1 / 59
Enrolamentos dos Transformadores de Potência
Enroulements des Transformateurs de Puissance
Power Transformers Windings
Descritores
Descripteurs
Descriptors
Borne
Borne
Terminal
Borne de Linha
Borne de Ligne
Line Terminal
Borne Neutro
Borne Neutre
Neutral Terminal
Bornes Homólogos
Bornes Homologues
Corresponding Terminals
Enrolamento
Enroulement
Winding
Enrolamento de Alta Tensão
Enroulement Haute Tension
High-Voltage Winding
Enrolamento de Baixa Tensão
Enroulement Basse Tension
Low-Voltage Winding
Enrolamento de Fase
Enroulement de Phase
Phase Winding
Grupos de Ligação
Groupes de Couplage
Groups Connection
Índices Horários
Indices Horaires
Clock Hour Figures
Ponto Neutro
Point Neutre
Neutral Point
Símbolos de Ligações
Symboles des Couplages
Connection Symbols
Transformadores de Potência
Transformateurs de Puissance
Power Transformers
Introdução No seguimento dos artigos que publiquei (em www.pdfcoke.com): “Índices Horários dos Transformadores de Potência” e “Grupos de Ligação dos Transformadores de Potência”, entendo ser útil abordar o tema “Enrolamentos dos Transformadores de Potência”.
A. A. A. C. Barrias
2 / 59
Embora alguns dos enrolamentos, da BT, não estejam normalizados pela C. E. I., julgo ser didáctico apresentá-los. “Enrolamento y0 ”: u y0 = u na = u ∠ 0?⇔ u y0 = u na = u ∠ 0h . “Enrolamento y2 ”: u y2 = u cn = u ∠ − 60?⇔ u y2 = u cn = u ∠ + 2h . “Enrolamento y4 ”: u y4 = u nb = u ∠ − 120?⇔ u y4 = u nb = u ∠ + 4h . “Enrolamento y6 ”: u y6 = u an = u ∠ − 180?⇔ u y6 = u an = u ∠ + 6h . “Enrolamento y8 ”: u y8 = u nc = u ∠ - 240º ⇔ u y8 = u nc = u ∠ + 8h . “Enrolamento y10 ”: u y10 = u bn = u ∠ − 300?⇔ u y10 = u bn = u ∠ + 10h . “Enrolamento d1 ”: u d1 = u ca = 3 ⋅ u ∠ − 30?⇔ u d1 = u ca = 3 ⋅ u ∠ + 1h . “Enrolamento d3 ”: u d3 = u cb = 3 ⋅ u ∠ − 90?⇔ u d3 = u cb = 3 ⋅ u ∠ + 3h . “Enrolamento d5 ”: u d5 = u ab = 3 ⋅ u ∠ − 150?⇔ u d5 = u ab = 3 ⋅ u ∠ + 5h .
“Enrolamento d7 ”: u d7 = u ac = 3 ⋅ u ∠ - 210?⇔ u d7 = u ac = 3 ⋅ u ∠ + 7h . “Enrolamento d9 ”: u d9 = u bc = 3 ⋅ u ∠ − 270?⇔ u d9 = u bc = 3 ⋅ u ∠ + 9h . “Enrolamento d11 ”: u d11 = u ba = 3 ⋅ u ∠ − 330?⇔ u d11 = u ba = 3 ⋅ u ∠ + 11h . “Enrolamento z1 ”: u z1 =
1 1 ⋅ u ∠ − 30?⇔ u z1 = ⋅ u ∠ + 1h . 3 3
“Enrolamento z3 ”: u z3 =
1 1 ⋅ u ∠ − 90?⇔ u z3 = ⋅ u ∠ + 3h . 3 3
“Enrolamento z5 ”: u z5 =
1 1 ⋅ u ∠ − 150?⇔ u z5 = ⋅ u ∠ + 5h . 3 3
“Enrolamento z7 ”: u z7 =
1 1 ⋅ u ∠ − 210º ⇔ u z7 = ⋅ u ∠ + 7h . 3 3
“Enrolamento z9 ”: u z9 =
1 1 ⋅ u ∠ − 270?⇔ u z9 = ⋅ u ∠ + 9h . 3 3
“Enrolamento z11 ”: u z11 =
1 1 ⋅ u ∠ − 330?⇔ u z11 = ⋅ u ∠ + 11h . 3 3
Faço votos para que este documento seja útil e agradeço, antecipadamente, os vossos comentários. A. A. A. C. Barrias
3 / 59
Algumas definições
Enrolamento
Conjunto das espiras que constituem o circuito eléctrico associado a uma das tensões estipuladas para as quais o transformador foi concebido. Nota – Para um transformador polifásico, o “enrolamento” é o “conjunto dos enrolamentos de fase”.
Enrolamento de alta tensão
Enrolamento de tensão estipulada mais elevada.
Enrolamento de baixa tensão
Enrolamento de tensão estipulada mais baixa.
Enrolamento de fase
Conjunto das espiras que constituem uma fase de um enrolamento polifásico. Nota – O termo “enrolamento de fase” não deve ser utilizado para designar o conjunto de bobinas dispostas numa dada coluna (perna) do núcleo.
Enrolamento primário
Enrolamento que, em serviço, recebe da rede de alimentação a potência activa, real ou efectiva.
Enrolamento secundário
Enrolamento que, em serviço, fornece a potência activa, real ou efectiva ao circuito de utilização.
Terminais homólogos
Terminais dos diferentes enrolamentos de um transformador, identificados com as mesmas letras ou com símbolos correspondentes.
Enrolamento à Direita (Horário)
Se (para percorrer integralmente o enrolamento desde o "terminal de entrada" até ao "terminal de saída") tivermos de caminhar, rodando, no sentido horário.
Enrolamento à Esquerda (Trigonométrico)
Se (para percorrer integralmente o enrolamento desde o "terminal de entrada" até ao "terminal de saída") tivermos de caminhar, rodando, no sentido trigonométrico.
Número de terminais de um enrolamento Neste estudo, apenas consideramos enrolamentos com dois terminais: o "terminal 1" e o "terminal 2".
Designação dos terminais de um enrolamento
Os "terminais 1 e 2 de um enrolamento" são designados, arbitrariamente, por "entrada" e "saída", respectivamente.
