Y N
Y*Y
X*X
X*Y
Y -mean of Y (i.e. =y)
X -mean of X(i.e. =x)
Consumption Income 1 2 3 4 5 6 7 8 9 10
sum mean
X
70 65 90 95 110 115 120 140 155 150
80 100 120 140 160 180 200 220 240 260
4900 4225 8100 9025 12100 13225 14400 19600 24025 22500
6400 10000 14400 19600 25600 32400 40000 48400 57600 67600
5600 6500 10800 13300 17600 20700 24000 30800 37200 39000
-41 -46 -21 -16 -1 4 9 29 44 39
-90 -70 -50 -30 -10 10 30 50 70 90
1110 111
1700 170
132100 13210
322000 32200
205500 20550
0 0
0 0
Dr. Sangita Y= b1+ b2x b2 = sum of xy/ sum of x square
b1 = mean of Y b2* mean of X
correln bet X and Y i.e. r =
correln bet X and estimated Y =
r square
degrees of freedom =
square of y
square of x
xy
estimated Y
u
u*u
1681 2116 441 256 1 16 81 841 1936 1521
8100 4900 2500 900 100 100 900 2500 4900 8100
3690 3220 1050 480 10 40 270 1450 3080 3510
65.18 75.36 85.55 95.73 105.91 116.09 126.27 136.45 146.64 156.82
4.82 -10.36 4.45 -0.73 4.09 -1.09 -6.27 3.55 8.36 -6.82
23.21 107.4 19.84 0.53 16.74 1.19 39.35 12.57 69.95 46.49
8890 889
33000 3300
16800 1680
1110 111
0 0
337.27 33.73
i.e. zero
0.51
24.45
method 1
SD of Y =
33.34
SD of X =
64.23
SE =Sqrt( Sqr(Y estmted Y)/n)
6.49
var =
42.16
SE = SD of Y* sqrt(1- r sqre)
0.19
4125
0.98
1
method 2
6.49 0.96
var
42.16
8
method 3
6.49
Var
SE = SE of SE/sqrt(x b2 = sqr)
42.16
0.04
var of b2 0.0013 =