directamente en el cuerpo de la misma, pero en las más pequeñas no es posible. Para poder obtener con facilidad el valor de la resistencia / resistor se utiliza el código de colores Sobre estas resistencias se pintan unas bandas de colores. Cada color representa un número que se utiliza para obtener el valor final de la resistencia. Las dos primeras bandas indican las dos primeras cifras del valor del resistor, la tercera banda indica cuantos ceros hay que aumentarle al valor anterior para obtener el valor final de la resistencia. La cuarta banda nos indica la tolerancia y si hay quinta banda, ésta nos indica su confiabilidad
Ejemplo: Si un resistor tiene las siguientes bandas de colores: Rojo 2
amarillo 4
verde 5
oro +/- 5 %
La resistencia tiene un valor de 2400,000 Ohmios +/- 5 % El valor máximo de esta resistencia es: 25200,000 Ω El valor mínimo de esta resistencia es: 22800,000 Ω La resistencia puede tener cualquier valor entre el máximo y mínimo calculados
intensidad de corriente eléctrica
carga eléctrica que pasa a través de una sección del conductor en la unidad de tiempo. En el Sistema Internacional de Unidades se expresa en C·s-1 (culombios partido por segundo), unidad que se denomina amperio
El valor I de la intensidad instantánea será:
Haciendo referencia a la potencia, la intensidad equivale a la raíz cuadrada de la potencia dividida por la resistencia. En un circuito que contenga varios generadores y receptores, la intensidad es igual a:
Donde Σε es el sumatorio de las fuerzas electromotrices del circuito, Σε' es la suma de todas la fuerzas contra electromotrices, ΣR es la resistencia equivalente del circuito, Σr es la suma de las resistencias internas de los generadores y Σr' es el sumatorio de las resistencias internas de los receptores. Intensidad de corriente en un elemento de volumen: donde encontramos v como el número de cargas portadoras por unidad de volumen dV; q refiriéndose a la carga del portador; v la velocidad del portador y finalmente ds como el área de la sección del elemento de volumen de conductor.
Voltaje Se denomina tensión eléctrica o voltaje a la energía potencial por unidad de carga que está asociada a un campo electrostático. Su unidad de medida en el SI son los voltios.17 A la diferencia de energía potencial entre dos puntos se le denomina voltaje. Esta tensión puede ser vista como si fuera una "presión eléctrica“ debido a que cuando la presión es uniforme no existe circulación de cargas y cuando dicha "presión" varía se crea un campo eléctrico que a su vez genera fuerzas en las cargas eléctricas. Matemáticamente, la diferencia de potencial eléctrico entre dos puntos A y B es la integral de línea del campo eléctrico:
Medición de la tensión o voltaje • Para medir tensión o voltaje existente en una fuente de fuerza electromotriz (FEM) o e un circuito eléctrico, es necesario disponer de un instrumento de medición llamado voltímetro, que puede ser tanto del del tipo analógico como digital. El voltímetro se instala de forma paralela en relación con la fuente de suministro de energía eléctrica. Mediante un multímetro o “tester” que mida voltaje podemos realizar también esa medición. Los voltajes bajos o de baja tensión se miden en volt y se representa por la letra (V), mientras que los voltajes medios y altos (alta tensión) se miden en kilovolt, y se representan por las iniciales (kV).
Transistor El transistor es un dispositivo electrónico semiconductor que cumple funciones de amplificador, oscilador, conmutador o rectificador. El término "transistor" es la contracción en inglés de transfer resistor ("resistencia de transferencia"). Actualmente se los encuentra prácticamente en todos los enseres domésticos de uso diario: radios, televisores, grabadoras, reproductores de audio y vídeo, hornos de microondas, lavadoras, automóviles, equipos de refrigeración, alarmas, relojes de cuarzo, computadoras, calculadoras, impresoras, lámparas fluorescentes, equipos de rayos X, tomógrafos, ecógrafos, reproductores mp3, celulares, etc.