A. A. A. C. Barrias
4 / 59
Outras designações comummente utilizadas na literatura técnica são:
Terminal 1
Borne 1
Terminal 1
Entrada
Entrée
Entrance
Início
Début
Beginning
Origem
Origine
Origin
Partida
Départ
Start
Terminal 2
Borne 2
Terminal 2
Chegada
Arrivée
Arrival
Extremidade
Extrémité
Extremity
Fim
Fin
Finish
Saída
Sortie
Exit
Sentidos dos enrolamentos:
Sentido Horário (Espacial)
Anti-trigonométrico
Anti-trigonométrique
Counter-trigonometric
Horaire
Clockwise
Inverse
Inverse
Negativo
Négatif
Negative
Retrógrado
Rétrograde
Retrograde
Dextrorso
Dextrorsu
Horário Inverso
Inversu
A. A. A. C. Barrias
5 / 59
Sentido Trigonométrico (Temporal)
Anti-horário Directo
Directu
Positivo Sinistrorso
Trigonométrico
Anti-horaire
Counter-clockwise
Direct
Direct
Positif
Positive
Trigonométrique
Trigonometric
Sinistrorsu
Definições dos dicionários Movimento Directo: Movimento de um corpo celeste no mesmo sentido que a terra gira em torno do sol. Movimento Retrógrado: Movimento de um corpo celeste no sentido contrário ao que a terra efectua em torno do sol. Dextrorso: Adjectivo com o significado “que se desenvolve, gira, torce, da esquerda para a direita, no sentido em que observamos o movimento dos ponteiros de um relógio. (lat. Dextrorsu). Sinistrorso: Adjectivo com o significado “que se enrola ou move em sentido contrário aos ponteiros de um relógio”. (lat. Sinistrorsu).
Nas figuras seguintes, apresentamos exemplos de “enrolamentos à esquerda e à direita”:
A. A. A. C. Barrias
6 / 59
Enrolamentos à Esquerda
Φ
I
Φ
I
A
A
UAN
UAN II
I
I
I
Enrolamentos à Direita
I
I A
A UAN
UAN I I
I
Φ
Φ
Usualmente, os fabricantes de transformadores constroem os enrolamentos com o mesmo sentido de bobinagem: ou à esquerda ou à direita. Nas figuras seguintes apresentamos as duas construções utilizadas.
A. A. A. C. Barrias
7 / 59
Transformador Monofásico com os Enrolamentos à Esquerda Φ
A I +
UAN
Receptor
I -
Φ
N a
Φ
i
+
uan
-
i
Gerador
n Φ
UAN A
I N
i
a
uan n
Transformador Monofásico com os Enrolamentos à Direita Φ
A I +
Receptor
UAN -
N a uan
Φ
Φ
i
+
Gerador -
n Φ
UAN A
I N
a
i
uan n
A. A. A. C. Barrias
8 / 59
Cálculos Justificativos dos Símbolos de Ligação dos Transformadores de Potência Permutações Circulares no Sentido Horário e no Sentido Trigonométrico Dd0 ⇔ D5 - d5 1 FD5 N D N N U= ⋅ ⋅ u ∠Θ D5 − θ d5 ⇔ U = 3 ⋅ D ⋅ u ∠ + 150?−150º ⇔ U = D ⋅ u ∠ 0? 1 f d5 n d nd nd 3
Ou: U D5 u d5
=
3 U ∠ + 5h N U U N N ⋅ ⇔ D = ∠ 0h ⇔ = D ∠ 0h ⇔ U = D ⋅ u ∠ 0h nd u u nd nd 3 u ∠ + 5h
Dd4 ⇔ D5 - d1 1 FD5 N D N N U= ⋅ ⋅ u ∠Θ D5 − θ d1 ⇔ U = 3 ⋅ D ⋅ u ∠ + 150?−30º ⇔ U = D ⋅ u ∠ + 12 0? 1 nd f d1 n d nd 3
Ou: U D5 u d1
=
3 U ∠ + 5h N U U N N ⋅ ⇔ D = ∠ + 4h ⇔ = D ∠ − 4h ⇔ U = D ⋅ u ∠ − 4h nd u u nd nd 3 u ∠ + 1h Dd8 ⇔ D5 (17) - d9
1 FD17 N D N N U= ⋅ ⋅ u ∠Θ D17 − θ d9 ⇔ U = 3 ⋅ D ⋅ u ∠ + 510?−270º ⇔ U = D ⋅ u ∠ + 2 40? 1 f d9 n d nd nd 3
Ou: U D17 3 U ∠ + 17 h N U U N N = ⋅ ⇔ D = ∠ + 8h ⇔ = D ∠ − 8h ⇔ U = D ⋅ u ∠ − 8h u d9 nd u u nd nd 3 u ∠ + 9h
Na página seguinte, apresentamos os “Símbolos de Ligação” Dd0, Dd4 e Dd8.
A. A. A. C. Barrias
9 / 59
Dd0
D5-d5
D5
d5
UD
0 A
A
ud B
b
1
1
2U
B
c
2
UD
8 C
C
a
Dd4
A
ud B
a
1
1
b
2
UD
8 C
C
c
Dd8
A
c
1
2
C
C
3
b
0
c
4
d
C
a
UD
8
8
b
2u
D
B
B
b
3
ud B
1 2U
4
a
d9
UD A
4
D5-d9
D5
0
a
c
ud A
3
0
d
C
2
B
c
c
2u
D
B
8
d1
2U
4
c
3
UD A
b
D5-d1
D5
0
4
a
ud A
3
b
d
C
2
B
0
2u
D
4
a
2
b
c
ud A
b
3
a
8 a
A. A. A. C. Barrias
10 / 59
Yy0 ⇔ Y6 - y6
U=
FY6 N Y 1 N N ⋅ ⋅ u ∠Θ Y6 − θ y6 ⇔ U = ⋅ Y ⋅ u ∠ + 180?−180? ⇔ U = Y ⋅ u ∠ 0? f y6 n y 1 ny ny
Ou: U Y6 1 U ∠ + 6h N U U N N = ⋅ ⇔ Y = ∠ 0h ⇔ = Y ∠ 0h ⇔ U = Y ⋅ u ∠ 0h u y6 1 u ∠ + 6h ny u u ny ny
Yy4 ⇔ Y6 - y2
U=
FY6 N Y 1 N N ⋅ ⋅ u ∠Θ Y6 − θ y2 ⇔ U = ⋅ Y ⋅ u ∠ + 180?−60? ⇔ U = Y ⋅ u ∠ + 12 0? f y2 n y 1 ny ny
Ou: U Y6 1 U ∠ + 6h N U U N N = ⋅ ⇔ Y = ∠ + 4h ⇔ = Y ∠ − 4h ⇔ U = Y ⋅ u ∠ − 4h u y2 1 u ∠ + 2h ny u u ny ny Yy8 ⇔ Y6 (18) - y10
U=
FY18 N Y 1 N N ⋅ ⋅ u ∠Θ Y18 − θ y10 ⇔ U = ⋅ Y ⋅ u ∠ + 540?−300? ⇔ U = Y ⋅ u ∠ + 24 0? f y10 n y 1 ny ny
Ou: U Y18 1 U ∠ + 18h N N U U NY = ⋅ ⇔ Y = ∠ + 8h ⇔ = ∠ − 8h ⇔ U = Y ⋅ u ∠ − 8h u y10 1 u ∠ + 10h ny u u ny ny
Na página seguinte, apresentamos os “Símbolos de Ligação” Yy0, Yy4 e Yy8.
