Introduction à la Commutation Optique II Guang-Hua DUAN
Opto+ Alcatel Research & Innovation Route de Nozay 91460 Marcoussis G-H. Duan, ESO, 2005
Sommaire • Etat de l’art de télécommunications optiques : • • • • •
Transmission Commutation Commutation de circuits Commutation de paquets Nécessité de la commutation optique
1er cours
• Commutation optique spatiale • Commutation optique temporelle • Commutation optique par routage en longueur d’onde • Répartiteurs et multiplexeurs à l'insertion-extraction • Cross-connexion optique (OXC) WDM
• Commutation optique de paquets • Traitement optique des signaux • - Conclusion G-H. Duan, ESO, 2005
2ème cours
Trend : cost reduction! • On-going convergence of metro and long haul platforms – to save development efforts – because need are also converging • more OADM and rings in long haul • longer distances required in « metro »
• Tunability – to save spares, to provide network reconfigurability
• Lower cost, small volume and low power consumption • introduction of sfp/xfp for metro DWDM
G-H. Duan, ESO, 2005
WDM XFP module • TOSA • • • • •
EML with integrated laser and driver fixed laser covering full C band 80 Kms : 1600ps/nm <2.5watts TEC + driver tunable?
• ROSA • APD and PIN • -27dBm C+ band at 2.5 Gbit/s G-H. Duan, ESO, 2005
Trend : CAPEX reduction • Metro • CWDM : 20 nm channel spacing from 1480 to 1620 • uncooled sources at 2.5 Gbit/s and 10 Gbit/s • so far cost studies show that 2.5G CWDM is still winning
• Long haul • 40 Gbit/s: design of dispersion mapping and choice of modulation format are now mature, most difficult point is now PMD mitigation, cost studies show so far interest vs 10G for some system types (vs distance, fiber type, capacity) • Raman amplification • all-optical regeneration
• OADM->wavelength transparent • OADM • tunability and reconfigurability
G-H. Duan, ESO, 2005
Trend: OPEX reduction • More flexibility and automatization – first application is to save OPEX • emergence of reconfigurable OADM, especially for US market • importance of automatic system tunings (some technologies like tunable DCM can help) • use of tunable ROADM (with tunable architectures) • sometimes contradictory or favourable to CAPEX saving
G-H. Duan, ESO, 2005
Transmission optique par WDM avec OADM
EDFA
EDFA
ADM Extra. Insertion Emetteur
Mux
OADM : Optical Add/Drop Multiplexer G-H. Duan, ESO, 2005
Demux
Récepteur
OADM dans un réseau OADM OADM
Meshed optical networks
OADM OXC
OADM
OXC
OADM OADM
Optical rings OADM
OADM OADM
G-H. Duan, ESO, 2005
Optical add-drop multiplexer: grating solutions
Demux Mux
In [1] Out [2]
Drop [4]
G-H. Duan, ESO, 2005
Add [3]
OADM par bande de λ Out [2] In [1]
Drop [4]
G-H. Duan, ESO, 2005
Add [3]
Filtre à base de réseau Bragg dans une fibre (FBG)
UV-writing technology
UV (242 nm)
Permanent refractive index change of Ge-doped silica under UV irradiation Grating filter written in fibre in one-step process Simplicity, low cost Low insertion loss G-H. Duan, ESO, 2005
n(z)
z
Bragg grating inscription: phase mask
- interferences between 2 diffraction orders - Bragg wavelength fixed: reproducibility -1
+1 < 5%
G-H. Duan, ESO, 2005
- possibility of synthesis - no need for coherence
Optical add-drop multiplexer: FBG solutions Circulators
Mach-Zehnder
Coupler Cost
G-H. Duan, ESO, 2005
Losses
