Unit V - Applications of Kinematics and Dynamics Equation Sheet sin σ =
opposite hypotenuse
cos σ =
adjacent hypotenuse
tan σ =
opposite adjacent
Fx = F cos σ Fy = F sin σ
∑F
x
∑F
= Fx1 + Fx 2 + Fx 3 + K
2
y
FR = ∑ Fx + ∑ Fy
sin a sin b sin c = = A B C 1 A = bh 2 vav =
2
= Fy1 + Fy 2 + Fy 3 + K
∑ Fy σ R = tan −1 F ∑ x
C 2 = A2 + B 2 − 2 AB cos c
A = LW
∆d ∆t
v v v ∆d d 2 − d1 v vav = = ∆t t2 − t1 v v v ∆v v2 − v1 v aav = = ∆t t2 − t1
Unit V - Applications of Kinematics & Dynamics
© Saskatchewan Learning & Moose Jaw SD #1 http://www.sasked.gov.sk.ca/curr_content/physics30/
Page 1 of 3
v v v1 + v2 v vav = 2 v v v v2 = v1 + a ∆t v v v ( v1 + v2 ) ∆d = ∆t 2 v v 1v 2 ∆d = v1∆t + a ( ∆t ) 2 v2 v2 v v V2 = V1 + 2a ∆d Fk = µk FN v = gR 4π 2 R ac = T2 1 f = T Fc = mac Gm1m2 d2 Constants: Radius of the Earth: 6.37 x 106 m Mass of the Earth: 5.98 x 1024 kg F=
Nm 2 2 G = 6.67 x 10-11 kg
v v v I = mv f − mvi v mvv2 Fc = R
Unit V - Applications of Kinematics & Dynamics
© Saskatchewan Learning & Moose Jaw SD #1 http://www.sasked.gov.sk.ca/curr_content/physics30/
Page 2 of 3
v v v m1v1 + m2 v2 = ( m1 + m2 ) v f v v v v m1v1 + m2 v2 = m1v1 ' + m2 v2 ' v v m1v1 '+ m2 v2 ' = 0 v v v (m1 + m2 )v1 = m1 v1 '+ m2 v2 '
Unit V - Applications of Kinematics & Dynamics
© Saskatchewan Learning & Moose Jaw SD #1 http://www.sasked.gov.sk.ca/curr_content/physics30/
Page 3 of 3