Equations Book

  • Uploaded by: fahad
  • 0
  • 0
  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Equations Book as PDF for free.

More details

  • Words: 54,807
  • Pages: 200
@ ò î ö b — y ⁄ a @t ì z j Û a ë @k í Š ‡ n Ü Û @ï i ‹ È Û a @‡ è È ¾ a @

   

            

                    

                          

!  "  # $    %  & 

.  !       '       (   ' )  ' ( 

+  (  " +  ,  - .  ,   /   0 .   1 

 2  3  

4  ,  / 5       ' 6 7  " 1   8 9  1  :  2     5 , ) ,  6     7 ' ,  ( ;  ' 0 .    '

 +  '    < ( 8    < (

=   ,    > 1  = (  ,   7   ( ?  -

8 9  1   #  1   .   >  @      6    &  

      % 5    A       #    

+  7      .(  A   ,   - #  )     > 1  8  , + 6+

 ! < D ' . D      -   < (

 )    - (  

.  (     ,   

.       

 

    .

1

            

2

         

          PROBABILITIES

  

      "  

       

. "     (E v e n t )          

    !    " # ! $   %   & ' %  ( ) !

 ,  & % %     +       !   (* )  % '

" -  & ' $   . /  0 1 %  $ 2    %  $   $   . / 

4   %  %  5 , ! .+  "    ' 3  &  $  1/4 . $ -  (52) .

 4#      $    "& " $ - 

  $     $ -  %   , 9 % %  . $   & ' : % %  ; '

"   1/4 & ' &  $ -  < #  = %  > - % % % ? ' "    4# 

.13 .

$   & '

"& "  

 @ . 1/ 4 =

5 ,  4

13/52 . ' , 9

B %  ,  (  .  2  >  2  0   %  2 

 , 9 1  5 #  & ' 5 ,  $   /  " % ! 3  3  "    = - & ' 2 %  " % ! %   &   4#     4

& ' $ #  $ C %  ' D , . " % !   % ' & ' $ = E

  & '  ' 

0  < 9     2 -   "  C     & ' $ = E   

+ #  < 9 ? # '  E   4!  & ' = ' 4 < #  .  $ # 

& %  (F E R M AT ) "  '  (PASCAL ) !  )  "  C  

3

$

 "   & ' +  $ % " % ! % .  .  (BE R N O U L L I ) . #  & '



 ( %  #  #  "  / %  0  F

:     

  ! % & !

:  , . & '  E  &    F

:                         1

! / * %  (* )  %  .  &  !  $   +  ;  % % %  F

' 

5  4  3  2  1 $  : @   / & .  $ % !  H I %  

K 5  3  1 J  J ' - /   % %  F

1 %  6 

    < K K K K.   & K  $ K #  ; K ' , K ! .  . $ K  

! "  <  % .   . J ' - /  (E x p e r i m e n t )        < K /  $ % !  "  >  $   (E v e n t ) .(S a m p l e S p a c e )      

. & %  L  1   ) !   $  ! - 3   / *  +  M

 =

(P o s s i b l e C a s e s )        #     2

$ % /   !  &  $ 1 # E  H I %   "  & .

 % !  $ #  $ - &  %  (* ) '  $ %  $  

5  4  3  2  1  % !  % .  &  %   $ !

6  $ #  $ - &  $  & ' 2 $ % !  " 

   ' 6  . %  .  &  $  & '

(F a v o r a b l e C a s e s )         #     3 4



. J ,  3    < 9 J N  &  "   H I %  & .

& ' J ' - < #  =  . 3  ! , ; '  % .  > C  & .

3  , .

 &  "  ; ' %  . 

&  $ 

"  <  $ ) * )  "  D , .  5  3  1 < #  = 

.$ 

(E q u a l l y L i k e l y C a s e s )  $ "       #     4

& ' $ %      $ % =  $ %  "  !  %

 ! , 9

%  ! %  0 ! & ' . % C      0 1 %  $ ' ) !  !  ! J  $ # )  "  !  "  !  D , . ; ' ( # E 

.4 & ' 4 = %  0 1 % % 

(M u t u a l l y E x c l u s i v e E v e n t s )   %           5

.  )    , 9  ' %  %  B  A  )   

" -  & '    < #  =  !   %   &  %  (* ) '

. 

(I n d e p e n d e n t E v e n t s )  $   &        6

   .  9 B -  ! , 9  #   )  B  A  )  

 $ #  $ - &  %  (* ) ' . E O  B -  & ' ) N  : - 

.< @  $ %  ) ?   $ % )  $   $ % ; '       (E x h a u s t i v e E v e n t s )  $   '       7

! , 9  $   & ' $ # 2 3  ... C  B  A 3  < 

.$   +  9 %  .  9 3     5

! , 9  :  $ '  $    4  E  %  (* ) '

1 #   : % @ $ # 2 3  "  D , .  E   % E  < #  =  ; ' 5 , ! ." 1 =  D , .   $ 1 =

:  ! 

 %   &  %  6  5  4  3  2  1



..  9 3     : % @ $ # 2 3 

    

"        (      )   (      &   *   +   &   "  < #   $   3   $  $  < #  1 =

$     3 

:    D

  :  !   .B -  ! @  3 

. J / %   P

. &    P

(T h e o r e t i c a l A p p r o a c h )      



$ )  3   J / %    & ! * !   (C   

F

' < #  3   $ % !  " 

 < 9 $  " 

 $ % .  .3   & ' + & ' !  4 = %  "  !  : 1,  "

       3        8                        

 ! " #      $

11 = $ % !  " 

 3 = $  " 



6

: ,



3/11 = + C  ! 4  ∴

 $ '     $ )  3    4    , 9

. $  " 

 3   & ' + & ' !  4 = %  &  $ % !  "  :2 ,  " 

. " K! 2  Q K9  9 0 #   + C  (4) 5 % . K! , 9

 & ' $ ! 2   )  %   % )   E   2  (D  C  B  A)

: $   "  N 

A C   E   .  .

D  A  C    E   .  .4 D  A  C   E   .  .R

A C   E     .  .

J  $ % !  "  $   . S & %  L  1  : , S = {AB, AC, AD, BC, BD, CD}

  "  3 . A C   E  $  " 

 P ."  6 $ % !  "  $  " 

 =  $ % !  " 

 P(A ) =

3 1 = 6 2

D  A  E  $  "  5 5 % . P(A or D) = P(AUD) =

7

5 6

P4



D , A  E  $   $  5 % . PR P (A , D) = P (A ∩ D) =

1 6

A  E    $  "  3 5 % . P

∴ P (A ) = A  E     & .

3 1 = 6 2

P( A ) 3 

          

*  J / %      & ' " =   4  F

% 9 4#  0

 5 % .

     #    +  (    (

$ %  : #  " , E  SP   %

 !  (* ) '

.    K 4 + 

 & ' 0

* &

*



4%  % #  R 4 + 

 & ' 0



$ %  B -   4

*

"

$ %  B -   4

 $  " 

 )  &  & .  K 4 + 

 % B  

 $ % !  " 

 )  &     % B   4%

 &  %  D , .

 4 ( 4=   : %  Q % % % !  .*  J / %      4=  8

 :% 

1

       #     , "    -    . + 2

, . !  $ % !  "  )  :    2 J / %   '

$   :  $ '   S

E 2  E  %  (* ) ' I   

 % % !  * '    #   R   4  & .  (:  )

4 !    1/4 J  T* )  (*   : % !

 

 U C   : % @ J / %     E   , .

  .$ # )  $ % !  "  D , .

1/2 J  ( ! ,  !   ?   > %  5 , !

"  ( ! , : % ! & .   $  $  "    < # 

+ %  >  & ' . 2   : % @ 5 ,  (< ) %   ! , )  $ % ! 

.3 % M  < #  ! ,  

   . 

D , . )  < #  4# V  *  E W   < 9 $  " ? 2 % % .  .&    .   , . " = 

(E m p i r i c a l A p p r o a c h )         

 !   N " *  J   ! 2 < #  " ! $ #  %  , 9 &  "   

 n1 < #  < 9 !  :  / :  /

 % &  "   

 % &  "   

 n2  :  /

 %

; ' n3 V = 

n1 = !  : #  "  

 $ % N 9

n2 =  : #  "  

 $ % N n3 = V =  : #  "  

 $ % N 1 $ % !  "  )    K  # E  4%  D , . 3

$  - %     4%  D , . "  -  # ! ! N " % ! # ! 

.&  < #  % 10  % 20  % 70 (* )  !  -  $ )   !  3 

:  < #  =   . 

L im

" !  $ #  &  %  ! @ 

N

:  < #  =   . 

L im

" !  $ #  &  %  @ 

N

:  < #  =   . 

L im

" !  $ #  &  %  V = @ 

N

:  /

n1 = 0.70 N → ∞

n2 = 0.20 N → ∞ n3 = 0.10 N → ∞

"  

 !   n $ #  $ - %  , 9 5 , ! r 1/2  # E  - $ %  D , . . = = 

 $ % ; '  r . = n r $ %  "  -  # ! n "  # ! : %  " )   !  V = n " % ! , 9 n

1/2  ( $  - $ %  U =  ( ! n !   %  : %  3  1/2  L im N 10

n1 = 1/ 2 N → ∞

 J 

. %  $ - &  %  =

< #  =   . 

:           

    N                

'  r   !   " #   $ % &      ( )  !    * +    $ m

r

Li

       

          

                 

. K 3    < %  $ ' %  3  .... A3 , A2 , A1 3  " % ! , 9

J N K

D , . 3    ; ' &  Q E @  3   J  3   $  < 9

; ' (  ! ( 3 

 $ #  !    !   (  * +   

!   ,  * +     *   ( )  (1) ! 2  & ' ! 

' %   )  A  B ! , ; '

(1) 

s A

B

P (A  B) = P(A) + P(B) ; '

    )   B -   (C   

P (AU B) = P (A) + P (B)

 11

YJ '

 < #  =   .  % .  &  $  & ' : 3  

3  5  3  1 < #  =  D %  J '

 < #  =  :   ; ' $ ' %  $ ) * )  3  D , . 

P (1  3  5 ) = P (1 ) + P (3 ) + P (5 )

1 1 1 + + 6 6 6

= =

1 2 :4  

Y 2     < #  =   .     % .  &  % 

: 

(2  2)  (1  1) < #  =  D %   2     < #  =  1 %  !  $ ' %  3  & .  (6  6)  ... (3  3)  36 P ( 2    ) = P (1  1)+ P (2  2)+ ... + P (6  6)

1 1 1 + + ... + 36 36 36 6 = 36 =

12

 %                  B, A     P (A) + P(B) = 1

                   B, A     P (A) = P (B) = 1/ 2

A A          A #    $ A    ! "       #   

 

  % &

%          '                    %

              

A) 3  =  ! B  A  )  & ' %   2    % 



B  A  )  B -    1 %  < #  B B -    1 %  < #  A B -  (B 

&  (2) ! 2   U C  !  " -  & '  (2) 

s

A and B

B

A

       

(' C  A 3 #  $  "  B   )  P (A) + P (B) O 

K K!  $ K/ *  4K !  B 3 #  $  "  B    9

$ K  "  C  B 3 #  $  5 #  A 3 #  $  "  > K % K% % ; ' P (B)  P (A) >  $  & ' : % ; ' ,   ( B  A B -  13

= %    P (A  B ) [    ,      P (A  B) : . , .  P (A  B)  < # 

P (A  B )= P (A) + P (B) – P (A  B)



P (AU B) = P (A) + P(B) – P (A ∩ B)

: 5  

 .   " ! 2  Q 9  9 0 #  + C  )  < 9 B  

Q 9  9 0 #   + C  4    D C   A C   E    Y "  N   & ' # )  (D  C  B  A . ) " ! 2  : 

$ % !  "  B   .  & %  L  1 

{AB,

S =

AC, AD, BC, BD, CD}

(AB, AC, AD) & . A  E  $  "  P

(AD, BD, CD) & . D  E  $  "  P (AD) & . ( D  A  E  $  "  P

.(  #  % # =  &  $ %  < #  = % "  >  - 4 P (AU D) = P (A  D) = P (A) + P (D) – P (A ∩ D) = 3 3 1 + − 6 6 6

14

:6  

            

             !         "    

< #  =  )  B 

 < #  =  )  A  F

1 %

: 

"J %

" !  $ %  $    $ - 

40 52 13 52

P (A) = P (B) =

P (A ∩ B) = P (AU B) =

10 52

"  >  % - 

P (A) + P (B) – P (A ∩ B) 40 13 10 + − 52 52 52 43 52

= =

   (   )   *  + ,          - *           

+ . , $  / . , $ $    0  1         2  .

; ' B  A  #   )  %

 ! , 9

P (A ∩ B) = P (A) P (B) 15

: 7  

Y %     R &  %  (3  3) :  < #  =   . 

: 

1 . %   @   &  Q  3 :  < #  =    6

1 . %   & % )   &  Q  3 :  < #  =   5 , !  6 P (A ∩ B) =

P (A) P (B) = 1 1 1 × = 6 6 36

Conditional Probability      

$  M  "    

 , E    " ! 2  +   

- B E W ()  ! , 9 A   3  3    $ '  $   

& I  * 9 2 %    - , E  

  (#  !   (* ) '  3   (= E 2   .  $ '   ! : % ; '   1 #  & '  $ # 

  1 #  & ' * M  . 2  =  - ! , 9 (A 3 ) $ #  J 2  .(B 3 )

<  B 3  B -   2  A 3  B -   ; ' , ! . 

 A 3     P (A/B) =

16

< #  4!  &  2  

.B 3  B - 

:&  )   &  2   1  U C %  : 8  

+ C  "  ! 7  +   "  ! 3 < #  J  0 !

4 < 9 %   , ; ' . 9   D  < #  !   ! : %  %  % %  F

1 % 

$ !  "  ; ' B    +   ! 4 < 9  A    + C  !

:& #  )   #  = % & 

AA

C   ! 

P

+ C  $ % )  +   < @ 

P

+ C  $ % )  + C  < @ 

AB BA

P

   ! 

BB

P

  C 9 !  4   $ % )  ) < @  !  4 H I %  " 

P(A/A) = 6/9

3   4 5    P(A) = 7/10

P(B) = 3/10

A

:&        5   

A P(B/A) = 3/9 P(A/B) = 7/9

B

A

B P(B/B) = 2/9 17

B

  =

:& # ! :  !  4!   ; ' , ! . 

+ C  $ % )  + C  < @  !  !   

!    2  + C  $ % )  !    & '  C  + C  < @  ! 

.+ C  < @ 

P (A ∩ A) =

P (A , A) = P (A) P (A/ A) 7 6 42 × = = 10 9 90

P (A ∩ B) = P (A) P (B/ A) =

7 3 21 . = 10 9 90

P (B ∩ A) = P (B) P (A/ B) =

3 7 21 . = 10 9 90

P (B ∩ B) = P (B) P (B/ B) =

3 2 6 . = 10 9 90

K) 

:&  2  *  &     %  )  , . % O 

. / 

 -

1 $ 2 3 ( )   P (B)  B , A 0   #   

.  B !   * +  . /  A !   . /  

P (A/B) = P

(A ∩ B) P(B)

:       

( )  B !   * +  . /  A !   . /    (  B !      B , A

18

4      ) + 3 

P(A B) 4!   H % %  % % !  D *  &  2    P (A ∩ B) = P (A) P (B/ A) = P (B) P (A/ B) !  3  3 $  & 1 '  )   ) ! @ $ V =  D , . %  % % !   P (A ∩ B ∩ C) = P (A) P (B/ A) P (C/ AB) : 9  

3 : %  "  +   "  ! 3 + C  "  ! 7 < #  J  0 !

Y+ C  # ! !    .  9   "  !

< @  4 & ' + C  ! < #  =  .

& % )  4 & ' + C  ! < #  =  .

3 )  4 & ' + C  ! < #  =  . P (A1 ∩ A2 ∩ A3) =

:  

A1

! 

A2 A3

% #  2   

P (A1) P (A2/ A1) P (A3/ A1A2)

=

=

 7  6 5        10   9   8  210 720

19

: 1 0  

  .  9   4#    $    -  " 

Y  2  ! 

< @  $ -  & ' 10

 < #  =  . $ % )  $ -  & ' 10

 < #  =  .

:  

A

! 

B

P (AB) = P (A) P(B/A) =

4 3 . 52 51

                           !     4  :  " #   5 /      3 & 

' .     7 #  6 #     6   

J  "  4 "  #  D , . )  =  $ %    

:&  )  & ' $ C  $ %    2 @  $    3  : 1 1  

:& # ! R  $ ) * ) %



.  %  2 %   

' $  2  6  I R 

.$ %  3 %   

' $  2  8  II R 

.& %  1 %   

' $  2  4  III R 

20

$ I 2  $   ( 2 : %  4 $ I 2  $    E 

.(    2  !  (P)  . ' .(C  : 

    $  $ I 2  $ #  )  , . & ' . R  $ ) * )    E %

. (B) (    (A) ( %  !     2 E %

( i)

(ii)

  B ' !   &  $ #  D , . $  $ %   2  ) 

: 2 # 

1 /3 1 /3

2 /6 4 /6

I

3 /8

II

1 /3

5 /8 1 /4

III 4 C

3 /4

A B

A B

A B

=  (  $  "     J  3    !

( 2  E  ) II R   E  (* ) ' .  , . & ' B ' !  "  1  3 .     . ( %   3 8

B   ! &    2 < 9 J N  $ ' %  "   $ ) * )  : %  3 

=   J ) 4#   . $ ) * )  "   D , . " 

:(&    2 < # 

21

P

1 4 1 5 1 3 . + . + . 3 6 3 8 3 4 =

1 4 5 3  + +  3 6 8 4

= =

1  49  49  = 3  24  72

(Baye s ' T h e ore m )       

D 1  .$   $  #  "  1  # E    -  % =

%

  % C '  



.   %  4%   

   -  % =    ( I 2  "  :   .@   % =   "  - $   1  D , . !   

&    $ / %  -  E % B %  , .  $ # I  < #  $  ]  < #  + %  F

 1  $ =

.&  2  *  (  .  ! 

"  4 < 9   $ / %  

" #  @   Q  ! 4V  & ' .$    $ %   " #    $ = E 2  :  E * E  9  $ %  $     3   $ ' C 9

E  < #   &  "  .$ ?   3  , . Prio r

& C  * E

& #   <   $   H I % < #  =  -  $ = E 2 

< #   $  "   " *

 < #   "  (* ) ' Pro b a b il it y

 %   .& #  *  $ # )    #  R% M  $ !   - 

J   <  $ !  $ %   " #  + C

< #   4

. Po s t e rio r Pro b a b il it y

22

 % % . , & ' ! - > I 2  @    $  %  (* ) ' :& . F

> I 2  @    ! 

1

^

A2

> I 2  @    ! 

^

^^

^^

^^

^^ ^^

^

^^

^^

^^ ^^

^^

^

^^

^ ^

10

^^

^^

A3

^^

^^ ^^

^^

 '

A1

> I 2  @    ! 

2 3

 1  D , .    ,  $ = E F

^^

^^

^^ ^^

A10

.$ ' %  $ # 2 $   )  "  D , . 

4%  %  . /  D , .  B $ %   " %   " 

, 9

 E  !    -  >  .

 <   , . ; ' P(A4/B)   F

%       % %  9 

' %   # 2  )   ) ! @

.' 

' %   # 2  )  < #  $ / % 

S #  : 2 $ $ #  /

$ P (D)

≠ O

8

 

 9 # -

0   B  A  

!  : 2 ; 2 # $ !   (  D 

P (A/ D) =

P ( A D) P(A D) + P(B D)

P (B/ D) =

P ( B D) P(A D) + P(B D)

S

D B A 23

A

A   B % # C 1  $ %

 & '  % E   0 . 40

: 12  

! , 9

 ,     0. 30 # )  + %  ! , 9  B B %  # C 1 %   - 

 $ I 2  $   % E  , ; ' .B # C 1  ,     0 . 40  A # C 1

YA B %  # C 1  !    . '   " % !   % E  :  

:& . "   F

A B %  C 1 E   

B B %  C 1 E   

C 1  . A B %    2  (*

C 1  . B B %    2  (*

E  !   E  !  

C 1  . A B %    2  D   E  !  

C 1  . B B %    2  D   E  !  