Arrayed Waveguide Grating
Principe : interférence de différents faisceaux suivant les différents guides Fonctions : - Multiplexage en λ - Démultiplexage en λ - Routeur de λ G-H. Duan, ESO, 2005
Cyclic AWG
DMUX 1:8
standard
λ8
λ2 λ1
• each Mux/Dmux treat only 8 λs (1626LM: need of 12 ≠ Mux/Dmux ref.) Cyclic AWG (1:8 Mux/Dmux=1or 2 input, 8 outputs) – each output = a set of frequencies λ8, λ16, λ24, ….. λ2N+8 – Advantage: any band among B1,B2, …, B12 • low cost (same as standard AWG), λ2, λ10, λ18, ….. λ2N+2 single input cyclic DMUX
•
Standard AWG (1:8 Mux/Dmux=1 input, 8 outputs) – each output = a given frequency bands B1,B2, or B12 – Advantage: • low cost, mature techno, many providers – Disadvantage:
λ1, λ9, λ17, ….. λ2N+1 • 1 Mux/Dmux treat ≠ bands (1626LM: only 1 Mux/Dmux ref. for 12 bands) – Disadvantage: λ8, λ16, λ24, ….. λ2N+8 • design is more tricky (optical perf.) Even bands (B2,B4,…,B12) • Use with BOFA to be checked Odd bands (B1,B3,…,B11) 2N+2
dual input cyclic DMUX
•
G-H. Duan, ESO, 2005
λ2, λ10, λ18, ….. λ
λ1, λ9, λ17, ….. λ2N+1
Wavelength Blocker • Free space optics implementation is mostly used (Liquid Crystal, MEMS or diffractive MEMS) for both 50 and 100 GHz LC based wavelength blocker
~
V(λ) Output
Input
Loss Diffraction Grating
G-H. Duan, ESO, 2005
LC-based Attenuator Array
Diffraction Grating
Wavelength Switch • Wavelength Switch description : a 1xN WS device has : – 1 input port + N output ports – any combination/number of input λs can be sent to any output port – a given λ can be send to 1 output port at a time (no Broadcast function) – if each output port It can be seen as get rid of Drop or Add coupler – A WS is reconfigurable and tunable Mux or Dmux
WS 1 x 4 Express port Drop ports any combination of λs can be sent to any output G-H. Duan, ESO, 2005
Wavelength Switch
• Wavelength Switch description : – a WS can be used indifferently as: • a reconfigurable/tunable DMUX (all ports DROP λs) OR (exclusive OR) • a reconfigurable/tunable MUX (all ports ADD λs)
WS 1 x 4 DROP ports only
WS 1 x 4 ADD ports only
WS 1 x 4
– a WS cannot be used simultaneously w/ ADD ports and DROP ports...
G-H. Duan, ESO, 2005
DROP
ADD
Wavelength Switch • Free space optics implementation is mostly used (MEMS ) for both 50 and 100 GHz C
G-H. Duan, ESO, 2005
Tunable filters applications • Tunable receiver or tunable mux/demux for LH and metro architectures DROP
WB
1x(P+1) WS
ADD
DROP
ADD Rx
2-ports tunable filter
3-ports hitless tunable filter
WB
DROP
1x(P+1) WS
ADD 1:N
4:N
1:4
Rx
Tunable filters
DROP
ADD Rx
Tx (tunable laser)
P:N TF
1/N splitter & combiner for A/D capacity=N
G-H. Duan, ESO, 2005
Rx
…
1:
Tunable filters • Technologies available – Tunable thin film filter – Fabry-Pérot moving cavity
– Tunable pass-band bragg grating – Thermooptic ring resonators
Tunable thin film filter
Fabry Pérot moving cavity
Tunable pass-band bragg grating
Filtering functions
Gaussian and flat top. Very close to fixed TFF
Gaussian shape with wide bandwidth. CD to be checked
Tunability range
large
Airy function -> stringent tradeoff between bandwidth and isolation large
Actuation
Step motor
PZT
Wavelength control and temperature calibration Tuning speed Cost
Look-up table
Few sec. 2000 $
G-H. Duan, ESO, 2005
Thermooptic ring resonators Close to FabryPérot.