El transistor consta de un sustrato (usualmente silicio) y tres partes dopadas artificialmente (contaminadas con materiales específicos en cantidades específicos) que forman dos uniones bipolares, el emisor que emite portadores, el colector que los recibe o recolecta y la tercera, que está intercalada entre las dos primeras, modula el paso de dichos portadores (base). A diferencia de las válvulas, el transistor es un dispositivo controlado por corriente y del que se obtiene corriente amplificada. En el diseño de circuitos a los transistores se les considera un elemento activo, a diferencia de los resistores, capacitores e inductores que son elementos pasivos. Su funcionamiento sólo puede explicarse mediante mecánica cuántica.
• Transistor de punta de contacto. Primer transistor que obtuvo ganancia, inventado en 1947 por J. Bardeen y W. Brattain. Consta de una base de germanio sobre la que se apoyan, muy juntas, dos puntas metálicas que constituyen el emisor y el colector. La corriente de emisor es capaz de modular la resistencia que se "ve" en el colector, de ahí el nombre de "transfer resistor". Se basa en efectos de superficie, poco conocidos en su día. Es difícil de fabricar (las puntas se ajustaban a mano), frágil (un golpe podía desplazar las puntas) y ruidoso. Sin embargo convivió con el transistor de unión (W. Shock ley, 1948) debido a su mayor ancho de banda. En la actualidad ha desaparecido.
• Transistor de unión bipolar, BJT por sus siglas en inglés, se fabrica básicamente sobre un monocristal de Germanio, Silicio o Arseniuro de Galio, que tienen cualidades de semiconductores, estado intermedio entre conductores como los metales y los aislantes como el diamante. Sobre el sustrato de cristal, se contaminan en forma muy controlada tres zonas, dos de las cuales son del mismo tipo, NPN o PNP, quedando formadas dos uniones NP.
Transistores y electrónica de potencia Con el desarrollo tecnológico y evolución de la electrónica, la capacidad de los dispositivos semiconductores para soportar cada vez mayores niveles de tensión y corriente ha permitido su uso en aplicaciones de potencia. Es así como actualmente los transistores son empleados en conversores estáticos de potencia, controles para motores y llaves de alta potencia (principalmente inversores), aunque su principal uso está basado en la amplificación de corriente dentro de un circuito cerrado.
Diodo • es un dispositivo semiconductor que permite el paso de la corriente eléctrica en una única dirección con caracteristicas similares a un interruptor. De forma simplificada, la curva característica de un diodo (I-V) consta de dos regiones: por debajo de cierta diferencia de potencial, se comporta como un circuito abierto (no conduce), y por encima de ella como un corto circuito con muy pequeña eléctrica. Debido a este comportamiento, se les suele denominar rectificadores, ya que son dispositivos capaces de convertir una corriente alterna en corriente continua. Su principio de funcionamiento está basado en los experimentos de Lee De Forest.
Diodo emisor de luz es un dispositivo semiconductor (diodo) que emite luz coherente de espectro reducido cuando se polariza de forma directa la unión PN del mismo y circula por él una corriente eléctrica. Este fenómeno es una forma de electroluminiscencia. El color (longitud de onda), depende del material semiconductor empleado en la construcción del diodo y puede variar desde el ultravioleta, pasando por el visible, hasta el infrarrojo. Los diodos emisores de luz que emiten luz ultravioleta también reciben el nombre de UV LED (UltraV'iolet Light-Emitting Diode) y los que emiten luz infrarroja suelen recibir la denominación de IRED (Infra-Red Emitting Diode).