A. A. A. C. Barrias
11 / 59
Yy0
Y6-y6
Y6
y6
UY A
0
B
4
uy
0 1
n
N
2U Y
2
2u
y
n
N
UY C
8 3
n
N
Y6-y2 y2
UY
uy
0
0 1
n
N
y
n
N
n
N
a
b
3
Y6-y10
Y6
y10
UY
uy
0
0 1
N
n
2U Y
b
1 2u
y
4 2
N
n
UY C
4
8
8
Yy8
B
2 uy
UY
A
c
1 2u
4
3
c
3
Y6
2
C
b
uy
2U Y
B
4 2
8
Yy4
A
a
1
4 2
c
uy
8
8 3
N
n
3
a
A. A. A. C. Barrias
12 / 59
Dz0 ⇔ D5 - z5
1 F N U = 2 ⋅ D5 ⋅ D ⋅ u ∠Θ D5 − θ z5 f z5 n z
2 N N ⇔ U = 2 ⋅ 3 ⋅ D ⋅ u ∠ + 150?−150? ⇔ U = ⋅ D ⋅ u ∠ 0? nz
3
3 nz
Ou: U D5 3 U ∠ + 5h N U U 2 ND 2 N = ⋅ ⇔ D = 3 ⋅ ∠ 0h ⇔ = ⋅ ∠ 0h ⇔ U = ⋅ D ⋅ u ∠ 0h 1 u ∠ + 5h nz u z5 u u 3 nz 3 nz 2 3
Dz4 ⇔ D5 - z1
1 F N U = 2 ⋅ D5 ⋅ D ⋅ u ∠Θ D5 − θ z1 f z1 n z
2 N N ⇔ U = 2 ⋅ 3 ⋅ D ⋅ u ∠ + 150?−30? ⇔ U = ⋅ D ⋅ u ∠ + 12 0? nz
3
3 nz
Ou: U D5 3 U ∠ + 5h N U U 2 ND 2 N = ⋅ ⇔ D = 3 ⋅ ∠ + 4h ⇔ = ⋅ ∠ − 4h ⇔ U = ⋅ D ⋅ u ∠ − 4h 1 n u z1 u ∠ + 1h u u 3 nz 3 nz z 2 3
Dz8 ⇔ D5 (17) - z9
1
U = 2⋅
FD17 N D ⋅ ⋅ u ∠Θ D17 − θ z9 f z9 n z
N 2 N ⇔ U = 2 ⋅ 3 ⋅ D ⋅ u ∠ + 510?−270? ⇔ U = ⋅ D ⋅ u ∠ + 240? 3
nz
3 nz
Ou: U D17 3 U ∠ + 17h N U U 2 ND 2 N = ⋅ ⇔ D = 3 ⋅ ∠ + 8h ⇔ = ⋅ ∠ − 8h ⇔ U = ⋅ D ⋅ u ∠ − 8h 1 u ∠ + 9h nz u z9 u u 3 nz 3 nz 2 3
Na página seguinte, apresentamos os “Símbolos de Ligação” Dz0, Dz4 e Dz8.
A. A. A. C. Barrias
13 / 59
Dz0
D5-z5
D5
z5
UD
0 A
A
1
n
2U
4
C
2
n
C
C
n
Dz4
A
uz n
C
n
C
C
n
Dz8
A
C
C
3
4 2
a
8 b
3
uz
2
D
C
n
y
1
x
z
2
y
uz A
n
3
b uz
4 2
uz x
z
0
1 2
uz
UD
8
z
uz n
2
uz
z9
1
B
B
x
3
c
uz
B
2U
4
y
0
D5-z9
UD A
z
2
D5
0
c
1 2
uz A
3
x
uz
UD
8
b
8
3
uz y
1 2
D
2
4 2
z1
1
B
B
z
B
2U
4
uz
D5-z1
UD A
y
a
uz x
3
D5
0
z
2
0
1 2
uz A
3
x
uz
UD
8
uz y
1 2
D
B
B
uz B
3
c
8 a
A. A. A. C. Barrias
14 / 59
Dy1 ⇔ D7 - y6 1 F N U = D7 ⋅ D ⋅ u ∠Θ D7 − θ y6 f y6 n y
N 1 ND ⇔ U = 3 ⋅ D ⋅ u ∠ + 210?−180? ⇔ U = ⋅ ⋅ u ∠ + 30? 1
ny
ny
3
Ou: U D7 3 U ∠ + 7h N U U 1 ND 1 ND = ⋅ ⇔ D = 3 ⋅ ∠ + 1h ⇔ = ⋅ ∠ − 1h ⇔ U = ⋅ ⋅ u ∠ − 1h u y6 1 u ∠ + 6h ny u u 3 ny 3 ny
Dy5 ⇔ D7 - y2 1 F N U = D7 ⋅ D ⋅ u ∠Θ D7 − θ y2 f y2 n y
N 1 ND ⇔ U = 3 ⋅ D ⋅ u ∠ + 210?−60? ⇔ U = ⋅ ⋅ u ∠ + 150? 1
ny
ny
3
Ou: U D7 u y2
=
3 U ∠ + 7h N U U 1 ND 1 ND ⋅ ⇔ D = 3 ⋅ ∠ + 5h ⇔ = ⋅ ∠ − 5h ⇔ U = ⋅ ⋅ u ∠ − 5h 1 u ∠ + 2h ny u u 3 ny 3 ny
Dy9 ⇔ D7 (19) - y10 1
F N U = D19 ⋅ D ⋅ u ∠Θ D19 − θ y10 f y10 n y
N 1 ND ⇔ U = 3 ⋅ D ⋅ u ∠ + 570?−300? ⇔ U = ⋅ ⋅ u ∠ + 270? 1
ny
3
ny
Ou: U D19 u y10
=
3 U ∠ + 19h N U U 1 ND 1 ND ⋅ ⇔ D = 3 ⋅ ∠ + 9h ⇔ = ⋅ ∠ − 9h ⇔ U = ⋅ ⋅ u ∠ − 9h 1 u ∠ + 10h ny u u 3 ny 3 ny
Na página seguinte, apresentamos os “Símbolos de Ligação” Dy1, Dy5 e Dy9.