Cascade of ring resonators (tbc)
Lock-in loop
“free-space” : large VBG : 1 grating per λ VBG : step motor “free-space” : MEMS Look-up table
Few 100 ms 500 to 1000 $
50 to 300 ms 2000 $
10 to 100 ms 1000 $
Lock-in loop
Wavelength Blocker
• Functional diagram
Optical on/off switch
Variable attenuator
• Good cascadability performances even @ 50 GHz (well suited even for LH) • It can be used for per channel power balancing G-H. Duan, ESO, 2005
OADMs fixes dans le système sous-marin SEA-ME-WE-3
Goonhilly Penmarc’h
Mazara Creta Sesimbra
Tetouan
Marmaris Cyprus
Alexandria Suez
Fujairah
Karachi
Jeddah Mascat
Bombay Cochin Colombo
Djibouti
Medan
Satun
Mersing
Singapore Batam
(blue ↔ option)
G-H. Duan, ESO, 2005
Élément de base pour la commutation en longueur d ’onde - avec le WC
λ
a
λi
λ1
λj
λ2
WC
λ
b
WC Filtre fixe
- sans le WC
λi
λk
λj
λl Filtre accordable
G-H. Duan, ESO, 2005
Cross-connect avec changement de longueur d’onde
λ 1 λ2 λ 3 λ 4 B
C
M
A B C D
ul tic a
st
λ1 λ2 λ3 λ4 λ1' λ2' λ3' λ4'
λ1' λ2' λ3' λ4' A
λ1" λ2" λ3"
C
λ1" λ2" λ3" λ4" D
G-H. Duan, ESO, 2005
Architecture de WT-OXC développé par Alcatel WC
Sortie 1
λ 1 λ2 λ3 λ 4 WC
Entrée 1
Commutateur spatial
λ1 (M) λ2(M) λ3(M) λ4(M) Entrée M
G-H. Duan, ESO, 2005
Filtre accordable
Convertisseur MUX En longueur d ’onde
WC
WC
Sortie M
Résumé sur la commutation dans le domaine de λ • OADM déjà déployé dans des réseaux de télécommunications • Technologies OADM : • • • •
FBG AWG Réseau de diffraction Filtre interférentiel
• Cross-connexion optique (OXC) WDM • Architecture • Applications à venir
G-H. Duan, ESO, 2005
cellule ATM
5 octets
en-tête
routage (path) routage (path and circuit) routage (circuit) routage (circuit) erreurs en-tête
G-H. Duan, ESO, 2005
48 octets
données
Réseau à commutation optique: structure
All-optical packet switching layer Optical node
INPUTS Regeneration Packetisation Packetisation Packetisation Packetisation Packetisation Packetisation Packetisation Packetisation Packetisation Packetisation
MUX
ATM
Regeneration
ATM
Depacketisation Depacketisation Depacketisation Depacketisation Depacketisation Depacketisation Depacketisation Depacketisation Depacketisation Depacketisation Depacketisation
DEMUX
Electronic adaptation
OUTPUTS
G-H. Duan, ESO, 2005
All-optical adaptation
• Réseau optique de transport de paquets de taille fixe • Interface: – mise en paquets – synchronisation – adaptation à l’optique
structure d’un paquet optique
optical time slot : 1.6 µs fixed duration about 1 µs
payload
▼
▼ ▼ ▼
fixed duration, at predefined bit rate
header
temps de garde pour absorber les temps de commutation et d’effaçage/réinscription de l’en-tête motif de synchronisation pour la récupération de rythme motif d’identification et d’adressage (en-tête) charge utile
G-H. Duan, ESO, 2005
architecture de nœud de commutation Cell/packet Buffer 1
1
1 λN
1
K
D
I NPUT S
λ1
1 λ1
1
Wavelength Selector
N To control
1
D
Output 1 Control Logic Output NControl Logic λ1
1
OUTP UTS
Cell/packet encoder
K λN
N
N
N K
Wavelength converter MUX/DMUX D
Detector
G-H. Duan, ESO, 2005
Optical gate Fibre Delay Line coupler
λN
N
Optical Label Switching
G-H. Duan, ESO, 2005
Optical Label Switching
G-H. Duan, ESO, 2005
Optical Label Switching
G-H. Duan, ESO, 2005
Applications Tunable laser requirements for various applications Sparing tuning range (THz)
>1
Circuit switching >4
freq. accuracy (GHz)
±3
±3
output power (dBm) SMSR (dB) linewidth (MHz) tuning speed
>3 (Metro) to >13 (ULH) >30
>30
±5 >3 >30
<25 (Metro) to <5 (ULH) N.A.