1 % 

P (A) P (B) P (M/A) P (M/B) P (F/A) P (F/B)

:&  ! 2  C  $ % !  "  "  M

P(M /A) = 7 /10

P(A) = 4/10

P(B ) = 6 /10

A

P (A F ) = P (A ) P (F /A ) = F

P(F /A) = 3 /10

P (A M ) = P (A ) P (M /A ) =

P(M /B ) = 6 /10

M

P(F /B ) = 4/10

F

4 3 . 10 10

=

28 100 12 100

=

P (B M ) = P (B ) P (M /B ) = 6 /1 0 . 6 /1 0 = 3 6 /1 0 0

B

24

4 7 . 10 10

P (B F ) = P (B ) P (F /B ) =

6 4 . 10 10 =

24 100

  -  E

P (A/F) =

P (AF) 12/100 = P(AF) + P (BF) 12/100 + 24/100 =

 6

 6

12 36 24 36

12 100 24 100

) , $

1 .0

12 1 = 36 3

:&        "     D , .  !  ) %  % % !  

2   

 6

 6

3 10 4 10

4 10 6 10

 7   

36 100

 $- 

1 .0

 A B

  8 

Repeated Trials     

H I%   < #   =    "    4 

"     (%   (

 $%   $

$ 1 !    , . & ' 0 % 

  !  < #  4    !  &   $1 # E 

.$1 # E   / "      /   0 1 % "  

9 $    6 9    - *  5     2  8  :+6

% % ? ' =

:    /  

%   % !   N  % $  - +   9 %  (* ) 

 ( $!

   =

< #   =  %  '  =

:    / "  

  $1 # E H I% 5 % . ?  /  * %

5 % .  J  ( $! N  =

N P1)  ( $!

1 =  =

1 = )  ...  ( $!    = 25

N)

NP2)

"     ; ' "   0 E  %   $  - %     (* ) ' . $% !  $  N+ 1 $! 1 =

  $!

!

$! 3

$! 4

$! 5



=



=

 





5

=

4

=

2

=

=

:& . $% !  

3

1=

1

"   "  $% !   "     B    J 

    " , $#    !   4    & ' "     D , .  )  4   

.

   & I% ) &     %     E% " )  

B in o m il P r o b a b ilit L a w

                 

:& O  J

% %    , . <  9  =   $ 1 ! U C  

½ =   $  - < #  =    /   

. "   3* )   $  - $    (  >  - 3 < #  =    /     /

½ . ½ . ½ = (½)3

   ! "   0 E   $  -   % >  - 0 E %  , ; '

      < #  .  /   : 1 % " -  & ' & %   %  >  - 3* ) < #  =  

>  - 3* ) < #  =    /

   ! 5  ,  .(½)2 = J    - 

= " -  0 1 % & ' (    -        < #  .  /   (½)3 (½)2 26

  <  @  "  

3* )   & ' =    /

$ % & .

D,.

! 

J  & ' =    /    4  % % % !     -      & ' .  /  >     4    / %   F

V     - J  & ' .  /   >  - 3* )

 /     J          !  4 #         U C  

.

  >  - 3* ) < #  .  /     !  >  - 3* ) J  < #  =  

"   

 4  %   '    E% 4 #        < #   =  #  

>  - 3* )  $   ! !  3   >  - 0 E   % !  !  &   !  3   >  - 0 E   % !  !  &    '  

 4  % J     '

(  =

! D *  D %  J ,       ⊂ 53 J  >  - 3* )  $ '   !

& ' !   " )     J  3* )    '   D , .  $   :  '   !  < #   =  % ' 4        & '  '  

 4 C % 5  ,   $   !

⊂ 53 (½)3 (½)2

 3  B -   % $%   $

= 1 0 (½)5 = 10 32

 $  & ' : %    % '  %  >  % O 

(1-P) : -      (P) 3    , . B -    !  : -   

3   (r ) & ' 3    , . B -    ; '  (n) $

⊂ nr p

r

  D , . % ! 

= ! ( n> r >

(1 -p )n-r

0)

& '  E  ' % ! , !  

   & I% ) &     %        , .   -    =   B -   '  " )       " , $#    "     1

27

2

= $   ! & ' " )

"   0 E  % $  - &  .     %  )  <  9    :( 13) 

 /  $= E  "     ; '    >  - 0 E &  

:& # ! %    , .  E   !  :  

= "   5 =    /   

⊂5 (1 2 )

(1 2 )0 = (1 2 )5 = 321

⊂ 4 (1 2 )

(1 2 )1 = 5 (1 2 )5 = 325

5

5

4

5

= "   4 =    /   

= "   3 =    /   

⊂3 ( 1 2 )

(1 2 )2 = 10 (1 2 )5 = 10 32

⊂ 2 (1 2 )

(1 2 )3 = 10 (1 2 )5 = 10 32

3

5

=    =    /   

2

5

5 1



=    =    /   

(1 2 )1 (1 2 )4 = 5 (1 2 )5 = 325

⊂0 (1 2 ) 5

0

= =    /     

(1 2 )5 = 1 (1 2 )5 = 321

28



   & I% )     5 ! 1  & ' $        & . H I%   D , .  /  * %

(12 + 1 2)5

- n .

 &   !   4    & ' 3    B - "  

 !   8   ; ' $ ' %  $# 2 "   & .  n  ...  2  1  1 =

    , E? 

P(O) + P(1) + P(2) + ... + P(n ) = 1

: 14 

&  %      4    3 $    /  $% !   "     =  

."   3 %  



$% !   "     :

 3 :    /   P    D  / P    D  / P

"   3* ) D  / P

= ( 3 :    /      P



31 0 

125 5   = 216 6 6 0

3

1 2 31  5 1   



=    D  /    P

 1   25  75 = 3    = 6 6  6   36  216

29



31 2 

15 5   =  6   6  216



31 3 

2

1

=   D  /    P

= "   3* ) D  /    P

1 5   = 216 6 6 3

0

$ ' %  $# 2 "     D , . @ 5  ,    = "     B    /  * % 

   & I% )     5 ! 1  & ' $        & . H I%   D , .  /  * % !

1 5  +  6 6

3

  - *     5     2  8  : +  

"   !   4    $  & ' "     %     +    & '

+    , . & '  " )       " , $#    "     & ' J    /   0 1 %

B -     ' V  &   !   4    $  & ' "     0 %  %     E% "     D , .

 )  & '  Q E <  9 $

  3   

. J     

Hypregeometric Low            

:&     )   %    , . U C %  % % ! 

: 15 

: & . #     D    >   $# )  ! N : # E  0 ! % , E  R .

 "  ! %   +   ! n3  +   3 0

! n2  + C  ! n1

$   "  !      !     4  4 #    9   .+   ! r3  +   ! r2  + C  ! r1

"    

 . 

N

⊂R

:

.

    0 !    ! R  E 

, .  n1 K   + C   "  !    + C  ! r1 4   3      $% !   n2 K   +     "  !    +  

! r2 4  

n3 +    "  !    +   ! r3 4  

⊂r

2

n2 r2

 



n3

⊂r

(⊂ )(⊂ )(⊂ )

.

    

.

     , .  1

n2

.

     3     J  n1 r1

n1

⊂r 3

.

     , . 

n3 r3

$   "    

 . , . 

=     ! &   

   

 n1

n2

n3

1

2

3

⊂r ⊂r ⊂r N ⊂R

3K K 

R = r1 + r2 + r3 = n1 + n2 + n3

:       

 @  #    ! n1  %  $# )  ! N : # E  0 ! %

 ! , 9

R 9  %   Z #    ! nz  ...  & % )   #    ! n2 

3 1

#    ! r1 $   "  !      !     ; ' !

: . z #    rz  ...  & % )   #    r2   @  n1

n2

nz

1

2

z

⊂r ⊂r ... ⊂r N ⊂R

J      &     %    <   $V =   D , .  :16 

% 20    $ I2  : %  " , E "   5  4 *  10  ' $-

:   . '

.$       !  

(i

."   < #  J    (ii

:

= $         ! J      %       (i 10

< #  $ 

5

⊂2 ⊂1 = 225 15 455 ⊂3

< #  J    & %  "  

4 *     (  % !     S

10

< #  J       (ii

-%   J  , .   -@  5

⊂0 = 335 = 1 − ⊂3 15 455 ⊂3

"   3* )      $  < #  J       .  5

10

⊂1 ⊂2

+

5

10

5

10

⊂2 ⊂1 + ⊂3 ⊂0 15 ⊂3 3 2

=

335 455

Expectation                 

"     $ / %  

V  & ' S 4 C

 %  F

V   $#  .

& C    > - 

E2 [  %    <  9   P  % C '  , ; '  $     I 

 =  ; ' :   % %  : #   =  J ,   a #   $ - <  9   X   . V   D , .  : #   S

E2   > - <  P.X

4 !      × .      = > - 

E    > -#   % 

& .



E = P.X

i " % !     n   > '      χ a #   ! , 9  , .

= > -#  $     $    ; ' I1     

P.X (1 + i) − n =

P.X

(1 + i) n

: 17 

$-  4   , 9 % % 5 4 *   U  .   4     $  & '

B %    $   $-   " % !  ( $-  52) 4  #      $     Y 4   $ #   ! +   :  ' 4 1

4

J ,       )   . ' "& " :

= "& " $-  4      = U      

.  > -  $ - < #   =    % % !  I   $       , . %  C

, ; '

:    !      )  

E = P.X.

= 1 4 (5) = 1.25

. %

  >   %

J  :    !          J  3 3

:18 

4  :  '  / %   ( .      J  ) & C    > -  a #  !

Y 0. 4 0 4 !      ! , 9 %

100 D - . 4 ! & ' 4

40 × 100 = 40 = & C    > -  100

E = P.X. =

5   > '          )   & ' ! ,   .   $ -  F

:

:19 

1 

= & C    > -#  $     $    ; ' % 3 . 5 I1     !  " % 

E = =

= =

P.X

(1 + i) n 40

(1.035)5

40 1.1876862 3 3 .6 7 8 9 = 3 3 .7

<  9 .   $ - > '  "    &   $   "  , 9 : %  , . < %  

 %

3 3 . 7  %   ! -  *    $ %   " !  2    =    I1  

$!  $ %  I' > -) " !  2   D , .

$# 

; ' " %  0 E  

5   I'  !  %

100 & .  .   $ - a #  > '  $ ' ! !  ( % 3 . 5

." % 

3 4

     

:  V    J ,   a #   & . & C    > -  +  2 $ - " % ! 

& C    > -  ! ' ; ' .   $ - . > - a #  4 !  $    ! & '

$ - > '      ?   " ! 2  , 9     < #   ?   ! ' 0    D , .

$    > '    ,   (  % ?  )  *  ( : #  N   a #  ) .   .

  ?   F

V    & C    > -#  $    

$!   I1   0  < #  & C    > -#  $     $    & .  :2 0 

$! 2   2     & ' S

E2 .

 &   ( %  % 3 . 5   

Y    @   a #  , 9 %

2000 a #  :  > '  ?  "     ? 

    . , E !      - < #  +       $ - 

"   #  $ ! @  E    "     &         & ' "  

&   $         9  8  7  

& .  O  < 

(  .S

: 

& . 

          186 7  ! 

E2 100000 .

 $ / % $ '  $  =     - < #  +       l P = x+n lx

x    %      - < #   - 

 & . 1x

x + n    %      - < #   - 

 & . 1x + n

3 

7 - & ! @        

l 78106 P = 40 = = 0.84314 l 20 92637

3 5

& . & C    > -#  $     $   

P.X

=

0.84314 × 2000 (1.035)

20

(1 + i) n

=

1686.28 = 8 4 7 .4 6 7 1.9897877

< #   % N     2     & ' S

E2  ! < #   , . < %  

%

84 7. 4 6 7 :  -  %   - !  2   ?   $! 2 <  9 > '    

@ 5  ,  .    @   a #  , 9 %

2000 a #  :  > '  ?  .       20  ( %  % 3 . 5    -@   " !  2   D , . . )  $! 2  

(   /   !  %

2000 a #  > '  & 1 !   

 !  : % ; ' $%  .   @   <   ! 2   

            

4  0  < #    "  )    E & ' > -  -    

 )   a    [     5  ,   ) $ -   E #  $        

.H % #  > -  4   $ -   E #  $         B  

> 2     & ' %

1000 a #  )  & ' S

 3  & .

E2

 : 2 1 

%  D - ( )  (     &   $ % =  

 %     !

& '

E  

U    "    :& # !

½ .   J  < #   =         P1

<  @  $%  

2 .   J  < #   =         P1 5

$ % )   $%  

½ . %

( 1050) D -   < #   =       P2

3 6

%

( 1102.5) D -   < #   =       P2 3 . 5

  ' % 5 . $     @  & ' :      I1       % #  , ; '  %  (  % #  : I

Y   )   + 

9    )   + 

 S

E2   , . U = %

9    - , E :

:& # !  %   $# ! 2    )  0

1/ 2

2/ 5 3/ 5

10 0 0 1/ 2

1 05 0

2/ 5 3/ 5

0 1102. 5

0 1102. 5

4   : #   =    > -   E #  $         4    % 5  ,  

:& # ! 5  ,  )   a #   $ -  %  [  % )  "      # E 1. 0 – 10 0 0 2.

1102.5

(1.05) 2

=

− 1000 =

1050 − 1000 = 1.05 1102.5 1050 4 . + − 1000 = (1.05) 2 1.05

3 .

3 7

- 10 0 0 0 0 10 0 0

:& # ! 5  ,  "     4    % 5  ,  

 @      =

1 2 2 . = 2 5 10

& % )       =

1 3 3 . = 2 5 10

3 )       =

1 2 2 . = 2 5 10

>        =

1 5 3 . = 2 3 10

"     $ -   E    # E $         4   % -   

:& # ! 5  ,  > -   E   J  > -  4  % % !  : % '   $#   

1/ 2

0

3/ 5

10 0 0 1/ 2

2/ 5

1 05 0

2/ 5 3/ 5

0

        1000 0

1102.5

     



2/10

200

3/10

0

0

0

2/10

0

1102.5

1000

3/10

300 100

$

 %   100    :   : #   =    > -   E #  > -  $ -   . )   + 

3 8

; S

E2   , . U = % % % % ? ' , 9

        

      

 3  ($-  52) 4#   $   -  " .1 1   4

:$ O  "   4 .$ %)  4  - < @  $- 

@  #   -  !  

.

1   (J % )    ! 2   -  !   .4  16  1   4

 ! 2  0 1 %   -  !   .R

( ' R  !  % E  .    SE 2 @   R  $) * ) %  .2 1   4

3   8

:   . '     ( 

 0 %   E  $) * )   ' @  ! 

.

   # %!  .4

  4  $%!  H I % =  "  0 E  % $ - "  .3  >  - $) * )   $  & ' =

$) * )  /

3 9

. %  !

  .  .4 1   Y  % 8

> C  =

< #  =  , ; '  % $ - &   SE 2

> C : %? ' $! < #  =  , 9   %= )  n $ # D, . SE 2  ! , ; '

 .5

& ' +   " ! 3 * )

.+ C  !  +     !

+ C  !  D, . !     4' . %=   ! 4 1   6

 !  +   " ! 3 * )  % $#)  " ! 5 :   @   ! .6

" ! >   +   " ! 3 * )  % " ! 7 :  & %)  C 

 %  !     . ' 0 !  !  ! " .+ C  (26/35)

Y + C   -@  < #

+   " ! 3 +   " ! 6  + C  " ! 3 < # J  0 ! .7   . '  9   ( I 2  " ! 3 "     (1/10 )

Y    !   %

4  +   " ! 3 + C  " ! 5  % $#)  ! 12 :  0 ! .8 :$ O  "   4 0 !   " ! 3 " +   " !

(21/55)

(27/55)

+   " !  /    

.

+    !  /   .4

(34/55)

 -@  < # +    ! !     .R

(3/11)

   ) !    ! 5 %. 0  : %   .D

(3/44)

    #! " !  !     .

40

$- #  %  $-  10 0

!   '  I 1  $- # % 50 . -  I 

"* 1   & ' >  .9 "= = E   

Y     $-  

! 30  + C  ! 45  % #   $#)  ! 10 0 :  0 ! .10

0 !  < 9 "   % 

 ! " +   ! 25 +  

! " ) 0 !  < 9 "   % 

 $ %) ! " )

< # $ 3 * )  " !   !     .  $) ) (0 . 0 3375)

Y     F

 4  

"  ) ($-  52) 4#   $   $-  " .11 ( 1 / 2)

(1/52)

(10 /169)

:$  "   4 .$ %) $-  "

< @  $-   0 1 %  $ %)  $-  !  

.

< @  $-  0 1 % & . $ %)  $-  !   .4

 0 1 %  -    !    .R

(1/13) =  0 1 % 

 0 1 %  -    !    .

(3/169)

=  0 1 %  -    !    .D

$  "  3  % $ - "  .12

+ ) * )  "   & '    = & ' !

    =

3      .  ( 5 / 8)

3      . ( 1 / 4)

41

.

 .4

3 * )  "  

  < 9 4. , , 9

2 : #  0   E ?     ! , 9 .13 3

. ' . :    4. , , 9 1/6  $#'  4. , , 9 1/4  ( 2  : #  E  , 9  @   [ =

& ' : #  E ?     (13/36) Y $ I 2  $  

 % 8  $   % 5 < # J   @   - %=

%  ! , 9 .14

  . ' .$ # 11 $   % 6 < # J  & %)  $ # Y (   - %=    ( I 2  4  % !  (0 . 36878)

4  #   1   $    : #I   E  & . $  !  .15

4 ) $  D,   & %  L  1  4!  .    # 0 %  ( 1 / 4)

(5/16)

(15/16)

:$  "  

 "% $#I  %

 %  ) !  $#I  %

) ! @  < # "% 3 $#I  %

.

.4 .R

   ! , ; ' B , A  = -% < 9 + % "! 2 Q 9 "   .16

$= -% < #  =     0 . 6 . A $= -% < #  = 

. ' 0 . 1 . (  = -% < #  =     0 . 3 . B (0 . 8)

: 

B $= -%  A $= -% < # $! 2   =   P 42

P ( AB) =

1 5

3  S & %  L  1  & '  )  B , A B .17 P (B/A) =

3 2  ,  5 5

1 2

P (A/B) =

1 3

P (B) , P (A) KK 

 M2  M1 "%!  "%! , 9 $ I   !  U =  > %=   & ' .18 R%M  B    0 . 40  0 . 30  0 . 30 4   < # > %=  M3

4   < # 3 * )  "% !  R%9  $I  2  3  1 ! , 9 

: %   @   R%9  ( I 2  =  4 .4  R%9 .

Y M1 $% !  > %=

 [ =  , . !    . ' 4 

. (8/20  9/20  3/20 ) Y M3 > %=

 Y M2 > %=



9   ($-  52) 4#   $   "-  5 % , 9 .19    $-  < # $E   @  D, . +    . '  .(3243/10 829) Y 4 2 =

2 $% !  $'   "   > %=  R%9  % 60 H % 1 $% !  .20

R%9  % 2 %  4  1 $% !  R%9  % 5 .& - H % & ' "%=

- $  $   !     . ' .4  2 $% !  (30 /38)

43

Y 1 $% ! 

                 

i) ii) ii)

.1

26 26 1 . = 52 52 4 13 13 1 . = 52 52 16

 13 13   13 13   13 13   13 13  1 . + . . . =  +    +  52 52   52 52   52 52   52 52  4

  & ' ! & .   23 = . $%!  " 

 .2

  3 J    0 %

 $) * )  < #  =    .+ % 3 

K  K

1 1 1 + = 8 8 4

(1 / 2 . 1 / 2 . 1 / 2) + (1 / 2 . 1 / 2 . 1 / 2) =

44

 1 4

(i

 















 







 

 

   # < #  =    (ii 3 8

=

     

C2 3

8

45

=

=

3 = 8

  



25 = 32

5

C5 5 C4 5 C3 5 C2 5 C1 5 C0

÷ 32 = 1/32

$%!  "  .3

= $!  "  = =  " 

÷ 32 = 5/32 ÷ 32 = 10/32 ÷ 32 = 10/32 ÷ 32 = 5/32 ÷ 32 = 1/32

p ( S S S)

=

1 1 1 1 . . .= 2 2 2 8

.4

$   ! >  " ! 3 > C : %@ 3n = $#  $ % " ! 

