Equation Of A Line

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Equation Of A Line as PDF for free.

More details

  • Words: 888
  • Pages: 4
Equation of a Line DE12 = (E2-E1) P2:(N2,E2)

N2

N

Az Azimuth of the Line P:(N,E)

N1

P1 E1*m

DN12 = (N2-N1) Any point on Line DN=(length of the line)*Cos(Azimuth of the line) DE=(length of the line)*Sin(Azimuth of the line)

NE=0 m = slope = DN12/DE12 =Cot(Az)

E1

Tan(Az)= DE12 DN12

0 E1

E

E2

General Equation: N − N1 E − E1 = N 2 − N 1 E 2 − E1

(eq01)

Rearranged:

(eq02)

a

b

0

0

a * E + b * N + c = = ( N1 − N 2 ) * E + ( E 2 − E1 ) * N + ( E1 * ( N 2 − N1 ) − N1 * ( E2 − E1 )) =

c

(eq3) N axis intercept = -c/b = ( N1 * ( E 2 − E1 ) − E1 * ( N 2 − N1 )) /( E 2 − E1 ) = NE=0 = N Value when E=0 E axis intercept = -c/ a = ( N1 * ( E 2 − E1 ) − E1 * ( N 2 − N1 )) /( N1 − N 2 ) = E value when N=0 (eq4) = EN=0 Write equation of line passing through P1:(500.000,300.000) and P2:(800.000,900.000) -300.000*E+600.000*N-210,000.000= 0 = -3.00000*E+6.00000*N-2,100.000 = 0 -E+2.00000*N-700.000 = 0

(eq05)

N=(0.500000)*E+350.000

(eq06)

1/4

Equation of 2 Lines and their Intersection DE12 = (E2-E1) P2:(N2,E2)

N2 N3

P3 DN12 = (N2-N1)

N

P:(N,E)

N1

Let intersection be Pi:(Ni,Ei)

P1

DN34=( N4-N3)

P4

N4 DE34 = (E4-E3) 0 E3

E1

E

E2

E4

On the N,E Plane any two non-Parallel lines will intersect ( have a common point). This situation will have one solution. On the Line defined by P1 and P2, or P1 and Azimuth from P1 to P2 : N = ( N2-N1) * E + N1-E1*( N2-N1) = ( N2-N1) *(E-E1) + N1 = DN12*(E-E1)+N1 (eq07) ( E2-E1 ) ( E2-E1 ) ( E2-E1 ) DE12 N=(1/Tan(Az12))*E+N1-E1*(1/Tan(Az12)) = Cot(Az12)*E+(N1-E1*Cot(Az12))

(eq08)

On the Line defined by P3 and P4, or P3 and Azimuth from P3 to P4 : N = ( N4-N3) * E + N3-E3*( N4-N3) = ( N4-N3) *(E-E3) + N3 = DN34*(E-E3)+N3 (eq09) ( E4-E3 ) ( E4-E3 ) ( E4-E3 ) DE34 N=(1/Tan(Az34))*E+N3-E3*(1/Tan(Az34)) = Cot(Az34)*E+(N3-E3*Cot(Az34))

(eq10)

At the intersection (N, E) is the same (equal) on both lines. We will label that Pi:(Ni, Ei). ( N2-N1) * Ei + N1-E1*( N2-N1) = ( N4-N3) * Ei + N3-E3*( N4-N3) ( E2-E1 ) ( E4-E3 ) ( E4-E3 ) ( E2-E1 )

(eq11)

Cot(Az12)*Ei+(N1-E1*Cot(Az12)) = Cot(Az34)*Ei+(N3-E3*Cot(Az34))

(eq12)

2/4

⎡ ⎤ ⎡ N − N1 N 4 − N 3 ⎤ N − N1 N − N3 Ei = ⎢ N 3 − N1 + 2 * E1 − 4 * E3 ⎥ / ⎢ 2 − ⎥ E2 − E1 E4 − E3 ⎣ ⎦ ⎣ E2 − E1 E4 − E3 ⎦

(eq13)

Place this E in either line equation (eq07, eq09) to get N ( or do both for a check, both should be the same). Ei = [N 3 − N1 + Cot ( Az12 ) * E1 − Cot ( Az34 ) * E3 ]/[Cot ( Az12 ) − Cot ( Az34 )]

(eq14)

Place this E in either line equation (eq08, eq10) to get N ( or do both for a check, both should be the same). Note: if line is due N-S division by zero is encountered above.

Example: P#:( N# , E# ) P1:(500.000,300.000); P2:(800.000,900.000); P3:(850.000,200.000); P4:(150.000,950.000) Ei=479.070(from eq13), Ni=589.535(from line 12, eq07), Ni=589.535(from line 34, eq09) P1:(500.000,300.000); Az12:63±26’05.8”;

P3:(850.000,200.000); Az34:133±01’30.2”

Ei=479.070(from eq14), Ni=589.535(from P1, Az12,eq08), Ni=589.535(from P3,Az34,eq10) 5 Or approach the problem with triangles and trigonometry:

list Azimuths that you have for each line or computed from coordinate inverses for each line. Lines Az:(P1ØP2)= Az:(P1ØPi), Az:(P3ØP4)= Az:(P3ØPi), and Az:(P1ØP3)(suggested). Derive distance P1ØP3 from coordinate inverse Determine interior angles in triangle Pi, P1, P3 by the differences in Azimuth. Determine another distance (PiØP1 or PiØP3) in the triangle ( or both two provide access to a check) using the Sin Law. Use the distance(s) along with the Azimuth(s) to get the deltas ((DN1i, DE1i) or (DN3i, DE3i) or both to continue with the checking process).

3/4

P3

Now use the known coordinates of P1 or P3 (or both to carry on with access to a check) and the respective D’s to arrive at the coordinates for Pi, the point of intersection.

P2

Pi

N1+DN1i=Ni, E1+DE1i=Ei N3+DN3i=Ni, E3+DE3i=Ei P1 P4

If you have calculated from both points you should get the same Pi solution.

A good confirmation of the solution can also be devised by: Inverse coordinates P3ØPi. The Azimuth should be the same as for P3ØP4. Inverse coordinates P1ØPi. The Azimuth should be the same as for P1ØP2. Both should be true!

Example: P1:(500.000,300.000); P2:(800.000,900.000); P3:(850.000,200.000); P4:(150.000,950.000) Inverses: Az12:63±26’05.8”, Az34:133±01’30.2”, Az13:344±03’16.6”, Dist13:364.005 Angle @ P1=((63±26’05.8” + 360±00’00”)- 344±03’16.6”) = 79±22’49.2” Angle @ P3=((344±03’16.6”-180±00’00”) - 133±01’30.2”) = 31±01’46.4” Angle @ Pi=(133±01’30.2” - 63±26’05.8”) transversal = 69±35’24.4” SUM = 180±00’00” 5 Distance P1ØPi= Dist1i = Sin(31±01’46.4”)*364.005/Sin(69±35’24.4”)= 200.206 Distance P3ØPi= Dist3i = Sin(79±22’49.2”)*364.005/Sin(69±35’24.4”)= 381.735 Ni=500.000+200.206*Cos(63±26’05.8”) = 589.535 Ei=300.000+200.206*Sin(63±26’05.8”) = 479.070 Ni=850.000+381.735*Cos(133±01’30.2”) = 589.535 Ei=200.000+381.735*Sin(133±01’30.2”) = 479.070

5

Inverse Az1i = 63±26’05.8” compares to Az12:63±26’05.8” :yes Inverse Az3i = 133±01’30.1” compares to Az34:133±01’30.2” :yes within reason 5

4/4

Related Documents