A. A. A. C. Barrias
15 / 59
Dy1
D7-y6
D7
y6
UD
0
uy
A
1
C
1
A
2U
4
n
2u y
D
2
A
n
UD
9 B
n
Dy5
y2
UD
uy
A
1
C
1
A
2U
n
2u y
D
2
A
n
UD
9 B
n
Dy9
y10 uy
UD A
1
C n
1
A
2U
2u y
D
2
b
1
B
B
c
3
D7-y10
D7
A
n
UD C
b
uy
3
8
5 2
C
C
4
c
1
B
B
0
c
3
D7-y2
D7
8
b
uy
3
4
2
C
C
0
5
B
B
8
a
1
2
5 c
uy
9
C
3
B
n
3
a
A. A. A. C. Barrias
16 / 59
Yd1 ⇔ Y6 - d5
U=
FY6 N Y ⋅ ⋅ u ∠Θ Y6 − θ d5 f d5 n d
⇔ U=
1 NY ⋅ ⋅ u ∠ + 180?−150º 1 nd 3
⇔ U= 3⋅
NY ⋅ u ∠ + 30? nd
Ou: U Y6 N N N 1 U ∠ + 6h 1 U U = ⋅ ⇔ Y = ⋅ ∠ + 1h ⇔ = 3 ⋅ Y ∠ − 1h ⇔ U = 3 ⋅ Y ⋅ u ∠ − 1h u d5 u ∠ + 5h n u u n nd 3 3 d d
Yd5 ⇔ Y6 - d1
U=
FY6 N Y ⋅ ⋅ u ∠Θ Y6 − θ d1 f d1 n d
N ⇔ U = 1 ⋅ N Y ⋅ u ∠ + 180?−30º ⇔ U = 3 ⋅ Y ⋅ u ∠ + 150? 1
nd
nd
3
Ou: U Y6 u d1
=
1
U ∠ + 6h N 1 U U N N ⋅ ⇔ Y = ⋅ ∠ + 5h ⇔ = 3 ⋅ Y ∠ − 5h ⇔ U = 3 ⋅ Y ⋅ u ∠ − 5h nd u nd nd 3 u ∠ + 1h 3 u
Yd9 ⇔ Y6 (18) - d9
U=
FY18 N Y ⋅ ⋅ u ∠Θ Y18 − θ d9 f d9 n d
⇔ U=
1 NY ⋅ ⋅ u ∠ + 540?−270º 1 nd 3
⇔ U= 3⋅
NY ⋅ u ∠ + 270? nd
Ou: U Y18 u d9
=
1
U ∠ + 18h N 1 U U N N ⇔ Y = ⋅ ∠ + 9h ⇔ = 3 ⋅ Y ∠ − 9h ⇔ U = 3 ⋅ Y ⋅ u ∠ − 9h u ∠ + 9h n u u n nd 3 3 d d ⋅
Na página seguinte, apresentamos os “Símbolos de Ligação” Yd1, Yd5 e Yd9.
A. A. A. C. Barrias
17 / 59
Yd1
Y6-d5
Y6
d5
UY
ud
0
b
1
A
1
N
2U Y
2u
4 2
B
c
UY
3
a
UY
1
N
2U Y
2u
4
b
UY
3
1
N
2U Y
2u
a N
UY
b
b
1
c
5
d
2
b
c
ud
8 3
9
ud c
4
C
b
Y6-d9
UY
2
5
d9
0
B
a
c
a
3
N
Y6
1
1
ud c
Yd9
A
c
d
2
N
8 C
c
ud a
2
9
d1
0
B
c
Y6-d1
Y6
1
5 b
3
N
Yd5
A
b
a
ud
8 C
1
d
2
N
a
b N
3
a
9 a
A. A. A. C. Barrias
18 / 59
Yz1 ⇔ Y6 - z5 U = 2⋅
FY6 N Y 1 NY 2 NY ⋅ ⋅ u ∠ + 180?−150º ⇔ U = ⋅ ⋅ u ∠ + 30? ⋅ ⋅ u ∠Θ Y6 − θ z5 ⇔ U = 2 ⋅ f z5 n z 3 nz 3 nz
Ou: U Y6 N 1 U ∠ + 6h U U 2 NY 2 NY = ⋅ ⇔ Y = 3 ⋅ ∠ + 1h ⇔ = ⋅ ∠ − 1h ⇔ U = ⋅ ⋅ u ∠ − 1h 1 u ∠ + 5h nz u z5 u u n 3 3 nz z 2 3
Yz5 ⇔ Y6 - z1 U = 2⋅
FY6 N Y 1 NY 2 NY ⋅ ⋅ u ∠ + 180?−30º ⇔ U = ⋅ ⋅ u ∠ + 150? ⋅ ⋅ u ∠Θ Y6 − θ z1 ⇔ U = 2 ⋅ f z1 n z 3 nz 3 nz
Ou: U Y6 u z1
=
1 U ∠ + 6h N U U 2 NY 2 NY ⋅ ⇔ Y = 3 ⋅ ∠ + 5h ⇔ = ⋅ ∠ − 5h ⇔ U = ⋅ ⋅ u ∠ − 5h 1 u ∠ + 1h nz u u n 3 3 nz z 2 3
Yz9 ⇔ Y6 (18) - z9
U = 2⋅
FY18 N Y 1 NY 2 NY ⋅ ⋅ u ∠Θ Y18 − θ z9 ⇔ U = 2 ⋅ ⋅ ⋅ u ∠ + 540?−270º ⇔ U = ⋅ ⋅ u ∠ + 270? f z9 n z n 3 3 nz z
Ou: U Y18 u z9
=
1 U ∠ + 18h N U U 2 NY 2 NY ⋅ ⇔ Y = 3 ⋅ ∠ + 9h ⇔ = ⋅ ∠ − 9h ⇔ U = ⋅ ⋅ u ∠ − 9h 1 u ∠ + 9h nz u u 3 nz 3 nz 2 3
Na página seguinte, apresentamos os “Símbolos de Ligação” Yz1, Yz5 e Yz9.