 .5 1/2 = $! < #  =    = =

< #  =   

" 

 = +   " ! 3  ' > C &  " 

 ∴ n J   + C  !       !  ' > C &  2 n n ×1= 2 2

= + C  " ! 

 ∴ = +   " ! 



n n 5n ×3 + × 2 = 2 2 2

46

           

= + C  $ !  !     n ÷ 3n 2 n 1 1 = × = 2 3n 6 =

:& .  =  $%!  "  .6 +  

+ C 

+ C 

+  

+  

+  

+ C 

+ C 

 !  !     S-%  = + C   -@  < # D ! !    

.  

9 26 3 3 1−  .  = 1= 5 7 35 35  

      

+   $ %)  + C  < @    = + C   -@  < # D ! !     + C  $ %)  +   < @  

+ C  $ %)  + C  < @  

2 3 3 4 2 4 = .  +  .  +  .  5 7 5 7 5 7 26 = 35

47

 + C  " ! 3 * )  !     = 4#     .7 +   3 * )   +   3 * ) 

2 1 6 5 4 3 2 1 1 3 P = . . +  . . . .  + =  12 11 10   12 11 10   12 11 10  10 ‫أو‬

=

C3 3

+

C3 12 C3 6

12

C3 i)

P

+

C3 3

$%!  "  .8 = 220 9

C3

(           ) =

P (+    ! )

= =

iii)

P (+    -@  < #  ! ) = =

48

3

12

C3

C0

84 21 = 220 55

=

ii)

1 10

=

3

C1

9

12

C3

C2

27 55

3

9

C1 C2 + C2 C1 + C3 C0 12 12 12 C3 C3 C3 3

34 55

9

3

9



= 1 -P (+   !  /  ) 21 55

= 1 34 55

=

iv)

5

P (# 0 1 %   #! " ! ) =

C3

P (# 0 1 %    !    ) =

 I   $ - × =

=

1 100

4

3

C3 + C3 12 C3

3 44

=

v)

+

×

5

4

3

C1 . C1 . C1 12 C3

=

   = 

3 11 .9

50

1 2

. %  = % !  4   



.  $-   ∴ 4#     .10

P =

45 25 30 . . 100 100 100

= 0. 0337 5 49

< @  $-  & ' # < #  =    0 1 %

(i

1 = < @  $-    0 1 % 52

(ii

    '  % 5 %. @

1 /2 =

 -  !     = 4#     

10

.11

...  2  1

4   4 4   4 =  . . +  + ...  52 52   52 52  4   4 = 10  .   52 52  10 = 3 13 10 = 169 4  1  4 = 13  .  =  52 52  13

8 $%!  " 



                S =      

(iii .i .12

5 $  " 



5 = 4#     ∴ 8

5 0

P =

2 8

=

1 4

.ii

(1/3) = $) * )  "  E     !   .13

$#'  4. ,   E ?   ( 2  4. ,    . 4#     P ( E ? )

E ?   :    4. ,   E ?  

1 2  3 3

11 3 4

1  3

1 6

=    +    +     13    36 

= 

1 5 × 2 13

1/2 =  %=

J   E    .14

= 4   @   %=   4 - !   

1 6 × = 4  & %)   %=   4 - !    2 17

P (4 ) =   

1 5  1 6  +    2   13   2   17 

= 0. 36 8 7 8

i)

P (  "%)

=

ii)

P ( %  ) ! )

=

iii)

4

C1 16

4

C3

P ( ) ! @  < # "% 3 * ) ) =

1−

=

15 16

  & I %) %-    

.15

S = 24 = 1 6

+

16

4

C4

C44 16

4

4

4

4

C0 + C1 + C2 + C3

=

16

5 1

P (A  B)

.16

= P(A) + P(B) - P(AB) = 0. 6 + 0. 3 – 0. 1 = 0. 8

.17 P(AB)

= P(A) P(B/A) = P(B) P(A/B)



P(A)

=

P(AB) 1 / 5 2 = = P(B / A ) 1 / 2 5

P(B)

=

P(AB) 1 / 5 3 = = P(A / B) 1 / 3 5

!  .18

M1 > %= M2 > %= M3 > %=

  [ =  !    = P(D)

 [ =  !    = P(M1)  [ =  !    = P(M2)  [ =  !    = P(M3) $ O  "   &   $?  "% 

P(M1) = 0. 3

P(D/M1) = 0. 01

P(M2) = 0. 3

P(D/M2) = 0. 03

P(M3) = 0. 4

P(D/M3) = 0. 02 5 2

$  "   4% O  % P(M1D) = P(M1) P(D/M1) = (0. 3) (0. 01 ) = 0. 003 P(M2D) = P(M2) P(D/M2) = (0. 3) (0. 03) = 0. 009 P(M3D) = P(M3) P(D/M3) = (0. 4) (0. 02) = 0. 008

. %   # )  !  (  "   D, .

  $ / %  E 

P ( M1 / D ) =

=

P( M 2 / D) =

P(M1D) P ( M 1D ) + P ( M 2 D ) + P ( M 3 D )

0.003 3 = 0.003 + 0.009 + 0.008 20 P (N 2 D) P (M1D) + P (M 2 D) + P(M 3D)

=

0.009 9 = 0.020 20

P ( M 3 / D) =

0.008 8 = 0.020 20

5 3

:&     $  "   S E # !         

       

        

      



9 /2 0

0 .0 0 9

0 .0 3

0 .3 0

M2

3 /2 0 8 /2 0

1.00

0 .0 0 3

0 .0 1

0 .0 0 8

0 .0 2

0.02 0

0 .3 0

M1

0 .4 0

M3

1.00



Q     %   E  .19 P (  4 2 ) =

=

4 1

c c 52 c5

4 48 4

3243 10829

& '  C    #E  3  , . B - $ ' % "  0 E 5 %.  

 '  / &  < @  $ , E ? %  4 2  $-  4 4  

=    ! $ D, . & ' 4    4 2 

4 48 47 46 45 4243 × × × × = 52 51 50 49 48 54145

. 4#     ' $#)  0 E  "   3  3243 = 54145 3243 = 10829



5 4

.20 P( D / M1) = 0 . 0 5 P( M) = 0 . 6

M1

P( M2) = 0 . 4

M2

D

P(M1D) = P(M1) P(D / M1)

= 0.60 × 0.05 = 0.03

N

P( D / M2) = 0 . 0 2

D

P(M 2D) = P(M 2 ) P(D / M2 )

= 0.40 × 0.02 = 0.008

N

P(M1 / D) =

P( M1D) P( M1D) + P( M 2 D) 2

0.03 0.03 + 0.008 0.03 30 = = 0.038 38 = 0.789 5 =

5 5

  

5 6

  

                      RANDOM

V ARI AB L E S AND P ROB AB I L I T Y DI S T RI B U T I ONS

&    %   .   ,   )  4          = 1   & ' %   

H I  %      c   ... 4  #         $ -  4     D ! 4      %   $   -

%   $   & '  ! " % ! $  -  $ I   2  4     #    =     !  &   

"  V     <   .  4  #      $ #     $   -  "  !   & '  ! $   %   .$ I   2   

        

                              (* =    

DISCRETE        !    !  & I   2    V    

CO N TIN O U N S :    

$   =    @   -   $  - , E ? J ,  & I 2   V    .

...  3  2  1  ) 

: >    V   < # $ #) 

  D    : %  !  $ I =  9 $ %  & '  @   '  

P

c   ... "      " ! 2 Q  M  2   & ' :      "      

P

    Q     * E & C   1  $ #       . @  

57

P

:    

 )    Q   E  $  - J  , E ? J ,  & I 2   V    .

.$                       0  

: =     V     < #  $ # )  

.    @  "   N  Q  M 4 #      $  2   "     

P

.0     Q  9 & ' & I        @   =   4 *      

P

. $     $ #    

.c   ... E @  $ %     * E &   !    1 % #              )  D i s c r et e

P

P

                    P r o b a b ility D is tr ib u tio n s

 ! "       $ % !     H I  %    )  %   % % !  : % ; ' % D .  %   , 9   

   

:&          % 

1

2

1 /6

3

1 /6

4

1 /6

1 /6

5

6

1 /6

1/ 6

% % !  : % ' .    &   B          % !  % &  .  %   , 9 

:&          %   !       $ % !     H I  %    )  %  

             

2

3

4

5

6

7

8

9

1 0

1 1

1 2

1 36

2 36

3 36

4 36

5 36

6 36

5 36

4 36

3 36

2 36

1 36

58

"       

& I  2  V    -   C  J ,     , .

:  ; '  , ! .   >       & I   2    V   #  &       >      <     / %   

   !     " #    #           $  % &   % '   (  ' )       #   *   +     % " #       . ,    -  .

      $  %     ,   -     # 

Pr o b a b i l y De n s i t y Fu n c t i o n (P.D.F.)

      

$ 1 #  E   - , E ? X >     V   %   !  , 9

xn ... x3 , x2 , x1 ,

:     <          , .

 ;'

i = 1, 2 ...n 3 



P (X=xi)    

. f(xi)                $ ' ) !   $      

  x             $   0  1 -  + ( 2 0  -  

 *  -       (      * x  ! ( !    $ 

  3 #  ( *    f(x) &     , &   i) f (x) ≥ 0

P(X=xi ) :  

n

ii) ∑ f ( x i ) = 1 i =1

:&      ! 2   X >       V   #        $ ' ) ! :   , E ?   X = x

x1

x2 … … … … ..xn

f (x) = P (X= x)

f(x1)

f(x2) … … … ..f(xn)

59

: 1    

  =    "     .  X >       & I   2    V     %   !  , 9 5 5  K =

5 5 K =

K =

K =

}=

& %    L  1     $ % !     "    

2  1  0 & . X  $ %!        ,

f ( x ) = P (X = x)

f (0) = P (X = 0) = 1/4 f (1) = P (X = 1) = 1/2 f (2) = P(X = 2) = 1/4

:& #  !  . $ % !     X    &       >        !  X =

0

x

f (x) = P (X= x)

1

1 /4

2

1 /2

1 /4

:& #  !  %        , .    !  

1



{

:  ; '    $  % $   - &  %  $   !   :  < # 

3/ 4 1/ 2 1/ 4 0 1

2

   

6 0

X

   

P r o b a b ility D is tr ib u tio n

   $    & I   2    V     , E         '    %  4  V   & ' % % ! 

     -  $    X V     , E       (C     %  %  $ % !     $  -  

&       >      :    .   % $     D , .  $ % !     $  -    $  - Q   

. X V  #

X ( !      $    X             $  % &    + (  -  F(x) &     , &   F (x) = P(X ≤ x) =

P(X ≤ x)



xi ≤ x

(   *

 * x   5  *

f ( xi)

C o n t i n u o u s P r o b a b i l i t y          D is tr ib u tio n s

: % ?   =   & I   2  V    &       >        %   (C  % % ! 

        =     V      ,   $ 1 #  E        %    J ,   $  I          .    D , .   $  -  !  S

%   0 !  ! : %           !  d   $ ! % !  $  W %    F

E  

: 2   

1%

      #  E $ ! % !            & '  # E     !             

&           =   & I   2  V   % . 0 !      '  E W <  9 0 !  

: $     D ,   D +  #   0 ! 100    &  

6 1

     

! "  # $   % & X 0 .9 0 .9 0 .9 1.0 1.0 1.0

(    )

0

1 7 25 32 30 5 1 0 0

5 9

    f (x)

0

1 5

0 .0 1 0 .0 7 0 .25 0 .32 0 .30 0 .0 5 1 .0 0

 [         I   2  0 !   E       $  -   %   %   # '

& I   2    V      ,   $ % !           ' 1. 05  0. 9 5   %     - J   

 =     V     $   & ' $ # ! 2    H   %   % % !   5  ,   .      ! 

$         1   '  

 ! < #

.>       V     :  

& '      .  !

.$ # =     $ I   2    "  V     :   & ' "           % % !    =   E 

 ! 2   & '  ! a ≤ x ≤ b J  (a.b) Q    & ' >  (* =    V   X  ! 

&    

f (x ) p (c ≤ x ≤ d )

a

c

d

6 2

b

x

  (a, d ) Q    & ' x  =     & I   2    V     >          ' & ' @     

:& #  ! &    P(c ≤ X ≤ d)     : 

f(x) $        =     $      =

.  ! 2   & ' $ # # /    $      J  x = d

P(c ≤ x ≤ d)

, x =c K    

:  !  , 9 X  =     V   #        $ ' ) ! $   f(x)   ! 

i)

:    f(x)

f(x) ≥ 0

∫ f (x) d x = 1

ii)

1 =

R



b a





< %  %    "   $        !

f (x) d x = 1 (a ≤ × ≤ b ) f (x) d x = 1 ( − ∞ ≤ × ≤ ∞ )

−∞

                      

P( x ≤ a)

J  a J        -  X  ?        & .

 , ! .  F (x)    

F( x ) = P ( x ≤ a) = ∫ f (x) dx a

-∞

6 3

:&      ! 2   & '  ! & . 

f(x) f(x) F(a)

−∞

f(x)

X

x= a

:3 

J   ( a, b) Q    & ' X >         

b

P(a ≤ x ≤ b) = ∫ f ( x )dx a

=

b



f ( x )dx −

−∞

a



-∞

f ( x ) dx

= f (b) - f (a) :  K    

f(x)

F(b )-F(a)

−∞

f(x)



a

b

6 4

x



    & . :      :   & I   2  V   f (x) = c

(5x )

x  "  ) c  !  , 9 P1

x=0 , 1, … , 5

c "  )   $  - K K

 ?'

" % !   $ %  & '    3      )  & I   2  V   X  !  , 9 P2 : $      =   < #  & . X       :    "  ) C

X=x

0

f ( x) = P ( X=x)

C

1

2

3

4

2C 3C 4C 1.5C

5 0 .5C

C        :

i) ii) iii)

P (x< 3)

:  :  

P (0 < x ≤ 4 )

P (0 < x < 2 )

X                   : 

6 5

" % !  $   !   :  < #    =      <   $  % $   - "     , 9 P3

  <    %   $   -   "    &    "       )  & I   2  V   X . X V          :     .$   !   :  < #    =   

10   $       ( "  !   )      :  2      E   P4

 ? '  E     2    -  )  X & I   2    V      !  , ; ' :  2  . X K        :  

:      $ ' ) ! & I   2  V   X  !  , 9 P5 f(x) =

i) ii) iii) iv )

1 2

0 ≤ x ≤ 2 

P ( 0 .5 < x < 1.5 )

: K K

 

P ( x > 0 .25 )

P ( x < 0 .75)

P (x>3)

f ( x) =

2−x 2

0 < x < 2

6 6

" % !  , 9 P6

: K K

P ( 0 .5 < x < 1 )

i)

 

P ( x > 1.5 )

ii)

P ( x < 0 .3)

iii)

P ( 0 < x < 2)

iv )

      !  , 9  $ # I   $   E     !    $  1 2   " %        & ' P7 . 0. 6  . $   =

:   2 '     - $   =

:    N 

J  < #

 %      4  

"   9  #  4 &    $ # I  @    %   

. x     $   M  & '

. &       x >       4     %   , 9

K K

 

4  3  2 & .  -  $ ) * ) : #  4   P8

% C '  , 9  $ ) * )    - @    < #    ! & ' 2 N    2 N 3  

H  %     $ % !     H I  %   =   .   %     -   B     )   x   .&       x >   

  

1  . + =  M       & ' 4     U 4

=   .  

%         !  , 9 P9

%     )   x  ?  % C '  , 9 .4 *  $ ) * )     * 

. x K  &       >      H  %     $ % !     H I  %  

6 7

       P1

∑ f (x) = 1

a11x



∑ C ( x5 ) = 1 C ∑ ( x5 ) = 1

C ( 1 + 5 + 10 + 10 + 5 + 1 ) = 1 C = 1/32

∑ f (x) = 1

: P2

a11x

i)



C + 2C + 3C + 4C + 1.5C + 0 .5C = 1



C = 1/ 12

P (x< 3) = P (x=0 ) + P (x =1) + P (x = 2) = C + 2C + 3C =6 C = 6 (1/ 12) = 1/ 2

ii)

P (0 < X ≤ 4) = P (X=1) + P (X=2) + P (X=3) +

P (X = 4) = 2C + 3C + 4C + 1.5C 6 8

:  

= 10 .5. C = 10 .5 (1/ 12) = 10 .5/ 12

 

= 1 – [ (P (X=0 ) + P (X=5)] = 1 – (C + 0 .5 C) = 10 .5 C = 10 .5 12

iii)

P (0 < X <2) = P (X =1) =2C = 2/ 12 = 1/ 6 x               :   F(x) = P (X ≤ x) F(0 ) = P (X ≤ 0 )

= 1/ 12

F(1) = P (X ≤ 1)

= 3/ 12

F(2) = P (X ≤ 2)

= 6 / 12

F(3) = P (X ≤ 3)

= 10 / 12

F(4) = P (X ≤ 4)

= 23/ 24

F(5) = P (X ≤ 5)

=

6 9

1

P3 f(x) = (1/ 2)x x= 1, 2, …

X=x f ( x) = P ( X=x)

1

2

3… … …

… .10

1/ 10

1/ 10

1/ 10 … …

… .. 1/ 10

f(x) = 1/ 10

i)

P4

x = 1, 2, …

P (0 .5 < x < 1.5) =



1.5.

1 / 2 dx

0.5

=

x 2

1.5 0.5

=½ ii)

P (x > 0 .25) =



2

1 / 2 dx

0.25

= 7/ 8 iii)

P ( x < 0 .75) =



0.75

1 / 2 dx

0.5

= 3/ 8

70

, 10

P5

iv )



P (x > 3) =

∞ 3

=0

0 ≤x ≤ 2   1

i) P (0 5 < x < 1)

=

=

=

1 / 2 dx



2−x dx 2



1-



x 0 dx -

0.5 1 0.5 1

x dx 2

0.5

= x

1 0.5

= 1/ 2 -

= =

iii) P (x < 0 .3) =



0 .3 0



0.5.

-

x2 1 4 0.5

3 5 = 16 16



2

ii) P (x > 1.5)

1

2−x dx 2 1.5

1 16

2−x dx 2

= 0 .2775

71

x dx 2

P6



2

iv ) P (0 < x <2) =

0

2−x dx 2

= 1

x

0

p(x)

0.4

P7

1

2

( 0.6 )

( 0.6 )

1

( 0.4)

3 ( 0.6 )

2

( 0.4)

( 0.4)

4 3

( 0.6 )

5 ( 0.6 )

4

5

( 0.4)

P8 x p(x)

4 1 9

5 2 9

6 3 9

7 2 9

8 1 9 P9

P (x) = Cnx p P (0 ) =

27 64

P (3) =

1 64

x

q

n-x

, P (1) =

72

27 64

, P (2) =

9 64

  

73

  

             "1 =

 %  ( "   ) "# F    !

 .    F  C  : I =    "    %   &I =  M  >   0     .   >  # > C    !    .    : "# D , .

.  V      *  0     .    2  %   : "# D , . $     %  % &#  ' 

Expectation   

     ' f(x) :    $ ' ) ! &I  2  V   x ! , 9

∫ x f(x) dx



-∞

< #   : % ! (     ! : %  ) ( )  !     , .  . > -   

f(x)      $ ' ) ! $   % C   &  " ) 

J   $   D , . &' > -    U =    x V   ! , 9 



all x

x P(x)

x V  # $     $   P(x) 3 

$ C  $ # < 9 2 E    3 

E(X)    x > -      % 

:  %  C  x V   < # Q  $ % 

74

E (x) =

∫xf



(x) dx = µ

-∞

=

 

∑ xP(x)



all x

.(     * =   x V    ! 4  

    E    &    >    # &      E(x) > -    <  ! . x V  # $ -    $      # 4 V  &' (  ) µ & M 

: 2   %  ( (* )  >    V   $  &' ) > -    $ V =

 /  * 

4     > -    ( i =  0  1 , 2) xi 1 %  %  $  # P(x) (%   

.     :  % &.    @  D , .   )  ! 