Condensador un condensador o capacitor es un dispositivo que almacena energía eléctrica, es un componente pasivo. Está formado por un par de superficies conductoras en situación de influencia total (esto es, que todas las líneas de campo eléctrico que parten de una van a parar a la otra), generalmente en forma de tablas, esferas o láminas, separados por un material dieléctrico (siendo este utilizado en un condensador para disminuir el campo eléctrico, ya que actúa como aislante) o por el vacío, que, sometidos a una diferencia de potencial (d.d.p.) adquieren una determinada carga eléctrica, positiva en una de las placas y negativa en la otra (siendo nula la carga total almacenada).
La carga almacenada en una de las placas es proporcional a la diferencia de potencial entre esta placa y la otra, siendo la constante de proporcionalidad la llamada capacidad o capacitancia. En el Sistema internacional de unidades se mide en Faradios (F), siendo 1 faradio la capacidad de un condensador en el que, sometidas sus armaduras a una d.d.p. de 1 voltio, éstas adquieren una carga eléctrica de 1 culombio. Energía almacenada El condensador almacena energía eléctrica, debido a la presencia de un campo eléctrico en su interior, cuando aumenta la diferencia de potencial en sus terminales, devolviéndola cuando ésta disminuye. Matemáticamente se puede obtener que la energía , almacenada por un condensador con capacidad C, que es conectado a una diferencia de potencial V1 − V2, viene dada por
Tipos de dieléctrico utilizados en condensadores Condensadores electrolíticos de tantalio
Condensadores de poliéster Condensadores electrolíticos axiales Condensadores cerámicos, "SMD (montaje superficial)" y de "disco"
multimetro • Comenzamos con la medición del voltaje en una pila de 1,5 Volt, algo gastada, para ver en qué estado se encuentra la misma. Para realizar la medición de voltajes, colocamos la llave selectora del multímetro en el bloque “DCV” siglas correspondientes a: Direct Current Voltage, lo que traducimos como Voltaje de Corriente Continua, puesto que la pila constituye un generador de corriente contínua. • Colocamos la punta roja en el electrodo positivo de la pila, la punta negra en el negativo, la llave selectora en la posición “2,5“ y efectuamos la medición. • Lo vemos en la figura 1. La llave selectora indica el valor máximo que podemos medir de tensiones continuas en volt. Como hemos seleccionado 2,5 Volt, entonces la escala que tiene como máximo valor el número “250”, se transformará en un valor máximo de 2,5 Volt, luego, en la misma escala:
El número 200 equivale a: 2 Volt 150 equivale a: 1,5 Volt 100 equivale a: 1 Volt 50 equivale a: 0,5 Volt Estos valores los podemos apreciar en la cuarta escala graduada (comenzando desde arriba) en la figura 2. Al efectuar la medición, la aguja quedará entre dos números de la escala seleccionada. Al número menor lo llamaremos: “Lectura menor”, y al número mayor, “Lectura Mayor”. A la Lectura menor, se le deberá sumar la cantidad de divisiones que tenemos, hasta donde se detuvo la aguja. El valor de cada una de las divisiones, se calcula mediante la fórmula: Vdiv. = (LM - Lm) ÷ Cdiv.
Fotocelda • Una fotocelda o un fotodetector es una resistencia, cuyo valor en ohmios varía ante las variaciones de la luz incidente. También llamadas fotoresistencias, están construidas con un material sensible a la luz, de tal manera que cuando la luz incide sobre su superficie, el material sufre una reacción física, alterando su resistencia eléctrica. • Una fotocelda presenta un bajo valor de su resistencia ante la presencia de luz, y, un alto valor de resistencia ante la ausencia de luz. La fotocelda se emplea para controlar el encendido automático del alumbrado público. También se utiliza ampliamente en circuitos contadores electrónicos de objetos y personas, en alarmas, etc.