A. A. A. C. Barrias
19 / 59
Yz1
Y6-z5
Y6
z5
UY A
0
B
4
1
uz n
N
2
2U Y
2
n
N
uz n
N
Yz5
B
4
1
n
N
2
n
N
n
N
3
N
n
y
2
x
z
3
uz
a
9 b
N
n
uz y
1 2
4
x
2
z
y
x
z
uz N
n
3
1 b
1 2
uz
UY
8 3
uz
5
z
uz
2U Y
C
c
z9
0
2
1
Y6-z9
UY
B
c
1 2
uz
2
Y6
1
x
uz
Yz9
A
b
9
3
uz y
1
8 3
z
uz
UY C
5 2
z1
2U Y
2
uz
Y6-z1
UY A
a
uz x
3
Y6 0
y
1
1 2
z
2
8 3
x
uz
UY C
uz y
1
uz
5 2
uz 3
c
9 a
A. A. A. C. Barrias
20 / 59
Dd2 ⇔ D7 - d5 1 FD7 N D N N U= ⋅ ⋅ u ∠Θ D7 − θ d5 ⇔ U = 3 ⋅ D ⋅ u ∠ + 210?−150? ⇔ U = D ⋅ u ∠ + 60? 1 nd f d5 n d nd 3
Ou: U D7 = u d5
3 U ∠ + 7h N U U ND N ⋅ ⇔ D = ∠ + 2h ⇔ = ∠ − 2h ⇔ U = D ⋅ u ∠ − 2h nd u u nd nd 3 u ∠ + 5h
Dd6 ⇔ D7 - d1 1 FD7 N D N N U= ⋅ ⋅ u ∠Θ D7 − θ d1 ⇔ U = 3 ⋅ D ⋅ u ∠ + 210?−30º ⇔ U = D ⋅ u ∠ + 180? 1 f d1 n d nd nd 3
Ou: U D7 u d1
=
3 U ∠ + 7h N U U N N ⋅ ⇔ D = ∠ + 6h ⇔ = D ∠ − 6h ⇔ U = D ⋅ u ∠ − 6h u ∠ + 1h n u u n nd 3 d d
Dd10 ⇔ D7 (19) - d9 1 FD19 N D N N U= ⋅ ⋅ u ∠Θ D19 − θ d9 ⇔ U = 3 ⋅ D ⋅ u ∠ + 570?−270? ⇔ U = D ⋅ u ∠ + 300? 1 f d9 n d nd nd 3
Ou: U D19 u d9
=
3 U ∠ + 19 h N U U N N ⋅ ⇔ D = ∠ + 10 h ⇔ = D ∠ − 10 h ⇔ U = D ⋅ u ∠ − 10 h nd u u nd nd 3 u ∠ + 9h
Na página seguinte, apresentamos os “Símbolos de Ligação” Dd2, Dd6 e Dd10.
A. A. A. C. Barrias
21 / 59
Dd2
D7-d5
d5
D7 UD
0
ud
A
b
C
1
1
A
2U
2u
D
4
B
c
2
B
UD
8
a
3
C
a
1
1
2U
2u
D
B
2
b
A
3
c
B
Dd10
1
2U
2u
D
2
A
a
UD
8 C
10 b
b
2
c
6
d
2
b
c
ud
C
3
b
3
c
B
B
a
ud C
1
4
6
d9
UD A
A
a
c
D7-d9
D7 0
2
ud
C
C
c
d
2
UD
8
c
ud
A
B
10
d1
UD
4
c
D7-d1
D7
A
6 b
3
B
Dd6
0
b
a
ud
C
C
2
d
2
A
a
B
b
3
a
10 a
A. A. A. C. Barrias
22 / 59
Dz2 ⇔ D7 - z5 1 F N U = 2 ⋅ D7 ⋅ D ⋅ u ∠Θ D7 − θ z5 ⇔ U = 2 ⋅ f z5 n z
3 ⋅ N D ⋅ u ∠ + 210?−150? ⇔ U = 2 ⋅ N D ⋅ u ∠ + 60? 3 nz 3 nz
Ou: U D7 3 U ∠ + 7h N U U 2 ND 2 N = ⋅ ⇔ D = 3 ⋅ ∠ + 2h ⇔ = ⋅ ∠ − 2h ⇔ U = ⋅ D ⋅ u ∠ − 2h 1 u ∠ + 5h nz u z5 u u 3 nz 3 nz 2 3
Dz6 ⇔ D7 - z1 1 F N U = 2 ⋅ D7 ⋅ D ⋅ u ∠Θ D7 − θ z1 ⇔ U = 2 ⋅ f z1 n z
3 ⋅ N D ⋅ u ∠ + 210?−30? ⇔ U = 2 ⋅ N D ⋅ u ∠ + 180? 3 nz 3 nz
Ou: U D7 3 U ∠ + 7h N U U 2 ND 2 N = ⋅ ⇔ D = 3 ⋅ ∠ + 6h ⇔ = ⋅ ∠ − 6h ⇔ U = ⋅ D ⋅ u ∠ − 6h 1 n u z1 u ∠ + 1h u u 3 nz 3 nz z 2 3
Dz10 ⇔ D7 (19) - z9 1 F N U = 2 ⋅ D19 ⋅ D ⋅ u ∠Θ D19 − θ z9 ⇔ U = 2 ⋅ f z9 n z
3 ⋅ N D ⋅ u ∠ + 570?−270? ⇔ U = 2 ⋅ N D ⋅ u ∠ + 300? 3 nz 3 nz
Ou: U D19 u z9
=
3 U ∠ + 19h N U U 2 N 2 N ⋅ ⇔ D = 3 ⋅ ∠ + 10h ⇔ = ⋅ D ∠ − 10h ⇔ U = ⋅ D ⋅ u ∠ − 10h 1 u ∠ + 9h nz u u 3 nz 3 nz 2 3
Na página seguinte, apresentamos os “Símbolos de Ligação” Dz2, Dz6 e Dz10.
A. A. A. C. Barrias
23 / 59
Dz2
D7-z5
z5
D7 UD
0
uz
A
C
n
1
A
2U
4
2
B
n
A
uz
3
n
B
Dz6
n
2
n
A
n
B
Dz10
uz
6 2
n
1
uz
2
A
n
y
1 2
D
B
B
b
C
2U
x
2
uz z
2
y
uz
UD B
n
3
b uz
6 2
uz x
z
2
1
C
3
10
3
z9 uz
A
A
z
a
D7-z9
UD
C
y
c
uz x
3
D7
8
z
2
2
1 2
uz
3
4
c
C
C
0
x
uz
UD
8
b
10
3
uz y
1 2
D
B
B
z
uz C
2U
4
6 2
z1
1
A
uz
D7-z1
UD A
a
uz x
3
D7 0
y
2
1 2
z
2
C
C
x
uz
UD
8
y
1 2
D
B
uz
3
c
10 a
A. A. A. C. Barrias
24 / 59
Dd4 ⇔ D5 - d1 1 FD5 N D N N U= ⋅ ⋅ u ∠Θ D5 − θ d1 ⇔ U = 3 ⋅ D ⋅ u ∠ + 150?−30? ⇔ U = D ⋅ u ∠ + 120? 1 nd f d1 n d nd 3
Ou: U D5 = u d1
3 U ∠ + 5h N U U ND N ⋅ ⇔ D = ∠ + 4h ⇔ = ∠ − 4h ⇔ U = D ⋅ u ∠ − 4h nd u u nd nd 3 u ∠ + 1h
Dd8 ⇔ D5 (17) - d9 1 FD17 N D N N U= ⋅ ⋅ u ∠Θ D17 − θ d9 ⇔ U = 3 ⋅ D ⋅ u ∠ + 510?−270? ⇔ U = D ⋅ u ∠ + 240? 1 nd f d9 n d nd 3
Ou: U D17 u d9
3 U ∠ + 17h N U U N N ⋅ ⇔ D = ∠ + 8h ⇔ = D ∠ − 8h ⇔ U = D ⋅ u ∠ − 8h nd u u nd nd 3 u ∠ + 9h
=
Dd0 ⇔ D5 - d5 1 FD5 N D N N U= ⋅ ⋅ u ∠Θ D5 − θ d5 ⇔ U = 3 ⋅ D ⋅ u ∠ + 150?−150? ⇔ U = D ⋅ u ∠ 0? 1 f d5 n d nd nd 3
Ou: U D5 u d5
=
3 U ∠ + 5h N U U N N ⋅ ⇔ D = ∠ 0h ⇔ = D ∠ 0h ⇔ U = D ⋅ u ∠ 0h nd u u nd nd 3 u ∠ + 5h
Na página seguinte, apresentamos os “Símbolos de Ligação” Dd4, Dd8 e Dd0.