Packet switching >4
<10 ms
<25 < 100 ns
ULH = ultra-long haul G-H. Duan, ESO, 2005
Cavité externe Diode laser Rmin / Rmin
Réseau de Bragg
Ibragg
Filtre du réseau de Bragg
Modes Fabry-Perot
Miroir en forme de dièdre => tolérance aux désalignements
Rotation du miroir =>
- modification de la longueur de la cavité Fabry-Perot - modification de l’angle d’incidence sur le réseau, donc de λréseau
design approprié => décalages coordonnés de λFP et λréseau => accord sans sauts de mode
+
Accord continu 40nm (ou 70nm) P forte 32mW (ou 15mW) disponible
G-H. Duan, ESO, 2005
λ
-
prix encombrement (mini-Tunics maintenant) fiabilité => applications test pour l’instant
VCSEL + MEM Cavité Fabry-Perot très courte =>1 seul mode dans la bande de gain accordabilité continue par translation du miroir supérieur gain Mode FP λ
+ Accord continu > 40nm asservissement facile émission par la surface G-H. Duan, ESO, 2005
Pfibre= 3.5 à 6mW besoin d’un pompage optique (70mW)
Laser accordable DBR Ibragg ➨ accord grossier
T° ➨ accord fin
Ibragg
Iactif ➨ puissance
Filtre du réseau de Bragg Modes Fabry-Perot
T°
+ Pfibre=20mW sur tous les canaux techno simple, caractérisations simples
G-H. Duan, ESO, 2005
λ émission
λ
-
Accord limité (~15nm) Sauts de mode =>asservissement complexe Accord lent (=> section de phase ?)
Performances en accordabilité
0
15
30
45
60
Courant dans la section Bragg
G-H. Duan, ESO, 2005
75
Laser SGDBR
Actif
Phase
RDBR
DBR-Avant
DBR-Arrière
Modes FP
Puissance
Fréquence
• Accordabilité >40nm G-H. Duan, ESO, 2005
GCSR Laser
Active
Coupler Phase
SG-DBR
• Grating assisted co-directional coupler: – Two guided modes R and S – Efficient coupling at frequency: c νc = Λ c [ n R (ν c ) − nS (ν c ) ] – Wider tuning at the cost of higher filter bandwidth G-H. Duan, ESO, 2005
GCSR Laser
Coupler Phase
Filter
Active
cavity modes
Power
Frequency
G-H. Duan, ESO, 2005
SG-DBR
Wavelength Tunable 4-ch DBR Laser Array 2000 µm
Lasing Wavelength (nm)
1540 LACT=50µm, IACT=30mA
1538 1536
600 µm
1534
∆λ(total)
1532
DBR-LDs
1530
S-Bend
DBR-LD 1 DBR-LD 2 DBR-LD 3 DBR-LD 4
12.45 nm
SOA
MMI coupler
1528 1526
0
20
40
60
80
Tuning Current (mA) IDBR
IACT
Structure of DBR Lasers Active Region : LACT=50µm Front DBR
: 200µm, k=90cm-1
Rear DBR
: 450µm, k=90cm-1
Arrayed λ Pitch: 2.5 nm(Average) G-H. Duan, ESO, 2005
Technologies Comparison of tunable laser technologies
mechanism tuning range # channels
DBR
SG-DBR
GCSR
ECL
MEMSVCSEL
DFB cascade
T+E
E
E
M
M
T
<2 THz
>4 THz
>4 THz
>4 THz
>4 THz
<2 THz
<40
>80
>80
>80
>80
<40
locked stability
depends on wavelength locker
unlocked stability
good
good
good
output power
>13 dBm >3 dBm
power uniformity
2 to 3 dB 4 to 5 dB 2 to 3 dB
SMSR linewidth
>35 dB
>35 dB
poor
poor
>3 dBm >10 dBm >6 dBm >35 dB
<25 MHz <25 MHz <25 MHz
? >3 dBm
?