Ley de Watt • Si a un determinado cuerpo le aplicamos una fuente de alimentación (es decir le aplicamos un Voltaje) se va a producir dentro del cuerpo una cierta corriente eléctrica. Dicha corriente será mayor o menor dependiendo de la resistencia del cuerpo. Este consumo de corriente hace que la fuente este entregando una cierta potencia eléctrica; o dicho de otra forma el cuerpo esta consumiendo determinada cantidad de potencia. Esta potencia se mide en Watt. Por ejemplo una lámpara eléctrica de 40 Watt consume 40 watt de potencia eléctrica. Para calcular la potencia se debe multiplicar el voltaje aplicado por la corriente que atraviesa al cuerpo.
• P=IV Es decir potencia es igual a la corriente por el voltaje en algun dispositivo del aparato.
• Las leyes (o Lemas) de Kirchhoff son la Ley de los nodos o ley de corrientes y la Ley de las "mallas" o ley de tensiones. Son muy utilizadas en ingeniería eléctrica para obtener los valores de intensidad de corriente y potencial en cada punto de un circuito eléctrico. Surgen de la aplicación de la ley de conservación de la energía. La ley de Ohm relaciona el valor de la resistencia de un conductor con la intensidad de corriente que lo atraviesa y con la diferencia de potencial entre sus extremos
Compuerta lógica XOR • (eXclusive OR u OR exclusivo) es verdadera cuando el valor de sus entradas son distintos entre sí. • La compuerta OR realiza la operación lógica correspondiente al O inclusivo, es decir, una o ambas de las entradas deben estar en 1 para que la salida sea 1. • Un ejemplo de esta compuerta en lenguaje coloquial seria “Mañana iré de compras o al cine”. Basta con que vaya de compras o al cine para que la afirmación sea verdadera. • En caso de que realice ambas cosas, la afirmación también es verdadera. Aquí es donde la función XOR difiere de la OR: en una compuerta XOR la salida será 0 siempre que las entradas sean distintas entre si. • En el ejemplo anterior, si se tratase de la operación XOR, la salida seria 1 solamente si fuimos de compras o si fuimos al cine, pero 0 si no fuimos a ninguno de esos lugares, o si fuimos a ambos.
• Esta característica hace de la compuerta XOR un componente imprescindible en los circuitos sumadores de números binarios, tal como los utilizados en las calculadoras electrónicas.
• Símbolo de la compuerta XOR
circuito integrado • o chip, es una pastilla muy delgada en la que se encuentra una enorme cantidad (del orden de miles o millones) de dispositivos microelectrónicos interconectados, principalmente diodos y transistores, además de componentes pasivos como resistencias o condensadores. Su área es de tamaño reducido, del orden de un cm² o inferior. Algunos de los circuitos integrados más avanzados son los microprocesadores, que son usados en múltiples artefactos, desde computadoras hasta electrodomésticos, pasando por los teléfonos móviles. Otra familia importante de
Tipos Existen tres tipos de circuitos integrados: • Circuitos monolíticos: Están fabricados en un solo monocristal, habitualmente de silicio, pero también existen en germanio, arseniuro de galio, silicio-germanio, etc. • Circuitos híbridos de capa fina: Son muy similares a los circuitos monolíticos, pero, además, contienen componentes difíciles de fabricar con tecnología monolítica. Muchos conversores A/D y conversores D/A se fabricaron en tecnología híbrida hasta que los progresos en la tecnología permitieron fabricar resistencias precisas.
• Circuitos híbridos de capa gruesa: Se apartan bastante de los circuitos monolíticos. De hecho suelen contener circuitos monolíticos sin cápsula (dices), transistores, diodos, etc, sobre un sustrato dieléctrico, interconectados con pistas conductoras. Las resistencias se depositan por serigrafía y se ajustan haciéndoles cortes con láser. Todo ello se encapsula, tanto en cápsulas plásticas como metálicas, dependiendo de la disipación de potencia que necesiten. En muchos casos, la cápsula no está "moldeada", sino que simplemente consiste en una resina epoxi que protege el circuito. En el mercado se encuentran circuitos híbridos para módulos de RF, fuentes de alimentación, circuitos de encendido para automóvil, etc.