&. ( ϕ (x) (* )    % ) x &' $  J  ' ( I  2  ( V   x ! , 9

:J   : -    &I  2  V   Q E @ 

∑ ϕ (x) P(x)

E [ ϕ (x)] =

=

all x

∫ϕ

Range x

(x) f(x) dx

. (* =     (   x  ! 4   , K K E ?%

ϕ (x) = x r

E (xr) =

75

∑ xr

all x

P (x)

 K K !

=

∫x

r

Rx

f (x) dx

  % 

r = 1 E (X) = =

∑x

all x

 K K !

P (x) = µ

∫ x f (x) dx

Rx



: 1    

&C   > -     . ' $    "  3 * ) $ %   % $ - "  

Y"  = "   / "  



:&     &' / %  "     &%  L  1   ) %  % % !

     1 /8

     

   

S

S

S

5 S

3

1 /8

5 S

2

1 /8

2

1 /8

5 5 5

0

1 /8

S

5 5

S

S

1

1 /8

1

1 /8

2

76

S

5 5 S

1

1 /8

S

5 S

5

5

B X "    %  D  =

:  < #   =   "    ) 

V  #      :  "  3 * )  %  : - X :&     &' D  X=x

0 1 8

f ( x) = P ( X = x) 3



E(X) =

i=0

2

3 8

3 8

3 1 8

Xi P (xi)

1 8

=

1

3 8

3 8

1 8

0 ( ) + 1 ( ) + 2( ) + 3( ) 3 2

=

&%           &' $ %  $     $    ) %  % % ! 

:& 

f ( x ) = P ( X= x ) 3/8 2/8

• • • 0 1

2

77

3

X

  

S

P r o p e r t i e s o f E xp e c t e d V al u e

> -       %  E : %  $ C  $ # < 9 2    

 E     , .        ,   &  &I =  M  V   < # J        !  E (ax) =

aE (X)

∑ ax P(x)

E (ax) =

:$  

x   a    

:K K K . 

all x

a ∑ X P(x)

=

all x

=

 

a E (X)

∫ a xf (x) dx



E (ax) =

-∞

=

a

∫ f (x) dx



-∞

=

a E (x)

! , 9 a  ") X ; ' &I  2  V   E (a) = a

78

    

E (a) =

∑ aP(x)

all x

= a =

=

: K K K . 

∑ P (x)

a (1)

a

E (ax+ b ) = a E (x) + b

:$K K K

 %

: K K K . 

E(ax+ b ) = E (ax) + E(b ) = a E (x) + b : 2    

E(2x + 3) = 2 E(x) + 3 # "  $ % E [ E(x)] = E (x)

# "  # "  :K K K . 

")  J   ")  > -     % !, ! $  ) $  - > -      .> -    J   > -    > -   , 

' E(z) = z

> -   < 9 %    #' E(x) $  )  $    z

 %  E[ E(x)] = E (x) 79

&4E [ ( X - E ( x) ] = 0 E [ (x – E (x) =

: K K K . 

E (x) - E(E (x)]

= E (x) - E (x) = 0 :        

Y  X 

E ( X ± Y) = E ( x ) ± E ( Y)

   

: 1 

                           

E (X ± Y)

∫∫



=

:K K . 

(x ± y) f(x.y) d xdy

−∞

= = = =

∫ ∫ x f (x, y) dxdy ± ∫ ∫ y f (x, y) dxdy ∫ x [ ∫ f(x, y)dy]dx ± ∫ y [∫ f (x, y) dx]dy ∫ x f(x) dx ± ∫ y f(y) dy E(X) ± E(y )

:  ! "          

Y, X 

E ( XY) = E ( X) E ( Y) E(X Y)

=

∫ ∫ X Y f (x, y) d x d y 8 0

: 2  : K K K . 

∫ ∫ xy f (x) f(y) d x d y … … ∫ x f (x) d x ∫ y f (y) d y

= =

=

. *  

E (X) E (Y) : 3    

:&. :     :    I  2   V   X ! , 9 f(x) = 2x

0≤X≤1

E(x+ 1)2 E(x)

E(x2)

∫x

f (x) dx

∫x

(2x) dx

1

=

0

1

=

0

∫ 2x 1

=

2

dx

0

= = =

2

x3 3

2

1 -0 3

1 0

2 3

8 1

 

K   K ! K K E (x)

 ?' :   

∫x 1

E(x ) = 2

2

0



1

=

0

f (x) dx

x 3 (2x) dx

∫ 2x 1

=

3

dx

0

=

2

x4 4

1 0

1 2

=

E [ x2 + 2 × + 1]

E (x + 1)2 =

E(x2) + 2 E (x) + 1 = =

½ + 2 (2/ 3) + 1 = =

½ + 4 /3+ 1 17 6

Variance & Standard Deviation      " K 2  # 0

K   &K . J K    K  %    K     %

" K 2  # 0

 ! O   2 - % %  % % ! J  ! >       (D is p e r s io n ) . &I  2  V   &    >    #

K V   &K    > K     ( &K         ) : -    $    

K  $   " # %   &    >      !  < # %    &I  2  8 2

  % !  ) !  $   +  9 &'     , 9  Q  &'   

: K    &I  2  V    - " 2    2  %  Q   " # J  % 

0

K   K    K   ( 2 0

  ) ! < 9 % .   %   .Q E  < 9 .J      %      &.  &I  2  V  # &    >     " 2 

$ K   0 1 % K   0  &I  2  V   &    >       

>       % O  % %   .     1  J  !  >     $  &' :   -

K  "'   %   >        9    $ -    $        "'   %  .J  !  >       $ % # &     

   -

            X      

     X  !       !  "   " #   $ % & µ E ( x ) =

 '     % ( X   2

σx

2

σx

= V a r (x ) =

) V a r ( x ) 

∑ (x − µ) 2 p (x)

all x

∫ (x − µ)



=

-∞

2

f (x) dx

+, -  )  #    $ *  = E [ ( x -u ) 2]

= E [ x - E ( x ) ]2

8 3

X

. -       "'   %  >   > -      .     J 

 -  /  * % X K  $      &.    4   &' $ #E   X , !. 

 - 0 1 %  " 2   0      ' X < #  =  % &! $      % 9   - 0 1 %  " 2  # 0   X   .    # 4

  &    ,  % % % ? '

.J      %   < 

     

-

     X   % .      * . X   /    σ x :   σx

=

σ 2x =

E (x - µ ) 2

J K     %      4     < 9   4 *  U = % % .+ 

 , . &'  - &C   - J  !  >    # : 4 

B  "  K  3 * )  % :  - +  9 .  (1) ) <9 x & K .

$ K  & K   &     . =

:   / "    & I  2  V  

V  #      x      ! 4   $ 1 !  σ 2x J K     %   

σx .

8 4

X = x

f ( x) = P ( X=x)

Xf ( x)

1

3/ 8

3/ 8

( 1-3/ 2) 2 = 1/ 4

1/ 8

3/ 8

( 3-3/ 2) = 9 / 4

0 2

1/ 8

0

3

3/ 8

6 /8 E (x ) 12 3 = 8 2

( x-E ( x) )

[ x-E ( x) ] 2 f ( x)

2

( 0-3/ 2) 2 = 9 / 4

9 / 32 3/ 32

( 2-3/ 2) = 1/ 4

3/ 32

2

9 / 32

2

σ 2x =

  

σ 2x =

J      %   σ x = =      E

(x) =

µ            

3 4

24 3 = 32 4

 ?' , ! . 

3 4 3 2

X  : 

  V a r (x) = σ 2X

σ2

=

E (x2) - [ E (x)] =

σ2

2

E (x2) - µ 2

:  K K K . 

= E [(x - E (x)]2

= E [(x2 – 2xE(x) + {E( x )}2 ] = E (x2) – 2 {E( x)}2 + {E( x )}2

= E (x2) - [E ( x )]2

85

: 5 

 K

  K ' "   3  % :  - &  .     ) <9 

$ / %    E    x K  J      %       4   :   &   &  

$   

[ σ 2 = E (x2) - µ 2

X = x

f(x)

xf(x)

x2f (x)

0

1/ 8

0

(0)2 = (1/ 8 ) = 0

1

3/ 8

3/ 8

(1)2 (3/ 8 ) = 3/ 8

2

3/ 8

6 /8

(2)2 (3/ 8 ) = 12/ 8

3

1/ 8

1/ 8

(3)2 (1/ 8 )= 9 / 8 24 E(x2) = =3 8

E(x) =

σ2

3 2

J      '  , ! . 

= E(x2) - [E (x)]2 3 = 3 - ( )2 2 3 = 2

=   #  4

 &     ,  J  J      %    σ=

86

3 3 = 4 2

Properties of Variance    

J @    4   % #     S

 E  D , .    #  S

:& . S

 E D  5 % .

 E   .   X & I  2  V   & ' : 

            X     a  V ar (ax) = a2 V ar (x)

(1

:  K K K . 

V ar (ax) = E [ax – E (ax)]2 = E [ax – a E (x)]2 = a2E [x –E (x)]2 = a2v ar (x) : 6 

:$   "  V     . ' 0 . 5 J  x    !  , 9 2X X 2 i)

V ar (2x) = 4 V ar (x) = 4 (0. 5 ) = 2

87

(i

(ii

:  

ii)

X 1 V ar (x) V ar ( ) = 2 4 1 (0. 5 ) = 4 = 0. 125  

         

 ' " ) a  !  , 9

V ar (a) = 0

(2

:  K K K . 

V ar (a) = E [a –E (a)]2 = E (a – a)2 = E (02) = 0 a) = V ar (x) ± V ar (x

:$K K K

%

:  K K K . 

V ar (a) ± a) = V ar (x) ± V ar (x 0 ± = V ar (x) = V ar (x)

K V      <9 :  ) $  - J  [   $  - J  $ ' C 9  '  , ! . 

. V    ,      <#  )N   & I  2  88

:   !   . ' 5 J  x V      !  , 9 : 7  i)

x+3

ii)

x–6

i)

V ar (x + 3) = V ar (x) = 5

ii)

V ar (x – 6 ) = V ar (x) = 5

:  

:   " #               Y ! X  (3 V ar (x+Y) = V ar (X) + V ar (Y) V ar (x - y) = V ar (x) + V ar (y)

B   J   %   1    #      I  2   V   B       J  . % 

:  K K K .  V ar (X ± Y) = E [(X ± Y) – E (X ± Y)]2 = E [ {X − E ( x )} ± {Y - E(y)}]2 = E [ {X − E ( x )}2 + {Y - E(y)}2 ± 2{X − E ( x )}{Y − E( y )}] = E {X − E ( x )}2 + E{Y - E(y)}2 ± 2E [{X − E ( x )}{Y − E ( y )}] = V ar ( x ) + Var (Y) ± 2E [{X − E( x )}{Y − E( Y)}]

89

 #      )      1 =

J  E @     ?  " )%   % # '  , ! .  (   E     !

= 2 [ E {x − E( x )} E{Y - E(y)}] = 2 [(0) (0)] = 0

∴ V ar (X ± Y) = V ar (x) + V ar (Y) J  : #     "  V       

 J  <#  D    D , .    !   : 

V ar (x1 ± x2

± x3 ± …

± xn)=V ar (x1)+V ar (x2)+… + V ar (xn) C o variance 



   $ ' )! :  f(xy) " % !  , ' Y, X  V       *  0    .  : & # ! ( C   

Co v (X, Y)

=

Y, X  V   V   '   V    , .

∫∫



[X –E (x)] [Y – E(y)] f (xy) d xd y

−∞

= E [ {X − E( x )}{Y - E(y)} ]

9 0

 P

C            ) Y, X        

        

!  " #  $ %  $  ( Co v  :  &     '    $

Co v ( x , Y) = E [ ( x - µ x) ( Y- µ y) ]

 X   

 



X, X      1

Co v (x, x) = V ar (x)

: K K K . 

4 #   <9 = % D *   V   :   & ' Y   X > C  :     

b ,a

Co v (ax, b y) = ab Co v (x, y) Co v (ax, b y) = E [{ax − E(ax)}{by − E(by )}]

      2 : K K K . 

= ab E {x − E( x )}{Y − E( y )} = ab c o v (x, y) Co v (x, a) = 0

9 1

      a       3

Co v (x, a)

= E [{x − E( x )}{a − E(a )}]

:  K K K . 

= E [{x − E( x )}{0}] =0

P4

Co v (x1 + x2 , y) = Co v (x1, y) + Co v (x2, y)

: K K K . 

Co v (x1 + x2 , y) = E [{( x1 + x 2 ) − E ( x1 + x 2 )}{Y - E (y)}] =E [{x1 − E( x1 )}{y − E( y )}] + E [{x 2 − E( x 2 )}{y − E ( y )}]

= Co v (x1 , y) + Co v (x2 , y)

   x2 , x1               5

V ar (x1 + x2) = V ar (x1) + V ar (x2) + 2Co v (x1 , x2) V ar (x1 - x2) = V ar (x1) + V ar (x2) - 2Co v (x1 , x2)

: K K K . 

V ar (x1 + x2) = E [ (x1 +x2)

- E (x1 +x2)]2

= E [{x1 − E( x1 )} + {x 2 − E( x 2 )}]2

= E [x1 − E( x1 )]2 + E[x 2 − E ( x 2 )]2 + 2 E [{x1 − E( x1 )} {x 2 − E ( x 2 )}]

= V ar (x1) + V ar (x2) + 2 Co v (x1 , x2)

:  & ' J   V      1    :  & ' ) 9 2

V ar (x1 – x2)

         

x2 , x1       6

Co v (x1 , x2) = 0 Co v (x1, x2) = E [{x1 − E( x1 )} {x 2 − E ( x 2 )}]

:  K K K . 

= E[x1 x2 + E (x1) E(x2) – x1 E (x2) – x2 E(x1) = E(x1) E(x2)+E(x1) E(x2)–E(x1) E(x2)-E(x1) E(x2) = 0

 !  #      V      E (x1 x2) = E (x1) E (x2)

                  

Cov (X , Y) = ρ Var (x) Var (y)

. 1 =

                 Y,X

J  Y , X   V    !  , 9  1 =

  , .  ! 

Q  & ' >      

1 ≥ ρ ≥ -1 ρ2 ≤ 1 93

 ;K ' , K ! . 

             

:   " )? ' E (x) = µ  !  , 9 (1

i) E (x- µ ) = 0 ii) E (x-c )2 = E (x - µ )2 + ( µ -c )2

 5  4  3   K = E 2     S

. " ) J  C 3 

E 2    "     " % !  , 9 (2

: 4    <#  & . I  #  <@  $  & ' S

0. 04  0. 09  0. 12  0. 27  0. 43  0. 05

Y I  #  <@  :  & '  .   > -   S

E 2  6

E 2 @ 

 . '

a " )  !  %  Q V =  :   % & '  ! E (x-a)2      " ) (3 . E(x) J 

:& .     $ ' )!

Y , X  #      V   %   !  , 9 (4

1≤ X ≤ 0

f (x) = 12 x 2 (1 – x)

1≤ Y ≤ 0

f (y) = 2 Y

Y

x

2

+

94

x Y

   > -  

$  -  6 : %   10 &    :    & I  2  V   X  !  , 9 (5 E (x2 + 3 x)

  -   $   "    

 &     >    &   &     (6 :  2 * E "     & I 

    ! ! "

    

0 10 20 30 40

0. 01 0. 05 0. 39 0. 45 0. 10 1.00

# $



.  2    * E :       "     

    

.  2    * E :       "     

    

: KK 

(i

(ii

" *       & '   :       : % #    "  %   1 #   

   &          P7 :   %   !  /  %            (    

  %  & '    ! ! "

   

0 4 6 8 40

0. 13 0.27 0. 39 0. 21 0. 07 1.00

# $

95



$    @  "          

: KK 

(i

$    @  "     #  &               (ii & K.  < K @   I    U    >     4 = %  $ -    S

E 2 J  2  (8

 0. 005   K      K% 3000 & K.  $ K %  )    I      % 4000 Y $ -      D ,   4   %        .   ' 4     < #  0. 008

C  B  A  K     E K   K!  ,  K' D   +  2  S

E 2 4 . ,

2000 A  K    K )   !  4     < #  0. 3  0. 3  0. 4       

a K#     .   '  %

(9

3000 C       % 25 00 B       % YS

E 2    , . :  '   > -    

: K -     "  I      C , B, A & . $ #     >  2  $ ) * ) & '     $ ! 2 (10

4 K     < K# 

25 . 000  5 0. 000  100. 000 & K. $ ) * )   >  2  # 

: .   ' 4     < #   % 3.000  5 000  10. 000 & . "  %       . $ ) * )   >  2      $  -     "  I     &    

.      &    

  $  1 =

(i

(ii

& ' $       +   E @ 

 & . X " %  !  , 9 (11 f (0) = 0.9

f (1) = 0.05

f (2) = 0.03

f (3) = 0.02 96

Y $  1=

200 & ' > -     +   E @ 

 .   '

:       :   & I  2  V   X  "   ) C   !  , 9 (12 f (x) = c x x = 3, 4, 5, 6 C " ) $  -

X > - 

X  

: KK 

(i

(ii

(iii   "  )  (13

Co v (x, y) = E (x y) - µ x µ y & .

y, x  V   #  $ !  2           $ '  ) ! :     "  #   , 9 (14 1≤ X ≤ 0

f (x, y) = x + y

1≤ X ≤ 0 Co v (x, y) J  y, x  V 

(x, y) J  y , x           

97

KK 

(i

(ii

            (1 i)

E (x- µ ) = E[ (x-E (x)] = E (x) – E (x) = 0

ii)

E(x-C)2 = E (x2-2c x + C2)

 @     P

= E (x2) – 2CE(x) + C2 = E (x2) – 2C µ + C2

  @     P

E (x- µ )2 + ( µ -c )2 = E (x2 - 2 µ x + µ 2) + µ 2- 2 µ C + C2 = E (x)2 – 2 µ 2 + µ 2 + µ 2 - 2 µ C + C2 = E (x2) – 2 µ c + C2

4 #     .         '     ! ∴

X = x 1 2 3 4 5 6

f(x ) 0.05 0.43 0.27 0.12 0.09 0.04 ∑ XP( x ) E(X) =

allx

98

x f(x ) 0.05 0.86 0.81 0.48 0.45 0.25

(2

= 2.89

4 #     .  J    :  <  @  :   2    " %  !  , 9 Q V =   :    % & '       ! (3 1= 

E ( x − a ) 2 = E ( x 2 ) − 2 a E (x) + a 2 144424443 Z

)       , .   2 % Z K $   %    (a

dz = 0-2 E (x) + 2a da = 0 – 2 a + 2a =0

a = E (x) 3 

Q V =   :    % & '      ∴

 Y X  Y  X E  2 +  = E  2  + E  Y Y X X 

(4

 1  1 = E (Y) E  2  + E(X )E   Y X 

D *   :       & ' H   %   F

99

 *     %@

 %  D  < #  > -   ! %  O 

E (Y) = =



1



1

Y f (Y) d y

0

Y (2Y) d y

0

= 2 ∫ Y2 d Y 1 0

Y3 3

= 2 =

 1  E  2 X 

= =

1 0

2 3



1

1

{12 X2 (1 - X) } d X

1

{12 X2 - 12 X3 ) } d x

X

0



1

X

0

2

2

= 12 ∫ (1-X) d X 1 0

= 12

X-

1 = 12   2 = 6

10 0

X2 2

1 0

E (X)



1

=

0

{

}

X 12 X 2 (1 - X) d X

= 12 ∫ X3 – X4 d x 1 0

= 12

X 4 X5 4 5

1 0

1  12 3  = 12  1 -  = = 4 5 20 5  1 E  Y

= =



0

1 (2Y) d y Y



2d y

1

1 0

= 2

 Y X  1  1 E  2 +  = E (Y) E   + E(X) E   Y  X2  Y X 2  3 =   (6) +   (2) 3 5 = 5.2

10 1

(5 E (X2 + 3X) = E (X2) + 3 E (X)

V ar (x) = E (X2) - {E(X )}2 6

… … …

1

… … …

2

… … …

3

= E (X2) – (10)2

E(X2) = 106

1  3

  

E (X2 + 3 X) = 106 + 3(10) = 106 + 30 = 136



X–x 0 10 20 30 40 E(x)

=

(6 f ( x ) = P ( X= x )

Xf ( x )

X2 f ( x )