2 to 3 dB
?
>40 dB
>40 dB
>40 dB
<5 MHz
<10 MHz <10 MHz >10 µs >1 s
tuning speed
>1 s
<20 ns
<20 ns
>1 ms
reliability
good
good
good
?
?
?
low
low
low
high
high
high
power consumption G-H. Duan, ESO, 2005
All-Optical Clock recovery: Where, and Why • Where ? • 3R Regeneration = Re-amplifying, Reshaping, Re-timing= Full Regeneration • Principe of operation of a regenerator
Distorted data Switching window in nonlinear gate
Regenerated data
recovered clock pulses See paper on al l-o pti cal regenerati on, B. Lav igne, et al ., thi s ses sion G-H. Duan, ESO, 2005
Clock recovery: all-optical and optoelectronic approaches
• 3 blocks structure of 3R regenerator Adaptation interface Clock recovery
B1
Opt. pulse source
Non-linear gate/ Sampling
B2
• Hybrid Optoelectronic approach Photodiode
Filter
Amplifier
Modulator Laser
• All-optical approach
Mode-locked laser, or Passive-filter, or Active-filter using stimulated Brillouin effect, or Self-pulsating laser
G-H. Duan, ESO, 2005
B3
Comparison between all-optical and optoelectronic approaches
Performances Alloptical Hybrid optoelect ronic
To be improved good
G-H. Duan, ESO, 2005
Power Consumption low high (conversion O/E/O)
Integrability reliability
Footprint
Cost
possible
good
small
Potentially low
difficult
average
average
High (high speed modulator and driver)
All-optical clock recovery • All-optical 'disruptive' solution provide advantages such as: – potentially low cost, – reduced footprint, – reduced power consumption
• Problems to be solved: – simple and robust operation conditions, – Clock quality to be comparable with the electronic approach (phase noise, maintain of clock for a larger number of consequent “0”, …)
• All-optical solution becomes competitive only at 40 Gbit/s and beyond • Potential of such a "disruptive" solution in future telecom products such as Optical Regenerators to be assessed
G-H. Duan, ESO, 2005
Integrated Actively Mode-locked lasers Rmin 0.01%
Ibragg
Q1.45 Bragg
Iphase
ISOA
H+
MQW 1.55
Phase
Active
VEAM
H+
MQW 1.50 Modulator
NTT, Lucent, ….
• High speed modulator at 40 GHz or 40/n GHz needed • External oscillator at 40 GHz or 40/n GHZ needed • Pros: – low time jitter (< 1 ps) – high extinction ratio (> 13 dB)
• Cons: – Extremely low locking range (< 100 kHz) – high cost due to high speed electronics G-H. Duan, ESO, 2005
Hybrid Actively Mode-locked lasers RF Drive
Bias Tee
Rmax
• • •
Lcavity
AR
AR
FBG
Lucent, Alcatel, ETH…. High speed modulator at 40 GHz or 40/n GHz needed External oscillator at 40 GHz or 40/n GHZ needed Pros: – low time jitter (< 1 ps) – high extinction ratio (> 13 dB)
•
Cons: – Extremely low locking range (< 100 kHz) – high cost due to high speed electronics
G-H. Duan, ESO, 2005
Passively Mode-locked lasers Rmin 0.01%
Ibragg
Q1.45 Bragg
Iphase
ISOA
MQW 1.55
H+ Phase
VSA
Active
Saturable absorber
OKI Electrical Industry Co, HHI, ....