A. A. A. C. Barrias
25 / 59
Dd4
D5 - d1
D5 0 A
ud
UD A
1
1 2u
D
B
2
UD
8 C
C
3
Dd8
A
1
1
2
C
C
c
A
a
2
3
3
A
a
1
1
2u
D
2
C
b
C
C
3
0
b
4
c
8
A
c
a
0
d
2
b
b
c
ud
UD
8
b
a
ud B
B
B
8
d5
UD
2U
4
a
c
D5 – d5
D5
A
4
c
ud
Dd0
0
c
d
C
UD
8
0
2u
D
B
B
c
b
ud b
B
2U
4
8
d9
UD A
b
a
D5-d9
D5
0
4
ud b
A
3
a
d
a
C
2
B
c
B
2U
4
d1
3
a
A. A. A. C. Barrias
26 / 59
Dz4 ⇔ D5 - z1 1 F N U = 2 ⋅ D5 ⋅ D ⋅ u ∠Θ D5 − θ z1 ⇔ U = 2 ⋅ f z1 n z
3 ⋅ N D ⋅ u ∠ + 150?−30? ⇔ U = 2 ⋅ N D ⋅ u ∠ + 120º 3 nz 3 nz
Ou: U D5 3 U ∠ + 5h N U U 2 ND 2 N = ⋅ ⇔ D = 3 ⋅ ∠ + 4h ⇔ = ⋅ ∠ − 4h ⇔ U = ⋅ D ⋅ u ∠ − 4h 1 u ∠ + 1h nz u z1 u u 3 nz 3 nz 2 3
Dz8 ⇔ D5 (17) - z9 1 F N U = 2 ⋅ D17 ⋅ D ⋅ u ∠Θ D17 − θ z9 ⇔ U = 2 ⋅ f z9 n z
3 ⋅ N D ⋅ u ∠ + 510?−270? ⇔ U = 2 ⋅ N D ⋅ u ∠ + 240º 3 nz 3 nz
Ou: U D17 u z9
=
3 U ∠ + 17h N U U 2 N 2 N ⋅ ⇔ D = 3 ⋅ ∠ + 8h ⇔ = ⋅ D ∠ − 8h ⇔ U = ⋅ D ⋅ u ∠ − 8h 1 u ∠ + 9h nz u u 3 nz 3 nz 2 3
Dz0 ⇔ D5 - z5 1 F N U = 2 ⋅ D5 ⋅ D ⋅ u ∠Θ D5 − θ z5 ⇔ U = 2 ⋅ f z5 n z
3 ⋅ N D ⋅ u ∠ + 150?−150? ⇔ U = 2 ⋅ N D ⋅ u ∠ 0º 3 nz 3 nz
Ou: U D5 u z5
=
3 U ∠ + 5h N U U 2 N 2 N ⋅ ⇔ D = 3 ⋅ ∠ 0h ⇔ = ⋅ D ∠ 0h ⇔ U = ⋅ D ⋅ u ∠ 0h 1 u ∠ + 5h nz u u 3 nz 3 nz 2 3
Na página seguinte, apresentamos os “Símbolos de Ligação” Dz4, Dz8 e Dz0.
A. A. A. C. Barrias
27 / 59
Dz4
D5-z1
D5
z1
UD
0 A
A
1
n
2U
4
B
B
uz
B
C
C
2
n
3
n
C
n
2
C
n
3
1
n
C
C
3
c uz
8 2
uz y
3
n
z
a
0 b
3
2
C
n
uz z
1
x
x
2
y
uz A
n
3
b uz
8 2
uz y
z
4
1 2
uz
UD
8
y
4
1
D5-z5
D
2
B
x
uz
B
c
z5 B
2U
4
b
0
3
2
uz A
UD A
x
uz
2
D5
A
z
uz z
1
D
Dz0
0
y
3
UD C
8 2
z9
1
2
8
uz
uz
uz
B
B
a
D5-z9
B
2U
4
y
uz
UD A
x
2
D5
A
2
uz
4
1
A
Dz8
0
x
C
UD
8
z
1 2
D
uz
3
c
0 a
A. A. A. C. Barrias
28 / 59
Dy5 ⇔ D5 - y0 1 FD5 N D N 1 ND U= ⋅ ⋅ u ∠Θ D5 − θ y0 ⇔ U = 3 ⋅ D ⋅ u ∠ + 150?−0? ⇔ U = ⋅ ⋅ u ∠ + 150? f y0 n y 1 ny 3 ny
Ou: U D5 3 U ∠ + 5h N U U 1 ND 1 ND = ⋅ ⇔ D = 3 ⋅ ∠ + 5h ⇔ = ⋅ ∠ − 5h ⇔ U = ⋅ ⋅ u ∠ − 5h u y0 1 u ∠ 0h ny u u 3 ny 3 ny
Dy9 ⇔ D5 (17) - y8 1 FD17 N D N 1 ND U= ⋅ ⋅ u ∠Θ D17 − θ y8 ⇔ U = 3 ⋅ D ⋅ u ∠ + 510?−240? ⇔ U = ⋅ ⋅ u ∠ + 270? f y8 n y 1 ny 3 ny
Ou: U D17 u y8
=
3 U ∠ + 17h N U U 1 ND 1 ND ⋅ ⇔ D = 3 ⋅ ∠ + 9h ⇔ = ⋅ ∠ − 9h ⇔ U = ⋅ ⋅ u ∠ − 9h 1 u ∠ + 8h ny u u 3 ny 3 ny
Dy1 ⇔ D5 - y4 1 FD5 N D N 1 ND U= ⋅ ⋅ u ∠Θ D5 − θ y4 ⇔ U = 3 ⋅ D ⋅ u ∠ + 150?−120º ⇔ U = ⋅ ⋅ u ∠ + 30? f y4 n y 1 ny 3 ny
Ou: U D5 u y4
=
3 U ∠ + 5h N U U 1 ND 1 ND ⋅ ⇔ D = 3 ⋅ ∠ + 1h ⇔ = ⋅ ∠ − 1h ⇔ U = ⋅ ⋅ u ∠ − 1h 1 u ∠ + 4h ny u u 3 ny 3 ny
Na página seguinte, apresentamos os “Símbolos de Ligação” Dy5, Dy9 e Dy1.