0.01 0.05 0.039 0.45 0.10

0 0.50 7 .80 13.50 4.00

0 5 156 405 160

∑ Xp( x )

E(x2) =

allx

= 25.8

∑ x 2 P( x )

allx

= 7 26

10 2

V (x) = E(x2) - {E ( x )}2 = 7 26 – 665.64 = 60.36 (7 X

P ( X)

XP ( X)

X2 P ( x )

2

0.13

0.26

0.52

6

0.32

1.9 2

11.52

0.7 0

7 .00

4

0.27

8

0.21

10 E(x)

1.08 1.68

0.07 =

4.32

∑ XP(x )

13.44

E(x2) =

= 5.64

∑ x 2 p( x )

= 36.80

V (x) = E(x2) - {E ( x )}2 = 36.80 – 31.809 6 = 4.9 9 04

≅ 5

10 3

E(x)

=



allx

X P (X)

                    (8

= 4000 (0.005) + 3000 (0.008) = 20 + 24 = 44

E(x)

=

                        !   (9

∑ XP( x )

allx

= 2000 (0.4) + 2500(0.3) + 3000(0.3) = 800 + 7 50 + 9 00 = 2450        "   #       $ %   &   '      (       ! (10 i) E ( X1 + X2 + X3) = E (X1) + E(X2) + (X3) = 100000 + 50000 + 25000 = 17 5000 ii) V (X1 + X2 + X3)

= V (X1) + V (X2) + V (X3) = 10000 + 5000 + 3000 = 18000

10 4

E (x)

=

= )  *     * + ,        -  . /     0 (11



allx

X P (X)

= 0 (0.9 ) + 1 (0.05)+2 (0.03) + 3 (0.02) = 0 + 0.05 + 0.06 + 0.06 = 0.17

 * +,

2 0 0   "   1   $     * +,

2 0 0       - . /     0  '   2   * 3 

= 200 (0.17 ) = 34

i)



allx

(12

f (x) = 1

∴ ∑C X =1 C

∑X

=1

C (3 + 4 + 5 + 6) = 1 1 ∴ C= 18 ii)

E (x) =

∑ X P(X)

allx

=

∑X

=

1 ( 9 + 16 + 25 + 36) 18

CX

= C∑ x 2

10 5

=

43 9

iii) V (X) = E (X2) - {E ( x )}2 = E(X2) =

= C∑X

3

∑ X 2 P (X)

allx

1 (27 + 64 + 125 + 216) 18 216 = 9 =

216  43  V ar (x) = -   9  9  1944 − 1849 = 81 95 = 81

2

Co v (x, Y) = E (XY) - µ x µ y Co v (x, y)

= E [ (x - µ x ) (y - µ y )]

      (13 :  

= E (xy - x µ y - µ x y + µ x µ y )

= E (xy) - µ x µ y - µ x µ y + µ x µ y = E (XY) - µ x µ y

10 6

     

(14 Co v (x, y) = E(xy) – E(x) E(y)

. XY      Y     

X                         



E(x+y)  ! $    E (y) , E(x)   ! " #     

E (x + y)

= = =

= =

∫∫

1 0

∫∫

1 0

1

(x+y) f (x, y) d x d y x f (x, y) d x d y + 1

∫ [x ∫ f ( xy) dy] dx

014 04 42444 3 E( x )

∫ [x ∫ (x + y ) dy]

1

1

0

0

∫ x xy +

1 0

y2 2

1

1  = ∫ x x + dx 2 424 3 0 1 1

f (x)

1

0140442444 3 E ( y)

d y +

+ 1

=

7 7 + 12 12

1 0

1

0

0

∫y

1 0



x2 + yx 2

1

424 3 0 1 f (x )

y3 y 2 + + 3 4

10 7

∫ y [ ∫ ( x + y ) dx]

1

∫ y y + 2 dy

x   = ∫  x 2 + dx + ∫  y 2 + 2   0 0 x3 x 2 = + 3 4

1

∫ y [ ∫ f ( xy) dx] dy

+

1

x f (xy) d x d y

0

1

d y +

0

∫∫

1

y dy 2

1 0

1 0

d y

d y

 

7 12 7 E (Y) = 12

E (x) =

1 2 1 = y+ 2

f (x)

= x+

f (y)

E (xy) = = = =

xy f (xy) d xd y

0

xy (x+y) d xd y

∫∫

x2y + xy2 d xd y

0 1 0

2 ∫ [∫ x y dx] dy +

∫ [∫

1 1

1 1

0 0

0 0



1

x 3y 3

0

1 0

dy +



1

0



1 1 ydy + ∫ xdx 3 3 0

1 3

1

0

=

∫∫

∫∫

1

1

=

=

=

1

E(xy)     

xy 2 dx] dy

xy 3 3

1 0

dy

1



0

1 1 Y2 ydy + ∫ xdx = 30 3 2 1

1 1 1 + = 6 6 3 108

1 0

+

1 X2 3 2

1 0

  C o v (x, y)

=

E (xy) – E (x) E (y) 1 7 7 + . 3 12 12 1 49 − 3 144 1 144

= = =

V (y) , v (x)                         ( ii V (x) =

E (x2) - {E ( x )}2

E (x2) =



x 2f ( x ) dx



1 x 2 ( x + ) dx 2

1

0

=

0

X 4 X3 + 4 6 = =

V a r (x) =

1

1 0

5 12

5 7 11 -  = 12  12  144 2

109

V (y) = ρ( x , y ) =

11 144

         

Cov (x, y) − 1 / 144 − 1 / 144 1 == = 11 / 144 11 V ( x ) V(y) 11 11 . 144 144

110



    

111

  

                  

THE DISCRETE PROBABILITY DISTRIBUTIONS  

! "  # $   ! "   %              &   "  '  ( )  *

! "  #     , ! "  #          $ +  , ! "  #     $ +  ,

! "      -

 . * $        #    ! "  )     % 

$     &          "    . %     /     ! "      $ +  ,

.  -  0  '    

@ @The Binomial Distribution@           



            ,         -  0  &         , $ 

 2      '   (   (       *               %    $   &    3 

 

   3  ,  #      +  , &    3    4   &    3  5 . *  ,  #  6 

    .        7    ! -   %    $    +   %  8   -        . 9

 ,       +  ,             +  , &    3 '  (      $       7        $  <          .  ;   3    . 9       100  : 

:         =  6       +  ,

.           .1

.                                .2

112

            !   "             .3 .$

. # 

%   & ' % (  )      .4

!      *  +    ,    - '   ) !     "     .  

/ )  %           (  0  " (  !        ! 0  " ! 0     1  

.      ! 0  " *  +   

:1    

! 2         (  0  " (    !         !  n     7 8

3    9   8        !  P     (    %  3   ( %  4 5   6

3    & = /       !  q +   &  +    (1-P)  (     ;  ) :    !  3  3    & =     !  ;  (     ;  ) 7 8

n = 1       :  

  (            (      ? 

S = (@  A 7 8

7 8

)

3    9  6 +  A

3  3    9  6 +  @

C 

3    & =       ! 0   %    1     "  X D 

1 E 0 !  X 2  (       /       

7 8   & =     !  P

(    & =     !  q= (I-P)

:!         9  x  1   !      *  +        113

1   

      

n=

1

X = x

f (x ) = P (X = x ) f (0) =

0

P ( ) = q

1

f (1) = P () = P

    

q+ P = 1

n = 2       :     

  (           D     

S = (@ @ E A F 8

@ E @ A

(   "    F 8

E A

9  G  !  % A

A

)

A

(  (   "    (  9  G  !  % @ @

C 

(  (   "    F 8

F 8

9  G  !  % @ A

(   "    (  9  G  !  % A

@

   4 (              ; 

!       7 H         

qq , qp, pq, pp

(  )        C 

2 E 1 E 0 !  (       x /  4    114

:!         !    x 2  !      *  +        (2) 

        

n= 2

X = x 0 1

f(x ) = P (X = x ) f ( 0) =

P ( ) = P () P () = q q = q

f ( 1) = P ( ) + P ( ) = P () P () + P () P () = P q + q P

2

    

2

= 2q P

f ( 2) = P ( ) + P () P () = P P = P

q2 +

2 qP + P

2

=

( q+ P )

2

2

=

1

3      n       :    

  (            (      ? 



S=

{

}

 

   8 = (            D      ; 

!       7 H &  F =              qqq, qqP, qPq, qPP, Pqq, PqP, PPq, PPP

3 E 2 E 1 E 0 !  (       x /  4   

:!         !    x 2  !      *  +        115

3    

      

n= 3

X = x

f(x ) = P (X = x )

0

P (  ) = P () P () P () =

f ( 0) =

q

3

f ( 1) = P (  ) + P (  ) + P (  )

1

= q

2

p + q

2

+ q p

2

p + q

p = 3 q

2

+ q p 2= 3 q p

2

2

p

f ( 2) = P (  ) + P (  ) + P (  )

2

= q p

2

3

f ( 3 ) = P (  ) =

    

q 3 + 3 q 2p +

P () P () P () = p

3 qp

2

+

P

3

=

3

( q+ p ) 3 = 1

:  (                 (  )   ( " . "           =  . 

2= 4= 8=

21 =

22 =

23 =

(              1 ;  ) n     H 6

(              2 ;  ) n     H 6

(              3 ;  ) n     H 6

   2    ( 2  0  " (  (                  (      7 H  /   % 

! 2     2 )    H 6 .  n   3    (        H 6 2n ;  )  I 2   , 2     *   2 )  (   F 8    n        F   +

  2 ) (  )       %       (  )   ( " . "         !    (      .@  H    & ) (   (         3    (   116

F  x F 8

3    9   8         J     *   )   #  

(3 2   ( %  4 5    )  n           (  0  " (  !   '  D 2 4   2     (     (   %  (     F 8   K        

!  @  H  F  (n-x) (  4  /    F  x (F 8

3    & = ) C     .(     

Px  F  x (F 8 ) C     D 4      qn-x  F 

n-x C     D 4  /      

px  F  x C     D 4               K '

F  4    qn-x

;  )    ,      3 )       C     D 4  (              

C F  x 7 8

E 0 7 8

n x

n n! =   =  x  x! (n - x) !

;  n   x ,    

3    9   8      K               H   

(nx )p

x

: 9  6 L   )   n    ' 

qn-x

3    & =        3 ;  ) n     E L. 2 2 " 

: !      9  !     3 E 2 E 1

(33) p3 , (23) p2 q , (13) pq2 , (03) q3 p3 , 3p2q ,

3pq2

, q3

(3)    !  &    8  !         I   !   117

(nx )p

       (     /       =  .  

qn-x

x

x = 0, 1, …

.., n

              x         

(q+ p)n (q+ p)n = qn +

(1n )pq

(n2 )p q (nn−1 )p q +

n-1

+

2 n-2

n-1

+ … +

pn

(nx )p q

x n-x

+ …

   

+

      ! 0  " *  +   !      *  +     H  (   )  5       :       ! 0  " *  +    8  :          

 %   x     !  "  #            $

*       "  +  , n & '    ( "  )    #  -  +      % $

(nx ) p

f ( x) =

x

qn-x

x= 0, 1, …, n

"  +  ,  0 & '       $ p

"  +  ,  0 &  ! 1    $ q p +

118

q= 1

(i

(ii

(iii (iv

 

:. 

: 2    

  !  * '    (  )     (      ) ! )     !         K  / %     H 6 .(  )    )   )  G ( 8         $

% ( )   (  M

:      %  (  M           )     )     % 10   )  ;  9  ;   

  )   / &   "

  )   / &   "   " 

(i

(ii

(iii

(  1   7 H  !           )        "  x D  :  20 E ... E 2 E 1 E 0 !  x 2  (       /        )                ;  ) p D 

 )                 ;  ) q ∴

i)

p (  

p=

0. 10

q=

1-P

n=

20

!  "  #  # $ ) = f (0)

f (x) =

f (0) = =

(nx )p q (200 ) p q x

= 0. 9 0

n-x

0

20

(q)20 = (0. 9 0)20

= 0. 122 119

ii)

P (        ) = f (2) f (2)

(202 ) p

=

=

2

q18

19 0 (0. 01)2 (0. 9 0)18

= 19 0 (0. 01) (0. 9 )18 = 0. 28 5 iii)

P (        ) =

≤ 2)

= = = =

p (x > 2) = 1- p (x 1 - {p (x = 0) + p (x = 1) + p (x = 2 )}

{

}

1 - (0.9) 20 + 20 (0.1) (0.9)19 + 0.285

1 - { 0.122 + 0.270 + 0.285} 0. 323

      ! 0  " *  +    * 4 

F 2  n ( 2   ( %  4 5   6 (    , )    "    9  6 F  % 



     x ! 0   %    1   !      *  +      1 ;  ) n  %   * 2  +     H &  * 4     (1)      !  9  %  F 8

3    & =   

  2 2 2 2 2 2 2 2 2  ! 2 2 2 2 2 2 2 2 2  K 2 2 2 2 2 2 2 2 2 2 )  

:!    (4 )

12 0

(4) 

           

n= 1

X 0

f (x ) q

x f (x ) 0

1

p

p

1

µ = ∑ xf ( x ) = p



0

     x ! 0   %    1   !      *  +     ?  2 ;  ) n  %  

 2 )    ) * 2 4     (2)      !  9  %  7 8

3    & =   

:!    (5)    !  K )   *  +     H &  (! )    (5)  

              

n= 2

X 0 1 2

f(x )

q 2pq p2 2

x f (x ) 0 2qp 2p2

E ( x )= 2 p ( q + p ) = 2 p



 x ! 0   %    1   !      *  +     ?  3 ;  ) n  %  

 ) * 2 4     (3)   2    ! 2  9  %  F 8

3    & =      

:!    (6)    !    3 )      *  +     H &  (! )     )   12 1

(6)  

              

n= 3

X

f(x )

Xf ( x )

1

3p2q

3q2 p

3

P3

0

q3

2

0

3qp2

6 q p2 3p3

µ = E ( x )= 3 p ( q



2

+ 2 q p + p 2)

= 3 p ( q + p )2 = 3 p

      ! 0  " *  +   (* 4     ) ! )     )    J =  .      H    1 ;  ) n     H 6 P

: 

2 ;  ) n     H 6 2p 3 ;  ) n     H 6 3p

! 0  " *  +    * 4   J     (      7 H  /  %     #       

.      n 2  n p ;  )                    

           q           p     #$  n   %              !  "

#$   

µ = np  

12 2

!    * 4      % /   ) L '   @  H            µ = E (x)

n

∑ x f (x)

=

x =0 n

∑ x (nx ) p x q n - x

=

x =0 n

x n! px qn-x x ! (n x) ! x =0



=

n

n! p x q (n -1) - (x -1) (x - 1) ! [(n - 1) - (x - 1)] ! x =1



=

(n - 1) ! p x -1 q (n -1) - (x -1) (x - 1) ! [(n - 1) - (x - 1)] ! x =1 n

np ∑

=

n

np ∑ ( nx -−11 ) P x -1 q (n -1)- (x -1)

= =

x =1

=

np (q+ p)n-1 np

( 2 % 4                F  100 (     ( %  4       H 6 : 3  &  O F 8

3    & = 

3 2    2 & =         ! 0   %    1     "  x D  : & &    2       ! 0  " *  +  &  x  ?   H    F 8 P=

1 2

n = 100 12 3

np =       ! 0  " *  +    * 4  

1 µ = E (x) = np = 100   = 5 0 2

K 2     2 2  

          # o

/   )  F  n    ( %  4 5   6 (    (1)  "  9  6 F  % 

3 E 2 E 1 /  2    H 2 J n  2 %   σ2x = ∑ (x - µ) 2 f(x)       4 .      ! 0  " *  +       (   ( 1  8

9 6  8    *  ) 

x ! 0  2  %    1   !      *  +       1 ;  ) n  % 

 H 2  * 4   (1)      !  9  %  F 8

3    & =        

    2  *  +     H       p   (4)      !  K )    *  +    :!    (7)    !    3 ) 

(7) 

           

n = 1

X 0 1

f(x ) q p

x -µ 0-p 1-p



124

σ 2x =

( x - µ )2 f ( x ) q2 q (1-p)2 p p 2q

+

q 2p

= pq ( p+ q ) = pq

x ! 0  2  %    1   !      *  +     ?  2 ;  ) n  %  

H 2  * 4  

(2 )     !  9  %  F  8

3      & =         

    2  *  +    H       (5)     !  K )   

2p   *  +   

:!    (8 )     !    3   6   8   

(8) 

           

n=2

f(x )

x –

0

q2

-2p

4 p2 q2

1

2pq

1-2p

(1-2p)2 2pq

2

p2

2-2p

4 (1-p)2 p2

(&

( x -u)

2

X

u

f(x )

σ 2x = 4

2 2 p q+

( 1 -2 p) 2 2 pq + 4 ( 1 -p) 2 p2

= 4

2 2 p q+

( 1 -4 p+ 4 p2) 2 pq + 4 q

= 8

2 2 p q+

2 pq - 8 p2q + 8 p2 q

= 8 p2 q ( q -1 + p) + 2 p q = 8 p2 q ( 0 ) + 2 p q = 2 pq

125

2

p2

x ! 0  2  %    1   !      *  +      3 ;  ) n  %  

H 2  * 2 4   (3)     !  9  %  F  8

3      & =         

  (  )   (      I         3p   (6)     !  K )    *  +    3 ;  ) n     3pq ;  )  *  +    H    9  6  8  :;  )        ! 0  " *  +          H    1 ;  ) n   

pq

2 ;  ) n     2pq

3 ;  ) n     3P q

;  2 )        ! 0  " *  +           (      7 H  /  %      

 n 2  npq

            #  

            q          p     

#  $  n &    )         #   " 

#$ 

!        * 4        4 / ) '   @  H 3        

σ 2x = E (x2) – [ E (x)] E (x2) = =

2

n

∑ x 2 f (x)

x =0 n

∑ x 2 ( nx ) p x q n - x

x =0

126

x2 n ! px qn-x = ∑ x ! (n - x) ! x =0 n

= = =

n



x =0

x(x-1)+ x 2 x2    $

[x(x - 1) + x] n ! x n − x p q x ! (n - x) !

 %  

n

n x(x - 1) n ! x n − x xn ! p q + ∑ x ! (n - x) ! ∑ x ! (n - x) ! p x q n − x x =0 x −0 n



x =2

n(n - 1) (n - 2) ! px q( n-2) -( x-2) + E (x) (x - 2) ![(n - 2) - (x - 2)] !

= n (n-1) p2

n



x =2

(n - 2) ! px-2 q( n-2) -( x-2) + np (x - 2) ![(n - 2) - (x - 2)] !

= n (n-1) p2 (q + p) n − 2 + np = n2 p2 – np2 + np

σ 2x

= E (x2) – [ E (x)]

2

= n2 p2 – np2 + np – n2 p2 = np – np2 = np (1 – p) = npq

σ 2 = npq   H   

! 2 %    H 2    ;  2 )     2    ! 0  " *  +   ;  %          σ =

σ2 =

127

   K    

npq

: 4 

        7  10 0    ( %  4 5   6    3  "  9  6 F   %  O F  8

3      & =      %  ;  %         

:

3      & =          ! 0   %    1     "  x D  1 2 1 q = 2 P

3         ! 0  " *  +  &  x   H    7  8

=

n = 100

    = σ 2x = npq ;  %         

1 1 = 100     = 25 2 2 =σ =

npq =

25 = 5

     

D  2 4  2 &       !   K    !    )  *  +  / )  F     (    + 7     .        L    8



   /     * '   C    

F   2   (       7    9    (P   ... /      (  )     (   4     "  )

   2    ! 0  " *  +  / )     E ((  )            "  ) +       128

         !  /     * '   C     D  4        (  %  

:  )  *  +      ( "      .    

:  "    +  3       =    9  6 Q  !    0 )    ( .  (     D  )  !   )   C      

R

.(  )   !  (       1 !           