•
Passive mode-locked lasers with saturable absorbers (one type of selfpulsating laser)
•
Observed mode-locking at 40, 80 and 500 GHz (S. Arahira, et al. OKI Electrical Industry Co., IEEE PTL, 1993)
•
Advantages: – low time jitter – high extinction ratio – low-cost without high speed electronics
G-H. Duan, ESO, 2005
Passive filtering Distorted data
High Q comb type filter
Spectrum
Egaliser
Comb-like transmission
20
Recovered Clock
10 0
P uissance ( dBm)
-10 -20 -30 -40 -50 -60 -70 -80 - 50
- 40
- 30
- 20
- 10
0
10
20
30
40
50
Fre que nce ( GHz)
•
First demonstration at 1992 (M. Jinno, et al., J. QE, vol. 28, 1992)
•
High Q filter (Q>10000) needed following the ITU-T specifications, difficult to be obtained by integrated optics
•
Combination with mode-locked lasers or SP laser to eliminate the patterning effect (T. Wang, et al., IEEE PTL, June 2002)
G-H. Duan, ESO, 2005
Stimulated Brillouin Optical Tank 20 10 0 P uissance ( dB m)
Spectrum
-1 0 -2 0 -3 0 -4 0 -5 0 -6 0 -7 0 -8 0 -50
-40
-3 0
- 20
-1 0
0
10
20
30
40
ƒclock
50
Fre que nce (GHz)
ƒ
18.4 dBm
Clock out signal in
Downshifts data by phonon frequency (ƒseed) 10.5GHz Mod
3 dBm
Polarization control
ƒ
Fiber
Pump
ƒseed
10.5 GHz
Seed
Pump
ƒdata
Seed Stokes wave provides amplification
ƒclock
ƒ
Clock=Amplified and filtered seed by stimulated Brillouin effect Pro v ided by K . R. Dem ares t, Uni v . of K ans as
G-H. Duan, ESO, 2005
Pros and Cons of Brillouin Optical Tank •Important features: •Brillouin frequency shift = 10.5 GHz •Brillouin gain bandwidth = 20 MHz •
Pros •Bit-rate insensitive, multi-λ clock recovery •Tolerance to long periods of zeros •Requires no optical filters •Rapid lock-in time
•Cons •High input power needed •Polarization dependence
G-H. Duan, ESO, 2005
DFB type Optical SP laser
intensity
DFB 1
DFB 2
∆λ
grating Λ1
beating frequency
grating Λ2
wavelength
Fro m B . S arto ri us , et al ., HHI
• Structures •Phase-comb structure (H. Sarto ri u s, H HI ) •Gain-coupled two-section DFB lasers (G. Li , et al ., Uni v . of Central Flori da )
•Characteristics •Tunable SP frequency from 10 GHz to >100 GHz •Demonstrated clock recovery at 40 Gbit/s and 80 Gbit/s
G-H. Duan, ESO, 2005
DBR lasers for all-optical clock recovery at 40GHz • •
• •
3 section devices including active, phase and Bragg sections Polarization insensitive bulk active layer, nearly square (0.6µm width x 0.4µm thickness) buried ridge waveguide Phase section for the fine tuning of the lasing wavelength Bragg section providing – a wavelength selection (central wavelength and number of modes) – TE/TM discrimination =>lasing only at TE mode
G-H. Duan, ESO, 2005
Bragg section 200µm
Phase section 130µm Active section 790µm
InP p
InP n ion implantation
Wavelength converter principle • What ? – To transfer a modulated signal from one wavelength to another
• How ? – Using non-linearity in conversion SOAs Phase modulation of CW in at least one conversion SOA
λsig
input
λCW
input
Conversion SOA output Conversion SOA input
G-H. Duan, ESO, 2005
Intensity modulation at the interferometer output filter
Convertisseur de longueur d’onde • Structure MZ à base de SOA toute active ou avec guide passif • 3 fibres d’entrée pour fonctionnement en mode différentiel • Module optimisé pour dissipation de 3 W
G-H. Duan, ESO, 2005
Conclusion générale • Démonstration convaincante de x-connect optique transparents utilisant MEMS (Lucent, Calient, Nortel) • Intégration de la fonction add-drop dans les réseaux actuels • Démonstration de x-connect optique utilisant le WDM • Commutation de paquets : démonstration convaincante utilisant convertisseur de longueur d ’onde et optical label switching • Régénération tout optique
G-H. Duan, ESO, 2005