A. A. A. C. Barrias
29 / 59
Dy5
D5 - y0
D5
y0 uy
UD
0 A
A
B
B
n
1 2U
4
5
B
2u
D
C
2
n
C
C
n
Dy9
A
uy
4
n
C
2
n
C
C
n
Dy1
A
uy B
1 2U
4
B
B
5 n
2
C
n
C
C
3
b
1 2u
D
y
9 2
c
uy
UD
8
b
3
y4
UD A
a
D5 – y4
D5 0
9
2
1
A
3
y
uy
UD
8
c
1 2u
D
B
B
5
B
1 2U
c
3
y8
UD A
b
D5 – y8
D5 0
9
2
1
A
3
y
uy
UD
8
a
1
A
1 n
3
a
A. A. A. C. Barrias
30 / 59
Yd5 ⇔ Y6 - d1
U=
FY6 N Y N 1 NY ⋅ ⋅ u ∠Θ Y6 − θ d1 ⇔ U = ⋅ ⋅ u ∠ + 180?−30? ⇔ U = 3 ⋅ Y ⋅ u ∠ + 150? 1 nd f d1 n d nd 3
Ou: U Y6 N N N 1 U ∠ + 6h 1 U U = ⋅ ⇔ Y = ⋅ ∠ + 5h ⇔ = 3 ⋅ Y ∠ − 5h ⇔ U = 3 ⋅ Y ⋅ u ∠ − 5h u d1 u ∠ + 1h n u u n nd 3 3 d d
Yd9 ⇔ Y6 (18) - d9
U=
FY18 N Y N 1 NY ⋅ ⋅ u ∠Θ Y18 − θ d9 ⇔ U = ⋅ ⋅ u ∠ + 540?−270? ⇔ U = 3 ⋅ Y ⋅ u ∠ + 270? 1 nd f d9 n d nd 3
Ou: U Y18 u d9
=
1
U ∠ + 18h N 1 U U N N ⇔ Y = ⋅ ∠ + 9h ⇔ = 3 ⋅ Y ∠ − 9h ⇔ U = 3 ⋅ Y ⋅ u ∠ − 9h nd u nd nd 3 u ∠ + 9h 3 u ⋅
Yd1 ⇔ Y6 - d5
U=
FY6 N Y N 1 NY ⋅ ⋅ u ∠Θ Y6 − θ d5 ⇔ U = ⋅ ⋅ u ∠ + 180?−150? ⇔ U = 3 ⋅ Y ⋅ u ∠ + 30? 1 nd f d5 n d nd 3
Ou: U Y6 u d5
=
1
U ∠ + 6h N 1 U U N N ⇔ Y = ⋅ ∠ + 1h ⇔ = 3 ⋅ Y ∠ − 1h ⇔ U = 3 ⋅ Y ⋅ u ∠ − 1h u ∠ + 5h n u u n nd 3 3 d d ⋅
Na página seguinte, apresentamos os “Símbolos de Ligação” Yd5, Yd9 e Yd1.
A. A. A. C. Barrias
31 / 59
Yd5
Y6 - d1
Y6
d1
UY
ud
0
c
1
A
2U
1
N
2u
Y
4
2
N
UY b
3
3
N
Yd9
UY
1
N
2u
Y
4 B
2
N
UY a
3
3
N
Yd1
UY
2U
a
1 2u
Y
2
N
b
2
UY
3
1
b
5
c
9
a
1
b
b
d
c
ud
8 C
b
a
ud N
4 B
9
d5
0 1
a
c
Y6 – d5
Y6
A
5
ud
8 C
c
c
d
c
2
1
ud b
2U
c
b
d9
0 1
9
Y6 – d9
Y6
A
b
a
ud
8 C
5
d
a
2
B
a
N
c
3
a
A. A. A. C. Barrias
32 / 59
Yz5 ⇔ Y6 - z1 FY6 N Y 1 NY 2 NY ⋅ ⋅ u ∠Θ Y6 − θ z1 ⇔ U = 2 ⋅ ⋅ ⋅ u ∠ + 180?−30? ⇔ U = ⋅ ⋅ u ∠ + 150? f z1 n z 3 nz 3 nz
U = 2⋅
Ou: U Y6 N 1 U ∠ + 6h U U 2 NY 2 NY = ⋅ ⇔ Y = 3 ⋅ ∠ + 5h ⇔ = ⋅ ∠ − 5h ⇔ U = ⋅ ⋅ u ∠ − 5h 1 u ∠ + 1h nz u z1 u u n 3 3 nz z 2 3
Yz9 ⇔ Y6 (18) - z9
U = 2⋅
FY18 N Y 1 NY 2 NY ⋅ ⋅ u ∠Θ Y18 − θ z9 ⇔ U = 2 ⋅ ⋅ ⋅ u ∠ + 540?−270? ⇔ U = ⋅ ⋅ u ∠ + 270? f z9 n z 3 nz 3 nz
Ou: U Y18 u z9
=
1 U ∠ + 18h N U U 2 NY 2 NY ⋅ ⇔ Y = 3 ⋅ ∠ + 9h ⇔ = ⋅ ∠ − 9h ⇔ U = ⋅ ⋅ u ∠ − 9h 1 u ∠ + 9h nz u u 3 nz 3 nz 2 3
Yz1 ⇔ Y6 - z5
U = 2⋅
FY6 N Y 1 NY 2 NY ⋅ ⋅ u ∠Θ Y6 − θ z5 ⇔ U = 2 ⋅ ⋅ ⋅ u ∠ + 180?−150? ⇔ U = ⋅ ⋅ u ∠ + 150? f z5 n z 3 nz 3 nz
Ou: U Y6 u z5
=
1 U ∠ + 6h N U U 2 NY 2 NY ⋅ ⇔ Y = 3 ⋅ ∠ + 1h ⇔ = ⋅ ∠ − 1h ⇔ U = ⋅ ⋅ u ∠ − 1h 1 u ∠ + 5h nz u u n 3 3 nz z 2 3
Na página seguinte, apresentamos os “Símbolos de Ligação” Yz5, Yz9 e Yz1.