R

.(   4    !  ! )           !   (   &            

R

./    !  (     +       !    %        

R

                       (  :                

(  )   F     S  4 ( %  4 !  F       K  %    

      3     &  @ ) !  F        K   %     

T  2  6 2 &  ! 2  (  8  !  ( %    5  G    

    )  

R

R

R

/ 2     2  (   4 H  *     1    !   )     1      H   

( 2       + 2   ! 2    ( 8  (    + F  !  ...   2   1    8

:(     ( " . "        ,      K    ( 8 

    +             !  (  )             R1   F 1 8

.+         8       

(         +     F  8 4 F   .          R2

.+     H  (       F    7 H     *  K )   +    

129

(       F  8 4 (    + F   . "              R3 .3    6     C   L  L  1 8

13 0

    F 1 8

+    

* 2  +  !   2  ! 0   %     )   1   !      *  +   

:!      %   K )  !  %     )      

X     !  "            

X     

     ' ( )  X     %     & ... # 2 # 1 # 0  

:     *  ' +   . 

f(x ) =

e−λ λx x!

... # 2 # 1 # 0 =

2. 7 18 28 .   /    =

x

, 

e

+ "   4    0   1  & 2 3     ) ) ( +   = λ .    5   '   0 ) )     

! "     #  $%  # &  '    ( #    )     #  *

:5   (

 /   #        #     +   ,  %   - #   "  .    

.  /   '    " %    #  $ %     0   #   

13 1

:

!             H    0 +      ! 0   %    1     "  x D  / 2 ) . 3 ;  ) λ (  )   !   )  *  +  f (x) =

e−λ λx x!

x 2      ( 4 

:  )  *  +  ( 1  8

e−3 (3) 4 4! 0.05 (81) = 24

p(x=4 ) = f (4 ) =

=

135 800

(e-3 =

0 .0 5 C  )

= 0.16875

:6 

     F   (    + (    !  K   %       )     H 6

: / 4 10 × 3 (              *  / 4 20    .K    9  ;   

. 4 G  9     K   9  ;  

13 2

(i

(i i

:

10 × 3 (      !  K   %       "  x D 

!  3  %  !   )  *  +  x 2       λ =

1. 5

  10 × 3 (      !  K   %       )     ;  e−λ λx f (x) = x!

i) P (x=0) = f (0) = 0. 223

3 × 10 = 1.5 20

:  )  ( 1  8

,   

e−1.5 (1.5)0 = e-1. 5 = 0!

ii) p ( 4 G  9     K   ) = 1-p (x=0) = 1 - 0. 223

= 0. 7 7 7

       

 / 

  )  *  +  &  !    !   )   1   "  x    H 6



e−λ λx f (x) = x!

x = 0, 1, 2, … λ >

0

;  *  +    (  %  ;  )  x ! 0   %     )   1     * 4   

:  ;  λ ;  ) 

13 3

µ x = E (x) = λ σ 2x = E (x ) – [ E (x)] = λ 2

E (x) =

2

∑x ∞

f (x)

x =0



=



=



0

∞ 1

: 2 2   

x

e-λ λx x!

e - λ λx ( x − 1) ! ∞

= λ e-λ ∑ 1

λx -1 ( x − 1) !

        '    !    %      

eλ = 1 +

1 λx λ λ2 + + ... = ∑ 1! 2! x! x =0

∴ E (x) = λ e-λ eλ = λ E (x2) = =

∑ ∞

x =0



∑ 0

x 2f ( x )

x 2 e-λ λx x!

W   X(X-1)+ X (     X2 $

13 4

 %

= = =



∑ 0

[x (x - 1) + x] e-λ λx x!

∞ [x (x - 1) e - λ λx



x!

0



∑ 2



+∑ 0

x e-λ λx + E (x) ( x − 2) ! ∞

= λ2 e −λ ∑ 2

λx - 2 +λ ( x − 2) !

= λ 2 e- λ e λ + λ = λ2 + λ v a r (x) = E (x2) – [ E (x) ] 2 = (λ2 + λ) - λ2 =λ

135

x e - λ λx x!



    -  8  4   ) E (   5 &    0 &  L  8  20 3  ,    8 (27/64)

:     K )   F   X  *  (  0    (   

(1

(  ) K  %      8  9    8    (i

(175/256) (  ) K  %   4 G  9      8  9    8    (ii K     K             ( 0 )  10              H 6 (2 :(               0. 2   ! 0     Z ) ;  9 

(0. 1074)

(0. 8926)

 Z ) ;  9  K     K          (i "      Z ) 9  K     

(0. 2)

(ii

   ( 0 )  3 9  K      (iii

 %  3          +           T   6 Q  6   0. 15   H 6 (3 ( 2  + &       H ?  . 5 .  %      9  6 + &  15    E :         (  ) 

K %    +  ;  3               (0. 0873)

(0. 3185)

(i

 %   4             (ii

136

 & =        "  k        4            H 6 (4

. k 2  !      * +       * G     7 H  !  ( ) 3   

;  2 )   2                    H ?      5 &    7 )  (5 :         E 1 /2 ;  )             

(1/16)

I   I      G  *        

(i

F             4 G  9  F ) G  T         (ii

(15/16)

  ! 2  %  ! 4 2       L  !  %  & " "      H   (  

:     K )  J  ( %   7 H      H 7   + H ?  E L '  

(128/2187)

(448/2187) (1/2187)

(6

5    7   ;  9   8      (i

5    7    7   9   8     (ii

5 '  7   ;  9   8      (iii

  1          4             )     !    H 6 (7 (  2 )   7 2   (      (  )      (     !  (   (     ! 

 2     2 4    @  H !    (  0    / 4  ( % )   7   (   "   (0. 075)

(0. 225)

(0. 700)

:   

(   1    M (        &   *     

(i

  1           (ii

(   1   (        &     "        "    (iii 137

2  &       K )  6    I     ( %  4  &     9     8  (8 .  8       %   I   9  L. 8  (63/256)

    1/5   (     !  ( ) 7  K  .     &         H 6 (9 .3   25    4 G  9      4 9    8        (0.766)

3    Z ) 9     K         (                !  (10

    2  I  2    Z )                 1/3   (    8 .(16/243) (    8

(  6 3   K    Z )

6   (  0    3       E      (      0. 30   $

(0. 58) O       4 G  9  /&      "           E A

  (11

 

. 0. 90 ! 2 2   2 2 +  +     ! 2  ( 2 2  "   ( 2    2   H 6 (12  D  4         E    +  +   10 3 2    

(0. 6513)

3    9 3  )  ; H         ! 0  " *  +   p , n   %    / 4     (13 ( n = 15 E p =

138

3/5) 18/5

E

p =

3   ; H         ! 0  " *  +       * 4          (14 0. 2

(µ = 7

σ2 = 5 . 6 )

3  +   ! %   J  232 3 E (   8 :  (  8

e-1/2 = )

(2e-1 = 0. 7 35 6 )

n = 35

232     Z  K  (15

      K )    0   

 J  '  &

(i

 J    4 &

(ii

(0. 18 39

C    4    *  8  !    %   C        )     H 6 (16 (e-4 = 0. 018 )

(0. 426)

:          & 

 %  &  !  C   ;  *    

(i

  %  &  !  "  G  9  C    ( " . " *     (ii

    "    (     +       !    %          )     H 6 (17     E   )  *  +  *    %           H 6  , 0 4  I 

:   

139

(e-2 = 0. 135 ) , 0 4  I   . *    ;   8    

(0. 382) , 0 4  10  .  8    %    4   "    

(i

(ii

 . (         *      )      9            (18    )    8 !   (   &               )    H 6     4 

(0. 09)

O   4  !        

T   6 &  !   (  %     5  G      )     H 6 (19 :        E (   8   !  5   4       )   5      3  8

(e-4=0. 018 ) (0. 91)

*   

  8     (  !   4G  9   J K   

(i

(ii

        7   (    + 3    !  K   %       )     H 6 (20 R:/ 4 10 × 6 3              ( %  / 4  F  

(e-6=0. 0025 )

(0. 997 5 )

K           )

   K    4 G  9  &     )

(i

(ii

(      (   G  !  [   C      )   3    Q  X *  8  !  (21 !            K )    200   [   )   L  0    .  500 3       " G 9    

(0. 5 4 3)

(i

[   C . "  4 G  9  (ii

(0. 4 5 7 )

14 0

  %  /   K 8     , 0 4 3   1 !  K    C   (22

. /7 × /3   %  3   4           E 2/2   !     (0. 00001)

K  %    3 

(0. 0001266)

(i

   K   "  G  9  & (ii

14 1

      @

(   )    (     -  8       9     x  1    D  (1 . 4 E 3 E 2 E 1 E 0 !  (       x / 4    

p=

5 1 = H 0     8  K  )      " p D  20 4

F   X /  K  )     @  H        ! 0  "   x  1   

  9  6     1      8  K  )    

1 ;  )   " 4

n= 4

(i

x= 1

1 4 3 q= 4

p=

: 9   8       ! 0 " * +   ( 1 8

4 1 3 P (x =1) = f (1) =       1 4 4 1

3

4!  1   3  = ! !    1 3 4 4 1 27 = 4    

 4   64  27 = 64

14 2

3

/ ) 

(ii P (x ≥ 1 ) = p (x =1) + p (x =2) + p (x = 3) + p (x = 4 ) = 1 – p (x =0)

4 1 3 = 1 –       0 4 4

0

3 = 1 -   4

4

4

= 1 – 8 1/ 25 6 = 17 5 / 25 6 x / 4     K     &   K    !   ( 0 ) G      "  x D  (2

0 E 1 E … E 10

!  (     H 2   

n = 10 p = 0. 2 q = 0. 8

i)

f (x) =

( ) px qn-x n x

p(x = 0) = f (0) =

    ! 0 " * +   3 1 8

( ) (0. 2)0 (0. 8 10 0

= (0. 8 )10 = 0. 107 4

14 3

)10

/ ) 

ii)

p(x ≥ 1) = f (1) + f(2) … +

f(10)

= 1 – f(0) = 1 – (0. 8 )10 = 0. 8 9 26 iii)

p (x = 3) = f(3) =

( ) (0.2) 10 3

3

(0.8) 7

= 120 (0. 008 ) (0. 8 )7 = 0. 2013 ≅ 0. 2

x /  4     .    %  3        3  %    F + &  G      "  xD  ( 3

0 E 1 E 2 E ... E 15 !  (      

%  + &            

p = 0. 15

  ) + &            

i) p (x = 0) = f(0) =

( ) (0. 15 15 0

q = 0. 85

n = 15

)0 (0. 8 5 )15

= (0. 8 5 )15 = 0. 08 7 3 ii) p ( x ≤ 1) = p (x = 0) + p (x =1) = f (0) + f(1) 14 4

=

( ) (0. 15 15 0

( )

1 14 )0 (0. 8 5 )15 + 15 1 (0. 15 ) (0. 8 5 )

= 0. 08 7 3 + 15 (0. 15 ) (0. 8 5 )14 = 0. 08 7 3 + 0. 2312 = 0. 318 5

: !  k 2  (       /     (4 0E 1E 2E 3E 4

3 ) 3    9    8      

n= 4

p=

q=

1 6 5 6

4 1 5 p (K = k) = f (k) =       K 6  6  k

4−k

K 1   !      * +   !  %  !       

 4    K

Pk

Pk

0

(5 / 6)4

0. 48 23

1

4(1/ 6) (5 / 6)3

0. 38 5 8

2

6(1/ 6)2 (5 / 6)2

0. 115 7

3

4(1/ 6)3 (5 / 6)

0. 015 4

4

(1/ 6)4

0. 0008

145

!  (       x /  4        G         G      "  x D  (5 0 E 1 E ... E 5

               i)

p=

             

n= 5 1

2

q = 12

 4G  9  7           7 ) G  T            

  ;  E ( %    3 ". "    "     &               .  5       5 &        

;  )  K             

P = P(1) + P(2) + P(3) + P(4) =

=

( ) (1 2 )(1 2 ) + ( ) (1 2 ) (1 2 ) + ( ) (1 2 ) (1 2 ) + ( ) (1 2 ) (1 2 ) 4

5 1

5 2

2

3

5 10 10 5 15 + + + = 32 32 32 32 16

5 3

3

2

5 4

1

4

 

( )        +     ( )        ) R1 = K           ( 

= 1 - [P (5) + P (0)]

1 1 15 = 1-  +  =

ii)

 32

32  16

  / &      +     / &      ;  )  K          146

P = P (0) + P (5 ) =

1 1 1 + = 32 32 16

7 D +   &    8  !   5                "  x D  (6 7 .... E 2 E 1 E 0 !  (       x /  4     E   H 5    7   9    8       p D 

5    7   9    8   /       q p=

7 1  2 i) p (0) = f (0) =        0   3  3  0

q=

1 3 2 3

7

128 2 =  = = 0.05853  3  2187 7

7 1 2 ii) p (1) = f (1) =      

 1  3  3

6

1 2 448 = 7     = = 0.2048 6

 3 3

2187

7 1 2 iii) p (7 ) = f (7 ) =        7  3  3 7

0

1 1 =  = = 0.0005  3  2187 7

E 0 !  (       x /  4     E 3   1        &       "  x D  (7 9 ... E 2 E 1

147

n= 9

p= q=

1 4 3 4

        3   1    M (         &   *          (i L  1   &    8

0 9 1 3 9   P (x = 0) = f (0) =  0       4 4 9 3 =  4

  

= 0. 07 5

  1                 (ii

9 1 3 P (x = 1) = f (1) =       1 4 4 1

8

= 0. 225

3   1   "        "        (iii P (x ≥ 2) = p (x = 2) + p (x = 3) + … + p (x = 9 ) = 1- [ p (x =0) + p (x = 1)] = 1 – 0. 07 5 – 0. 225 = 0. 7

148

!  A

   7  8   3   9    8           "  x D  (8

    (     x / 4     E    5 3   3 %  4 5 

5 ... 2 E 0، 1 n= 5

8

p=q = 12

9   &     8  H 6  8      %  I  9   . 8  

;  5  4  3  2  1 

(0  0)   (1  1)   (2  2)   (3  3)   (4  4)   (5  5) ;  )      7 H    (     9    8        1 5  5      x   2    

(0 , 0) = P(0) p(0)

()

0 5   5  1   1    = 0        2   2    

()

5  1  =  50      2  

L. "  

()

  1  0  1 5  5  0        2   2  

2

   8      %  I  9  . 8         ∴

 5 2 1     P =  50    +  2   

()

2

()

()

()

  1 5    1 5   5 5 5 + + 1    2    3   2     2    2

149

2

1   2

5 2

  

()

()

  1 5    1 5  +  54    +  55      2     2   2

2 

  

 1   1   1   1   1   1   + 25  + 100  + 100   + 25  +    210   210   210   210   210   210 

=  =

252 210

=

252 63 = 1024 256

x /  4     E 3   25   3           G      "  x D  (9 q =

4 5

E

25 ... E 1 E 0 !  (       p=

1 5

E

n = 25

       4G  9      ( %  9    8      

   "        ( %  9    8  

P = (x = 4) + p (x = 5 ) + … + p (x = 25 ) = 1 – [ p (x = 0) + p (x = 1) + p (x = 2) + p (x =3)]

( )

( ) 15   45  + (252 ) 15 

25  1 4  025     + 125 5 5  =1-  3 22 + 25  1   4   3  5   5  

( )

24

2

4   5

23 

     

= 1- (0. 0037 7 7 7 + 0. 0236110 + 0. 07 08 336 + 0. 135 7 644) = 0. 7 66

3   K    Z )      I 

  Z )         2    9 2  G  ( % G  ( 0) G  9  K           (   8 150

(  6

(10

(   8

(  6 I 

  Z )  9  K   ( 0

  ?

()

  1 0  2  4  p =  04        3   3  

:;  )  

()

  1 1  2 0   11        3   3  

 2  1 16 16 =   = =  3  3 35 243 4

P=

 

2 2 2 2 1 16 × × × × = 3 3 3 3 3 243

E 1 E 0 :!  (       x /  4                "  x D  =

6 ...

p =  2    2         K             

= q =  2            M K              6= n

   2            4G  9  ( %     "         6   5   4   3   2            

P (x ≥ 2) = 1- p (x < 2)

= 1 – [ p (x = 0) + p(x = 1)]

H 2   

151

(11

0. 30 0. 70

()

()

P = 1- [ 60 (0.3)0 (0.7)6 + 16 (0.3)1 (0.7)5 ]

= =

1 –( 0 .1 1 7 6 4 9 + 0 .5 7 9 8 2 5

0 .3 0 2 5 2 6 )

9 2   2 2    2 + +      2  H 6   * 2 

/ 4     3      + +      1    " x D   2 4G 

(12

!  (     x

(0 E 1 E 2 E ... E 10)

0. 1 = p =  D  4      =         

0. 9 = q =  D  4  /       =          10 = n

   =  D  4 /       A P = 1 –

4     =  D  4    

  % &           A

(100 ) ( 0 . 1 )

0

( 0 . 9 )10 = =

1 – ( 0 . 9 )10

4 

0 .6 5 1 3

np ;  )        ! 0  " *  +   * 4      ! )     )   

npq ;  )        ! 0  " *  +       

(13

n p = 9 … … … … … … … . (1 ) n p q =

18 … 5

… … … … …

(2 )

( 2) ( 1) 

152

  

9 q =

18 5

q =

18 2 = 45 5

p =1-

2 3 = 5 5

n= 9 ÷

3 45 = = 15 5 3

(1 ) !  P (   4 $

 %

n = 35

(14

p = 0. 2

q = 0. 8

np = * 4   

npq =     µ = np ∴ µ = 35 (0. 2) = 7

σ 2 = npq

σ 2 = 7 (0. 8 ) = 5 . 6

*  +  x 2       E F       (   8   !  5  G      "  x D  (15 (  8

  !     J  )     ) 

λ =

232 =1 232

153

(i

e − λ λx x!

f ( x) =

p ( x= 2 ) =

e −1 (1) 2 2!

f(2 ) =

= e-1/ 2 =

0 .1 8 3 9

e = 0 .3 6 8 -1

P ( x<2 ) =

1 e −1 (1) x



= =

(ii

x!

x =0

=

C 2 

e-1 ( 1 +

1 ) 11

2 e-1

0 .7 3 6

  )   *  +  &         %    &    !  C           "  x D  (16 4 = 3  %  ; H 

e − 4 ( 4) 0

f ( 0 )= = P (x ≤ 3) =

(i

=

e

-4

0!

0 .0 1 8



(ii

e - λ (λ) x x!

154

= p (x = 0) + p (x = 1) + p (x = 2) + p (x = 3) f(0) = e f(1) =

-4

= 0. 018

e−4 4 1!

= 0. 07 2

f(2) =

e − 4 (4) 2 = 0. 144 2!

f(3) =

e − 4 (4)3 = 0. 19 2 3!

f ( x ≤ 3) = 0. 426

  %         !    1    !  x D  (17 λ =

2 = ( 4  !   %         )   5

2 = , 0 4 5 !   %         )  

4 = , 0 4  10 !    %          )   , 0 4 I  ! 

i) P (x = 0) = f(0) =

e − 2 20 0!

=e

-2

= 0. 135

ii) λ = 4

, 0 4   ! 

P (x > 4) = 1-P (x ≤ 4)

155

λ = 2∴

λ = 4

e - λ λx P (x ≤ 4) = ∑ x! x =0 4

= P (x = 0) + P(x =1) + P(x =2) + P (x =3) + P(x =4) f(0) = e

-4

f(1) = e

-4

f(2) =

e − 4 (4) 2 =8 e 2!

f(3) = e f(4) =

(4)

-4

-4

 64     6 

e − 4 (4) 4 64 = e 4! 6

-4

=

0. 018

=

0. 07 2

=

0. 144

=

0. 19 2

=

0. 19 2

∴ P (x > 4) = 1 – P ( x ≤ 4 )

0. 618

= 1 – 0. 618 = 0. 38 2

    4   .  8 !   (   &              1     "  x D  (18 λ = 2 3  %    )  * +  &     

e − 2 24 P ( x = 4 ) = f (4) = 4

=

2 e 3

=

2(0.135) 270 = 3 3

-2

= 0. 09 0 156

     (   8   !  (     5  G      1     "  x D  (19 λ = 4 3  %    )  * +  x 2 

i)

e − 2 24 P (x = 0) = f (0) = 0!

= e ii)

= 0. 018

-4

P(x ≥ 2) = 1 – P (x < 2) = 1 – [ P (X = 0) + (P(X =1)] = 1 – (0. 018 + 4 e

-4

)

= 1 – (0. 018 + 0. 07 2) = 0. 9 1

/  4 10 × 6 3      !  K   %       "  x D  (20

6 =

(6) (10) = λ 3  %  ; H    )  * +  x 2      10

f(x) = i)

e − λ λx x!

P (x = 0) = f(0) = e

0. 0025

157

-6

=

ii)

P (x ≥ 1) = 1- P (x < 1)

= 1-P (x = 0)

= 1 – f (0) = 1 - 0. 0025 = 0. 9 9 7 5

 500 2   !  [         "  x D  (21 2 .5 =

500 = λ ∴ 200

f (x) =

i)

P (x≤2 ) =

f(0 ) +

f(0 ) = e

-2 . 5

f(1 ) = e

-2 . 5

f(2 ) = P ( x ≤2 ) =

ii)

f(1 ) +

f(2 )

e − 2.5 (2.5) 2 = 3.126 e - 2.5 2

6 .6 2 5 e

-2 . 5

=

( 6 .6 2 5 )( 0 .0 8 2 ) = 0 .5 4 3

1 – P ( x < 3)

P ( x ≥ 3) =

1 - {f (0) + f(1) + f(2)}

= =

1 –0 .5 4 3 =

e - λ λx x!

0 .4 5 7

158

/ 7 × 3 (   4   !  K  %       "  x D  (22

f (x) =

e - λ λx x!

11.5 =

i)

P ( x= 0 )= f ( 0 )= e

ii)

P ( x ≤1 ) = f ( 0 ) + f ( 1 ) f(1 ) = e

-1 1 . 5

f ( 0 )+ f ( 1 )= 1 2 .5 e

-1 1 . 5

21 =λ 2

= 0 .0 0 0 0 1

1 1 .5 -1 1 . 5

159

= 0 .0 0 0 1 2 6 6

  

16 0

  

         

The Normal Distribution

2  "   ( 2        %  +    /     ! %     *  +    % 

  2     ! 2  7  8  * '      3   E , .    9    % ) 

H 2 J "(  %     "  %  +        "      3  )  ,    4  E 5 8    

     % +   ) 3       % +   / = %   ? @ H  E 3   4 .  

/  2     3        /       ,     )         5    %  +   ( +    

 2  2  "  ! 2  *  +     H  /  )   E 3    4 .   H J (7          !  3 % )       )  3   7          (    8   K    .   M  3   %     %  +   F        %    $

D e M o i v er     ;  /  %   *  +     H             

 

 H 2   %   1809 /  !  G au s s I  M /  %   7  %    1733 / 

 H 2 &   G au s s D i s t r i bu t i o n I  2 M * 2  +  ;  3  ) L '   *  +    ( 2 8

( 2     2 2             ( '   3 8  * +   .      ! 0  " *  +   2 "  T   %  +  

 2  /       E ! %    9    9    * +   H  9  

2 1    2    ( 2  " ( 2  9    8  J ; =  * +  9  

    "   ! %    * +   9    E * +   H  3 2  ; H  ! 0  % 

 2  . 2   2 "    K ) ;  )  ; H   ! )     )     ! )  

  9  6 7       7     3  4 3       ! )  4     .         )    16 1

 2  &     ! 2   G         7   K    )  )       (  & 

-   8         ;  ) 9         (  )      @  H *   (3 %      2 1  ;   2    ( 2  " 3  9     (  )   !         : 9     "  1    

.   8  ! 0    

1 

     

 2   2 &   ( %          ! 0 &      @  µ (* 2 4    ) ! 2 )     2 )     2   2  (   4 K) 

$

%  & ' %

  2    ! 2  ( 2 %      ,   4 E σ ; %       

 4   E 2     !      ! )    )   !   &   ; %   3     !      ; %         ! )    )   , 

16 2

µ= 2

µ= 4

x

µ= 6

2 

                          

f(x) σ = 0 .5 σ =1 σ=2

x

µ= 3

3 

                          

     

  





9         ;  µ ! )     )        "   ! %     9       (1 .3     9  9        "   ! )     )    )  9 

9  6 9         3  )    / )     8     !  ! )     )    (2 .    )     ) 4

:(     A

.    ;  ) 9         3  )    D     (3

    ! %     9       ?  σ  µ (   4     &  (4

µ + σ  µ R σ          *   3  )      % 68. 26 !    

16 3

R

 µ R2 σ          *   3  )      % 95. 46 !     RK µ+ 2σ

3 σ  µ R 3 σ          *   (  )      % 99. 74 !     RQ µ+

1. 96 σ  µ R1. 96 σ          *   (  )      % 95 !     R µ+

2. 58 σ  µ R2. 58 σ          *   (  )      % 99 !     R2  µ+

:!    4      !  - '      

%68.26

13.6%

34 .13%

34 .13%

13.6%

2.14%

2.1 4 %

x

668.26 8 .26

95.46% 9 9 .7 4%

3     H 6 %   D +   3  x  8   ! 0  %  1    

:(     ( 1  8  7  %  3       (  " 

16 4

f (x) =

1

σ 2π

e



1  x - µ 2   2  σ 

C 

−∞ > x < ∞

! %    1   ! )    )   !  µ

2. 71828 3   4  " e

σ2 3 2   

3. 14159 ;  )  (      ( )    !  π

µ ! 2 )    3  )  ; H   ! %     *  +    K   

. " 2   N( µ , σ2 ) +   K   ( σ ;  )  ;  %    3           )

   20 ;  )  (* 4  ) ! )   )  3   %     1  !  % N (2 0,4 ) .(2 ;  )   %       ; ) 4 ;  ) 

 2  (  2 )    D  2            (  "  3    f (x)   

. 8   0     L  1         -   8

     )  3   7 H  9  

< x < b )   b , a  "            4   *   σ2 3    µ 3  )  x=

        f (x) 3      9       7  8     (  )    ;  )   p (a

b,x= a

f(x) µ

16 5

a

b

5   

The Standard Normal                      



D i s tri b u ti on

1   9  ! )     ; %   ! %    1   / )  ,   1   9  ;     3   8

! )   3  )  ; H  ! %   

!  3     (  "  3        z +   3  +    N(0.1) 1 e- z 2π

f (x) =

2 /2

−∞ < z < ∞

f (z) 9       (  )    D           (  "  3    f (z)    



∞ -∞

1;  )

1 -z 2 / 2 e d z= 1 2π

z        z ; %   ! %    ! 0  %  1   D  4         

f  2     (  " 3  9     7  8    (  )     z = b E = a

;  )  ;  z = b E z = a                 (z)

P (a < z < b ) =

b



a

1 2π

2 e− z / 2 d z

!   ;  %    ! %     9         (        ) (  )     )     .,    2       !  7  % 

             4    8    ! %      1    D  4      K )  

f (x)  2     ( 2  "  3    9       7  8     (  )    K)      )         %    ' f(x)       16 6

X 2            

7       M   4  H J     &         σ2      µ ! )   

  4 L '     H J    3     !     8   1  ! 0    %    1     6 3 % 4       )    K )         M   3  ?  T   ;     7       M

*   2 )       x , σ2 , µ      3   /    ! %     9        

9 2  6 N ( µ , σ2 ) ! 2 %      1        (  % 8   7 H  9  K 1   !   7       3  )    K )          N(0.1) ;  %   1 

.,    2       !    )    7  % 

         N ( µ , σ2 )    

N( 0 . 1 )

 ?  N ( µ , σ2 ) ! %     *  +    3  x ! 0    %    1       H 6

; 2 %   ! 2 %    * 2 +   3 2      z= 3   8

x−µ σ

! 0  %  1  

! )    3  )    %   %   L %  +  3      ;  N(0.1)

9  6 3        σ2 3    µ ! )    3  )  ! %    1  ;     1 ! 2 %    * +       H &  z=

x−µ 3  ; %  ! %   σ

1 

7       7  8     (  )    K )      ;  %  ! %   *  +  9  6 .6      !   

P (x ≤ b) =

  x / 4   ( %  (  4 b    H 6

P (x - µ ≤ b - µ ) 167

x−µ b−µ P  ≤ 

= =

 σ

b−µ P  z ≤  

σ 

σ 

f(x)

µ

168

b

x

f(z)

Q

z =

6 

z

b−µ σ

z   N ( µ , σ 2 )    

P (X ≤ b) = P (Z ≤

!  9      3 =   M (  )  

b-µ ) σ

P (X > b) = 1 – P (X ≤ b)

'     

b-µ ) σ

= 1 – P (Z ≤

  (7    !    ) a< b     H 6

P (a ≤ X ≤ b) = P (Z ≤ a )  9 6 (  )   A

169

b-µ a -µ )- P (Z ≤ ) σ σ

4  b )  9 6 (  )   ;  ) ; 

x

a b

µ

7  

      8          (  " 3  9     "   ( 8

   i)

x



−∞

f(z)d z = =

ii)

0



−∞

1

2

f(z) d z +

∫ f(z) d z

x o

∫ f(z) d z

x

+

o

−x



−∞

x x

∫ f(z) d z = ∫ f(z) d z =

1

2

-

∫ f(z) d z

o

 2            )   /  (  )         !  !    @ H 

3 2      x /    (           K )  ;  %    ! %     9       .(  )   x /          Q  )      &   

170

:  :1    

2   N (3 E 4 ) *  +    3  ! %   ! 0      1  X     H 6

O5 E 3          X *         

:   

x−µ σ 3−3 z1 = =0 2 5−3 z2 = =1 2

z=

; %  * +  9 6 * +      

p (3 < x < 5) = p (0 < z < 1)

!       !    !  

z= 1  z= 0   3  )   ;  ) 

0

1

0. 3413 ;  ) ,    2         !  

171

:2   

N ( µ,σ2 ) ! %     *  +    3 

X ! 0  %  1     H 6

i)

P ( µ − σ < x < µ + σ)

ii)

P ( µ − 2σ < x < µ + 2σ )

iii) P ( µ − 3σ < x < µ + 3σ) i)

z1 = z2 =

:  

:   

(µ − σ ) − µ = −1 σ (µ + σ) − µ =1 σ

∴ P ( µ − σ < x < µ + σ) = P( −1 < z < 1)

z=1 

z=1 

z = -1   (  )      F    

z=0   (  )   + z=0 

-1

0

1

  µ=0 ! )    )   )     9 

  z=1



z=1   (  )   =

Z 9     "   (   

z = 0   (  )    ;  ) z = 0  z = -1   (  )   

0. 3413         ;  )  7 .        !  172

∴ P ( µ − σ < x < µ + σ ) = 0. 34 13 +

0. 34 13

= 0. 6 8 26

 '

= 6 8 . 26 %

*  9         (  )    D       % 68. 26   !  %   H  

.! )     )          ;  %      

ii)

P ( µ − 2σ < x < µ + 2σ ) (µ − 2σ) − µ = −2 σ (µ + 2 σ ) − µ z2 = =2 σ

z1 =

∴ P ( µ − 2σ < x < µ + 2σ) = P( −2 < z < 2)

F  8     (  )    + z = 0  z = -2   7  8     (  )    ;  ) 

         z =2  z =0  

= 0. 4 7 7 3 + 0. 4 7 7 3 = 0. 9 5 4 6

      '

=9 5 .4 6 %

*  9         (  )    D       % 95. 46   ;  . 8

! )    )       % 

Z 173

-2

iii)

2

(µ − 3σ) − µ = −3 σ (µ − 3σ) − µ =3 z1 = σ

z1 =

∴ P ( µ − 3σ < x < µ + 3σ) = P(−3 < z < 3)

F  8     (  )    + z = 0  z = -3   7  8     (  )    ;  ) 

:         z = 3  z =0  

= 0. 4 9 8 7 + 0. 4 9 8 7 = 0. 9 9 7 4 =9 9 .7 4 %

3 2 '

* 2  9 2        2  (  )    D       % 99. 74   ;  . ! )    )     3  %     

99.74%

-3 3

174

              

:(               ;  %    ! %     *  +      .1

(0. 2580)

P (0 < z < 0. 7)

(0. 3849)

P (0 < z < 1. 2)

(0. 8643)

(ii

P (R1 < z < 0)

(iii

P (R0. 82 < z < 0. 96)

(iv

(0. 3413)

(0. 2742)

(i

P(

P(

(0. 6254)

z < 0. 6R)

z > R1. 1)

(v

(vi

z = R0. 5   (  )        .2

:     N (2, 1) ! %     *  +    3  x ! 0    %    1       H 6 .3 (0. 0227)

P (x > 4 )

(0. 4773)

P (0 < x < 2 )

(i

(ii

2 &   2  %   3 2  +    %     T    K.           H 6 .4

3 2       3 8  68. 50 ! )    3  )  ; H   ! %     *  +    :3 8  2. 3 ;  %   

175

  +  ( %       K  ;             

(i

  / &        H  ( %    !  3   ( )  !  

(ii

.(0. 0643) (3 8  72) /   4  6  

(0. 1935) 3 8  72  70

 2   ! %     *  +       H K  3000          H 6 .5

  2      / 2 ) 170 ;  2 )     2  G  7 H &  ! )     )    : / ) 5 ;  )  &  ; %  

./ ) 185   "   / &        H   (    ( )      ./ ) 185   / &        +   H   (          

 2 )    ,  2  / &     H  (   ( )     H 6  2    0. 2881   x        %        4 

(i

(ii

(iii

.O      H 

3  2 )  ; H 2   ! 2 %     *  +    3  x ! 0    %    1       H 6 .6 :   J  0. 30 ;  %    3       80 ! )    P (X ≤ 80. 36)

P ( X ≤ C) = 0. 95    H 6 C   %   1

4

&     4       $

(i

(ii

   G       W   *  8  .7

* +  &  * 8   H  Q    G   4      7   / )

E / 2  0. 0025 ;  %    3       /  2. 5 ! )    3  )  ! %   176

 2 2   4    2  ! 2  a  (  0  ( )  !   

O/  2. 5049  2. 4951

;  %      (  )   !      4   %      )      H 6 .8 ( 2 )  !     %   %  +  *   G      H 6    0. 50 O(  )   !      3  2. 5         '     H     %  

    2 (  ) 1500 ! 0 &     8       )      H 6 .9 :          %   %  +  *   (  ) 50 ;  %  .(  ) 1400  4 ,   )  8   

(i

.(  ) 1550   "   S  %  )  8   6

(ii

.(  ) 1550  1450    S  %  )  8   6 (iii I 2    10 ;  )  3   3      +        ,    8

.10

3  +         +   I    1. 5 ;  %      (O U NCE S )

12. 4  7. 9   2 &  +  *   !        ( )  !     %  

OI   

* 2 +   2 &  ( )  !      T   6      H 6

5 ; 2  %    3 2              100 3  )  ; H   ! %     :   . 

.        100     + ) (                 

.        100     ) (                  177

.11 (i

(ii

110  100   2    ) (                  (iii .       

178

           (    )

.7   ,    2         (               .1 ! 2 2  ( 2 2      (  2 2 )    .2

  2   ! 2  ( 2

=   (  )  

R0. 5  R ∞   2 F  8      0.5  2  (  2 )     "  !    2  (  2 )   A

4  ∞ 9 

=          0. 5 9   8

0. 5 – 0. 1915 = 0. 3085

;  %  *  +  9  6 ! %     *  +        .3 z= z=

z -µ σ

4-2 =2 1

∴ P (X > 4 ) = P (z > 2)

0

= 0. 5 – 0. 4 7 7 3

2

Z Z1 =

179

= 0. 0227 -0 . 5

0 - 2 = -2 1

(ii

(i



Z2 =

P (0 < X < 2)

2 - 2 =0 1

= P (z > 2) = P (-2 < z < 0) = P (0 < z <2)

=

0. 4 7 7 3

.4 x -µ σ 72 - 68.5 3.5 = = 2.3 2.5

.i

Z =

= 1. 5 2

∴ p (x > 7 2) = p (z > 1. 5 2)

0

= 0. 5 -0. 4 35 7 = 06 4 3 70 - 68.5 = 0. 6 5 2.3 72 - 68.5 z2 = = 1. 5 2 2.3

.ii

z1 =

∴ P (7 0 < x < 7 2) = P (0. 6 5 <

z < 1. 5 2) 18 0

= 0. 4 35 7 – 0. 24 22 = 0. 19 35

185 − 170 =3 5

z=

. i .5

∴ P (x > 18 5 ) = P ( z > 3 )

= 0. 5 – 0. 4 9 8 7 = 0. 0013

3

0

3000 = %

100

x = %

0. 13

(0.0013) (3000) 0.100

x=

= 3. 9 ≅ 4 z =

0 . 28 8 1

.ii

x

- 170 5

7 =   z (  4          

.iii

x

0.8 !  0. 2881 (  )  

∴ 0. 8 =

0

x = 18 1

χ - 170 5

174

Z =

.i .6

80 - 36 - 80 = 1.2 0 .3

∴ p ( x ≤ 80.36 ) = p ( z ≤ 1.2)

= 0. 5 +

1 .2

0. 38 49

= 0. 8 8 49

0 .4 5

z=

.ii

c − 80 0 .3

z ( 2  4    2         

0

– 0. 50) (  2 2 )   ( 2 2     0

!  0. 45 (  )   ;  (0. 95

144424443

1. 64

0.95 =  

            0.4 5       

∞    − ∞   ! "  ∞     

  



c − 80 = 1.64 0 .3

∴ c = 8 0. 49 2

z1 = z2 =

2.4951 − 2.5 = 1.96 0.0025 2.5049 − 2.5 = 1.96 0.0025

.7

∴ P (2. 49 51 < x < 2. 5049 ) = P

(-1. 9 6 < z < 1. 9 6 )

-1. 9 6 1. 9 6

= 2 (0. 4750)

182

= 0. 9 5 z1 = z2 =

-3 2

.8

2 .5 − 4 =-3 0 .5 3−4 =-2 0 .5

∴ p (2. 5 < x <3) = p (-3 < z <-

-

2)

= p (2 < z < 3) = 0. 49 8 7 – 0. 4773 = 0. 0214

z=

1400 - 1500 = -2 50

.i .9

∴ p (x < 1400) = p (z < -2 )

-2

= 0. 5 – 0. 4773

0

= 0. 0227 z=

1550 - 1500 = 1 50

.ii

∴ p ( x > 1550) = p (z > 1 )

0

= 0. 5 – 0. 3413

1 183

= 0. 158 7

-1 1

z1 =

1450 - 1500 = -1 50

z2 =

1550 - 1500 50

.iii

=1

∴ p (1450 < x < 1550) = p (-1

< z <1 ) 0

= 2 (0. 3413) = 0. 6 8 26 7.9 - 10 = 1.4 1.5 12.4 - 10 z2 = = 1.6 1.5

.10

z1 =

-1. 4

0

∴ p (7. 9 < x < 12. 4 ) = p (-1. 4

< z < 1. 6 )

1. 6

= 0. 419 2 + 0. 4452 = 0. 8 6 44

.11 .i

184

z=

100 - 100 =0 5

p ( x > 100 ) = p (z > 0 ) = 0. 5

z=

.ii

100 - 100 =0 5

p ( x < 100 ) = p (z > 0 ) = 0. 5

.iii

100 - 100 =0 5 100 - 100 =2 z2 = 5

z1 =

∴ p (100< x < 110) = p (0 < z <

2)

= 0. 4773

185

       

   2 )   2    3 &  ( 0    !  (  0    %   (       R1    2    K )   .F       ) )  I     K )     G  5  Z 

.     ( 0 %      (3 /8 )

= 0. 5  2  

P(A2) = 0. 7

S ! 2   %   c     !    "   A2 E A1    H 6 R 2



P(A1)

: P(A1 A2) = 0. 3 

      "   A2  A1  

(0. 9)

(    ;  )    &      D        ) P ( A 1   A 2)    

(0. 2)

P ( A 2 R A 1)    

(i

(ii

(iii

P ( A1 R A2)     (iv

(   )  )

= 0. 4  2   S ! 2   %   c     !    "   P(B) = 0. 7

(0. 8)



B

A    H 6 R3 P(A)

:     K )   P(AB) = 0. 3 

B   A  "      D  4

186

(i

 &   I  B   A D  4

(ii

AD  4 /

(iii

(0. 5)

(0. 6)

(0. 1)

BD  4 /  AD  4

(iv

: (     C                7     7       !    R4

(6/36)

7    =      4   D     A1

(i

10   "      =      4   D     A2 (ii (3/36)

5 ;  2 )     2   2 4     2 =      4   D     A3 (iii (10/36)

 4 G  9  7     7  & = 2   %   A4 (iv (11/36)

(3 /6 )

: (          K )   , )        I   !  R5

6   G       $

!   + D      $

 9  !   + D     

 9  6 !  "   

(i

(ii

(3/18)

(4/6) 5    4  D             H 6 !   + D       (iii (1 /6 )

4  G    $

 9  6 !  "   

(9/18) ;     G            H 6 ;   D      

187

(iv (v

  ( 8     H   + M 9 6 %   &  4    8

.  + 2 1  ( 8 6     K )  J

3    R6

1 !   + 1  ( 8 6 !   &  3

(5 /9 )

 2  % 50      & %        % 20 P )  A     H 6 R7  2  % 90  2    ! 4   B P )     5      & 

 2 & %     2    K  K  )  H ?  .5      & 

.5      K              K )  

(0. 82)

5 2   3    K   )    K       H 6 , )     Z )   !  R8 O 3  !  !  A             

(10/18=0. 5555)

    /  0. 40 = 5 8    F   !  K               H 6 R9 (0. 2592)

(0. 92224)

(0. 98976)

(0. 07776)

:    

K .  5        K   -    

(i

 4G  9     K   -    

(ii

   -     

(iv

"  G  9  K .  4 -      (iii

!       C . " 5 D     9   8            R10 O    6   !  +

(0. 17342)

188

  2     0. 3   &  [  8   ( 8 6        H 6 R11

9    &  ( 8 6         !  & 4.  6 / + .  P   8  .% 80  4 G 

0. 7 = J       

(0. 7)n = d  P    8       1-(0. 7)n > 0. 8   K     

(0. 7)n > R0. 2 (0. 7)n < 0. 2

(0. 7)1 = 0. 7 , (0. 7)2 = 0. 49 (0. 7)3 = 0. 743 , (0. 7)4 = 0. 2401 (0. 7)5 = 0. 16 8 07

∴ n = 5 P   8    

189

:     



19 0

(1)    

e-x                     x

e-x

x

e-x

x

0.0

1 .000

2 .0

0.1 35

4.0

0.1

0.9 05

2 .1

0.1 2 2

0.2

0.8 1 9

2 .2

0.3

0.7 41

0.4

e-x

x

e-x

x

0.01 8

6.0

0.002 5

8 .0

0.00034

4.1

0.01 7

6.1

0.002 2

8 .1

0.00030

0.1 1 1

4.2

0.01 5

6.2

0.002 0

8 .2

0.0002 8

2 .3

0.1 00

4.3

0.01 4

6.3

0.001 8

8 .3

0.0002 5

0.67 0

2 .4

0.09 1

4.4

0.01 2

6.4

0.001 7

8 .4

0.0002 3

0.5

0.607

2 .5

0.08 2

4.5

0.01 1

6.5

0.001 5

8 .5

0.0002 0

0.6

0.549

2 .6

0.07 4

4.6

0.01 0

6.6

0.001 4

8 .6

0.0001 8

0.7

0.49 7

2 .7

0.067

4.7

0.009

6.7

0.001 2

8 .7

0.0001 7

0.8

0.449

2 .8

0.061

4.8

0.008

6.8

0.001 1

8 .8

0.0001 5

0.9

0.407

2 .9

0.055

4.9

0.007

6.9

0.001 0

8 .9

0.0001 4

1 .0

0.368

3.0

0.050

5.0

0.0067

7 .0

0.0009

9 .0

0.0001 2

1 .1

0.333

3.1

0.045

5.1

0.0061

7 .1

0.0008

9 .1

0.0001 1

1 .2

0.301

3.2

0.041

5.2

0.0055

7 .2

0.0007

9 .2

0.0001 0

1 .3

0.2 7 3

3.3

0.037

5.3

0.0050

7 .3

0.0007

9 .3

0.00009

1 .4

0.2 47

3.4

0.033

5.4

0.0045

7 .4

0.0006

9 .4

0.00008

1 .5

0.2 2 3

3.5

0.030

5.5

0.0041

7 .5

0.00055

9 .5

0.00008

1 .6

0.2 02

3.6

0.02 7

5.6

0.0037

7 .6

0.00050

9 .6

0.00007

1 .7

0.1 8 3

3.7

0.02 5

5.7

0.0033

7 .7

0.00045

9 .7

0.00006

1 .8

0.1 65

3.8

0.02 2

5.8

0.0030

7 .8

0.00041

9 .8

0.00006

1 .9

0.1 50

3.9

0.02 0

5.9

0.002 7

7 .9

0.00037

9 .9

0.00005

19 1

e-x

! %    9        )   /

(2 ) / 2 4 , 2  

( 2,0                A)

0 Z 0.00 .01 .02 .03 .04

A 0.0000 .004 0 .008 0 .01 20 .01 6 0

Z 0.4 7 .4 8 .4 9 .5 0 .5 1

A 0.1 8 08 .1 8 4 4 .1 8 7 9 .1 9 1 5 .1 9 5 0

Z 0.9 4 .9 5 .9 6 .9 7 .9 8

A 0.326 4 .328 9 .331 5 .334 0 .336 5

.05 .06 .07 .08 .09

.01 9 9 .0239 .027 9 .031 9 .035 9

.5 .5 .5 .5 .5

2 3

.1 9 8 5 .201 9 .205 4 .208 8 .21 23

.9 9 1 .00 1 .01 1 .02 1 .03

.1 .1 .1 .1 .1

0

.039 8 .04 38 .04 7 8 .05 1 7 .05 5 7

.5 .5 .5 .6 .6

7

.21 5 7 .21 9 0 .2224 .225 8 .229 1

.1 .1 .1 .1 .1

5

9 6 36 5 4

.6 .6 .6 .6 .6

2 3

9

.05 .06 .06 .07 .07

.20 .21 .22 .23 .24

.07 .08 .08 .09 .09

9 3 32 7 1 1 0 4 8

.6 .6 .6 .7 .7

7

.25 .26 .27 .28 .29

.09 8 7 .1 026 .1 06 4 .1 1 03 .1 1 4 1

.7 .7 .7 .7 .7

2 3

30 .31 .32 .33

.1 .1 .1 .1

.7 .7 .7 .8

1

2 3 4 6 7 8

7 5

1 7 21 25 29

1 4

5

7

9 3

4 5 6 8 9

0 1

4 5 6 8 9

0 1

4 5

9

6 8

7 0

z

Z 1 .4 1 1 .4 2 1 .4 3 1 .4 4 1 .4 5

A 0.4 207 .4 222 .4 236 .4 25 1 .4 26 5

.338 9 .34 1 3 .34 38 .34 6 1 .34 8 5

1 .4 1 .4 1 .4 1 .4 1 .5

6

.4 .4 .4 .4 .4

27 9 29 2 306 31 9 332

1 .04 1 .05 1 .06 1 .07 1 .08

.35 .35 .35 .35 .35

08 31

1 .5 1 .5 1 .5 1 .5 1 .5

1

.4 .4 .4 .4 .4

34 35 37 38 39

.2324 .235 7 .238 9 .24 22 .24 5 4

1 .09 1 .1 0 1 .1 1 1 .1 2 1 .1 3

.36 .36 .36 .36 .37

21

1 .5 1 .5 1 .5 1 .5 1 .6

6

.4 .4 .4 .4 .4

4 06 4 1 8 4 30 4 4 1 4 5 2

.24 .25 .25 .25 .26

8 6

.37 .37 .37 .37 .38

29 7 0 9 0 1 0

1 .6 1 .6 1 .6 1 .6 1 .6

1

8 0 1 2

1 .1 1 .1 1 .1 1 .1 1 .1

.4 .4 .4 .4 .4

4 6 3 4 7 4 4 8 5 4 9 5 5 05

.26 .26 .27 .27 .27

4 2 7 3 04 34 6 4

1 .1 9 1 .20 1 .21 1 .22 1 .23

.38 .38 .38 .38 .39

30 4 9 6 9 8 8 07

1 .6 1 .6 1 .6 1 .6 1 .7

6

.4 .4 .4 .4 .4

5 1 5 5 25 5 35 5 4 5 5 5 4

.27 28 .28 .28

9 4 23 5 2 8 1

1 .24 1 .25 1 .26 1 .27

.39 .39 .39 .39

25

1 .7 1 .7 1 .7 1 .7

1

1 8 4 9

19 2

4 5 6 7 8

5 4 7 7 9 9 4 3 6 5 8 6 08 4 9

4 4 6 2 8 0

7 8 9

0 2 3 6 5 7 8 9

0 2 3 4 5 7 8 9

0 2 3 4

5 7

0 2 4

.4 5 6 4 .4 5 7 3 .4 8 2 .4 5 9 1

.34

.1 331

.8 1

.29 1 0

1 .28

.39 9 7

1 .7 5

.4 5 9 9

.35 .36 .37 .38 .39

.1 .1 .1 .1 .1

36 8 4 06 4 4 3 4 8 0 5 1 7

.8 .8 .8 .8 .8

2 3 4 5 6

.29 39 .29 6 7 .29 9 6 .3023 .305 1

1 .29 1 .30 1 .31 1 .32 1 .1 33

.4 .4 .4 .4 .4

01 5 032 04 9 06 6 08 2

1 .7 1 .7 1 .7 1 .7 1 .8

4 .4 .4 .4 .4

6 08 6 1 6 6 25 6 33 6 4 1

.4 .4 .4 .4 .4 .4 .4

.1 .1 .1 .1 .1 .1 .1

5 5 4 5 9 1 6 28 6 6 4 7 00 7 36 7 7 2

.8 .8 .8 .9 .9 .9 .9

7

2 3

.307 9 .31 06 .31 33 .31 5 9 .31 8 6 .321 2 .3238

1 .34 1 .35 1 .36 1 .37 1 .38 1 .39 1 .4 0

.4 .4 .4 .4 .4 .4 .4

09 9 1 1 5 1 31 1 4 7 1 6 2 1 7 7 1 9 2

1 .8 1 .8 1 .8 1 .8 1 .8 1 .8 1 .8

.4 .4 .4 .4 .4 .4 .4

6 4 9 6 5 6 6 6 4 6 7 1 6 7 8 6 8 6 6 9 3

0 1

2 3 4 5 6

8 9

0 1

Z 1 .8 8 1 .8 9 1 .9 0

A 0.4 7 00 .4 7 06 .4 7 1 3

Z 2.4 1 2.4 2 2.4 3

A 0.4 9 20 .4 9 22 .4 9 25

Z 2.9 4 2.9 5 2.9 6

A 0.4 9 8 4 .4 9 8 4 .4 9 8 5

1 .9 1 .9 1 .9 1 .9 1 .9

.4 .4 .4 .4 .4

7 1 9 7 26 7 32 7 38 7 4 4

2.4 2.4 2.4 2.4 2.4

.4 .4 .4 .4 .4

9 27 9 29 9 31 9 32 9 34

2.9 7 2.9 8 2.9 9 3.00 3.1

.4 .4 .4 .4 .4

1 .9 6 1 .9 7 1 .9 8 1 .9 9 2.00

.4 .4 .4 .4 .4

7 5 0 7 5 6 7 6 2 7 6 7 7 7 3

2.4 2.5 2.5 2.5 2.5

9

.4 .4 .4 .4 .4

9 36 9 38 9 4 0 9 4 1 9 4 3

3.2 3.3 3.4 3.5 3.6

2.01 2.02 2.03 2.04 2.05

.4 .4 .4 .4 .4

7 7 8 7 8 3 7 8 8 7 9 3 7 9 8

2.5 2.5 2.5 2.5 2.5

4

.4 .4 .4 .4 .4

9 4 5 9 4 6 9 4 8 9 4 9 9 5 1

2.06 2.07 2.08 2.09 2.1 0

.4 .4 .4 .4 .4

8 03 8 08 8 1 2 8 1 7 8 21

2.5 2.6 2.6 2.6 2.6

9

.4 .4 .4 .4 .4

2.1 2.1 2.1 2.1

.4 .4 .4 .4

8 26 8 30 8 34 8 38

2.6 2.6 2.6 2.6

4

.4 .4 .4 .4

1 4

2 3

1

5

4

2 3

4 5 6 7 8 0 1

2 3 5 6 7 8

1

0

7

6

5

2 3

6 7 8 9

0 1

2 3 4 5 6 7

      ... Z 3.4 7 3.4 8 .4 9

A 0.4 9 9 7 .4 9 9 8 .4 9 9 8

9 8 5 9 8 6 9 8 6 9 8 7 9 8 7

3.5 3.5 3.5 3.5 3.5

0

.4 .4 .4 .4 .4

9 9 8 9 9 8 9 9 8 9 9 8 9 9 8

.4 .4 .4 .4 .4

9 8 7 9 8 8 9 8 8 9 8 9 9 8 9

3.5 3.5 3.5 3.5 3.5

5

.4 .4 .4 .4 .4

9 9 8 9 9 8 9 9 8 9 9 8 9 9 8

3.7 3.8 3.9 3.1 0 3.1 1

.4 .4 .4 .4 .4

9 8 9 9 9 0 9 9 0 9 9 0 9 9 1

3.6 3.6 3.6 3.6 3.6

0

.4 .4 .4 .4 .4

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

9 5 2 9 5 3 9 5 5 9 5 6 9 5 7

3.1 3.1 3.1 3.1 3.1

.4 .4 .4 .4 .4

9 9 1 9 9 1 9 9 2 9 9 2 9 9 2

3.6 3.6 3.6 3.6 3.6

5

.4 .4 .4 .4 .4

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

9 5 9 9 6 0 9 6 1 9 6 2

3.1 7 3.1 8 3.1 9 3.20

.4 .4 .4 .4

9 9 2 9 9 3 9 9 3 9 9 3

3.7 3.7 3.7 3.7

0

.4 .4 .4 .4

9 9 9 9 9 9 9 9 9 9 9 9

19 3

2 3 4 5 6

1

2 3 4 6 7 8 9 1

2 3 4 6 7 8

1

9

2 3

2.1 5

.4 8 4 2

2.6 8

.4 9 6 3

3.21

.4 9 9 3

3.7 4

.4 9 9 9

2.1 6 2.1 7 2.1 8 2.1 9 2.20

.4 .4 .4 .4 .4

8 4 6 8 5 0 8 5 4 8 5 7 8 6 1

2.6 2.7 2.7 2.7 2.7

9

.4 .4 .4 .4 .4

9 6 4 9 6 5 9 6 6 9 6 7 9 6 8

3.22 3.23 3.24 3.25 3.26

.4 .4 .4 .4 .4

9 9 4 9 9 4 9 9 4 9 9 4 9 9 4

3.7 3.7 3.7 3.7 3.7

5

.4 .4 .4 .4 .4

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

2.21 2.22 2.23 2.24 2.25

.4 .4 .4 .4 .4

8 6 5 8 6 8 8 7 1 8 7 5 8 7 8

2.7 2.7 2.7 2.7 2.7

4

.4 .4 .4 .4 .4

9 6 9 9 7 0 9 7 1 9 7 2 9 7 3

2.27 3.28 3.29 3.30 3.31

.4 .4 .4 .4 .4

9 9 5 9 9 5 9 9 5 9 9 5 9 9 5

3.8 3.8 3.8 3.8 3.8

0

.4 .4 .4 .4 .4

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

2.26 2.27 2.28 2.29 2.30

.4 .4 .4 .4 .4

8 8 1 8 8 4 8 8 7 8 9 0 8 9 3

2.7 2.8 2.8 2.8 2.8

9

.4 .4 .4 .4 .4

9 7 4 9 7 4 9 7 5 9 7 6 9 7 7

3.32 3.33 3.34 3.35 3.36

.4 .4 .4 .4 .4

9 9 6 9 9 6 9 9 6 9 9 6 9 9 6

3.8 3.8 3.8 3.8 3.8

5

.4 .4 .5 .5 .5

9 9 9 9 9 9 000 000 000

2.31 2.32 2.33 2.34 2.35

.4 .4 .4 .4 .4

8 9 6 8 9 8 9 01 9 04 9 06

2.8 2.8 2.8 2.8 2.8

.4 9 7 7 .4 9 7 8 .4 9 7 9 .4 9 8 0 .4 8 0

3.37 3.38 3.39 3.4 0 3.4 1

.4 .4 .4 .4 .4

9 9 6 9 9 6 9 9 7 9 9 7 9 9 7

2.36 2.37 2.38 2.39 2.4 0

.4 .4 .4 .4 .4

9 09 9 1 1 9 1 3 9 1 6 9 1 8

2.8 2.9 2.9 2.9 2.9

.4 .4 .4 .4 .4

3.4 3.4 3.4 3.4 3.4

.4 .4 .4 .4 .4

9 9 7 9 9 7 9 9 7 9 9 7 9 9 7

0 1

2 3 5 6 7 8 0 1

2 3 4 5 6 7 8 9 1

0 2 3

9 8 1 9 8 1 9 8 2 9 8 3 9 8 3

19 4

6

5

4

2 3

6 7 8

1

9

9

8

7

6

4

2 3

       

19 5

       

   2 )   2    3 &  ( 0    !  (  0    %   (       R1    2    K )   .F       ) )  I     K )     G  5  Z 

.     ( 0 %      (3 /8 )

= 0. 5  2  

P(A2) = 0. 7

S ! 2   %   c     !    "   A2 E A1    H 6 R 2



P(A1)

: P(A1 A2) = 0. 3 

      "   A2  A1  

(0. 9)

(    ;  )    &      D        ) P ( A 1   A 2)    

(0. 2)

P ( A 2 R A 1)    

(i

(ii

(iii

P ( A1 R A2)     (iv

(   )  )

= 0. 4  2   S ! 2   %   c     !    "   P(B) = 0. 7

(0. 8)



B

A    H 6 R3 P(A)

:     K )   P(AB) = 0. 3 

B   A  "      D  4

19 6

(i

 &   I  B   A D  4

(ii

AD  4 /

(iii

(0. 5)

(0. 6)

(0. 1)

BD  4 /  AD  4

(iv

: (     C                7     7       !    R4

(6/36)

7    =      4   D     A1

(i

10   "      =      4   D     A2 (ii (3/36)

5 ;  2 )     2   2 4     2 =      4   D     A3 (iii (10/36)

 4 G  9  7     7  & = 2   %   A4 (iv (11/36)

(3 /6 )

: (          K )   , )        I   !  R5

6   G       $

!   + D      $

 9  !   + D     

 9  6 !  "   

(i

(ii

(3/18)

(4/6) 5    4  D             H 6 !   + D       (iii (1 /6 )

4  G    $

 9  6 !  "   

(9/18) ;     G            H 6 ;   D      

19 7

(iv (v

  ( 8     H   + M 9 6 %   &  4    8

.  + 2 1  ( 8 6     K )  J

3    R6

1 !   + 1  ( 8 6 !   &  3

(5 /9 )

 2  % 50      & %        % 20 P )  A     H 6 R7  2  % 90  2    ! 4   B P )     5      &   2 & %     2    K  K  )  H ?  .5      & 

.5      K              K )   (0. 82)

5 2   3    K   )    K       H 6 , )     Z )   !  R8 O 3  !  !  A             

(10/18=0. 5555)

    /  0. 40 = 5 8    F   !  K               H 6 R9 (0. 2592)

(0. 92224)

(0. 98976)

(0. 07776)

:    

K .  5        K   -    

(i

 4G  9     K   -    

(ii

   -     

(iv

"  G  9  K .  4 -      (iii

!       C . " 5 D     9   8            R10 (0. 17342)

O    6   !  +

19 8

  2     0. 3   &  [  8   ( 8 6        H 6 R11

9 2    &  ( 8 6         !  & 4.  6 / + .  P   8 

.% 80  4 G 

0. 7 = J       

(0. 7)n = d  P    8       1-(0. 7)n > 0. 8   K     

(0. 7)n > R0. 2 (0. 7)n < 0. 2

(0. 7)1 = 0. 7 , (0. 7)2 = 0. 49 (0. 7)3 = 0. 743 , (0. 7)4 = 0. 2401 (0. 7)5 = 0. 16 8 07

∴ n = 5 P   8    

19 9

:     

Related Documents

Equations Book
December 2019 22
Equations
November 2019 31
Equations
October 2019 28
Equations
July 2020 19
Maxwell's Equations
May 2020 1
Exam Equations
November 2019 20

More Documents from ""