A. A. A. C. Barrias
33 / 59
Yz5
Y6-z1 z1
Y6 UY
uz
0 A
1 2U
n
N
2
B
n
N
2
n
N
Yz9
3
UY
2U
n
N
n
N
3
n
N
N
n
c uz
9 2
uz z
a
1 b
3
2
Y
N
n
uz z
1
x
2
N
n
3
b uz
9
x
y
2
y
z
3
uz
UY
5
1 2
uz
8 3
y
5
1 2
uz
4
C
x
z5
UY
2
1
Y6-z5
0 1
b
c
uz
y
3
Y6
B
z
uz
uz
Yz1
2U
y
3
x
2
UY
A
2
uz
8 C
y
z
1 2
Y
2
9
x
uz
4 B
uz
z9
0 1
a
Y6-z9
Y6
A
5
1 2
uz
UY
3
x
uz
8 C
z
1 2
Y
4
uz
uz
c
1 a
A. A. A. C. Barrias
34 / 59
Dd6 ⇔ D5(D17) - d11 1 FD17 N D N N U= ⋅ ⋅ u ∠Θ D17 − θ d11 ⇔ U = 3 ⋅ D ⋅ u ∠ + 510?−330? ⇔ U = D ⋅ u ∠ + 180? 1 f d11 n d nd nd 3
Ou: U D17 = u d11
3 U ∠ + 17h N U U ND N ⋅ ⇔ D = ∠ + 6h ⇔ = ∠ − 6h ⇔ U = D ⋅ u ∠ − 6h u ∠ + 11h n u u n nd 3 d d
Dd10 ⇔ D5(D17) - d7 1 FD17 N D N N U= ⋅ ⋅ u ∠Θ D17 − θ d7 ⇔ U = 3 ⋅ D ⋅ u ∠ + 510?−210? ⇔ U = D ⋅ u ∠ + 300? 1 f d7 n d nd nd 3
Ou: U D17 3 U ∠ + 17h N U U N N = ⋅ ⇔ D = ∠ + 10h ⇔ = D ∠ − 10h ⇔ U = D ⋅ u ∠ − 10h u d7 u ∠ + 7h n u u n nd 3 d d
Dd2 ⇔ D5 - d3 1 U=
FD5 N D N N ⋅ ⋅ u ∠Θ D5 − θ d3 ⇔ U = 3 ⋅ D ⋅ u ∠ + 150?−90? ⇔ U = D ⋅ u ∠ + 60? 1 nd f d3 n d nd 3
Ou: U D5 u d3
=
3 U ∠ + 5h N U U N N ⋅ ⇔ D = ∠ + 2h ⇔ = D ∠ − 2h ⇔ U = D ⋅ u ∠ − 2h nd u u nd nd 3 u ∠ + 3h
Na página seguinte, apresentamos os “Símbolos de Ligação” Dd6, Dd10 e Dd2.
A. A. A. C. Barrias
35 / 59
Dd6
D5-d11
D5
d11
UD
0 A
A
ud B
b
1
1
2U
B
B
c
2
UD
8 C
C
a
Dd10
A
a
1
1
B
2
C
C
b
2
c
Dd2
A
c
1
1
B
C
C
2
3
b
6
c
10
d
C
a
UD
8
2
b
2u
D
B
b
3
ud B
2U
4
a
d3
UD A
10
D5-d3
D5 0
a
c
ud A
3
6
d
C
UD
8
c
c
2u
D
B
2
ud B
2U
4
c
3
d7
UD A
b
D5-d7
D5 0
10
a
ud A
3
b
d
C
2
6
2u
D
4
a
2
b
c
ud A
b
3
a
2 a
A. A. A. C. Barrias
36 / 59
Yy6 ⇔ Y6 - y0 FY6 N Y 1 N N ⋅ ⋅ u ∠Θ Y6 − θ y0 ⇔ U = ⋅ Y ⋅ u ∠ + 180?−0? ⇔ U = Y ⋅ u ∠ + 180? f y0 n y 1 ny ny
U=
Ou: U Y6 1 U ∠ + 6h N N U U NY = ⋅ ⇔ Y = ∠ + 6h ⇔ = ∠ − 6h ⇔ U = Y ⋅ u ∠ − 6h u y0 1 u ∠ 0h ny u u ny ny
Yy10 ⇔ Y6 (18) - y8
U=
FY18 N Y 1 N N ⋅ ⋅ u ∠Θ Y18 − θ y8 ⇔ U = ⋅ Y ⋅ u ∠ + 540?−240? ⇔ U = Y ⋅ u ∠ + 300? f y8 n y 1 ny ny
Ou: U Y18 u y8
1 U ∠ + 18h N U U N N = ⋅ ⇔ Y = ∠ + 10h ⇔ = Y ∠ − 10h ⇔ U = Y ⋅ u ∠ − 10h 1 u ∠ + 8h ny u u ny ny
Yy2 ⇔ Y6 - y4
U=
FY6 N Y 1 N N ⋅ ⋅ u ∠Θ Y6 − θ y4 ⇔ U = ⋅ Y ⋅ u ∠ + 180?−120? ⇔ U = Y ⋅ u ∠ + 60? f y4 n y 1 ny ny
Ou: U Y6 u y4
1 U ∠ + 6h N U U N N = ⋅ ⇔ Y = ∠ + 2h ⇔ = Y ∠ − 2h ⇔ U = Y ⋅ u ∠ − 2h 1 u ∠ + 4h ny u u ny ny
Na página seguinte, apresentamos os “Símbolos de Ligação” Yy6, Yy10 e Yy2.
A. A. A. C. Barrias
37 / 59
Yy6
Y6 - y0
Y6
y0 uy
UY
6
0 1
A
2U
n
N
2u y
Y
4 2
B
n
N
2
n
N
Yy10
y8 uy
UY
0
6 1 2U
4
n
N
2u y
Y
2
n
N
UY
10 2 uy
n
N
Yy2
y4 uy
UY
0
6 1 2U
N
n
2
b
1 2u y
Y
4 N
n
UY
10 2
c
uy
8 C
b
3
Y6 – y4
Y6
B
a
2 3
A
c
1
8 C
c
3
Y6 – y8
Y6
B
b
2 3
A
10
uy
UY
8 C
a
1
2 3
N
n
3
a
A. A. A. C. Barrias
38 / 59
Dz6 ⇔ D5(D17) - z11 1 F N U = 2 ⋅ D17 ⋅ D ⋅ u ∠Θ D17 − θ z11 ⇔ U = 2 ⋅ f z11 n z
3 ⋅ N D ⋅ u ∠ + 510?−330? ⇔ U = 2 ⋅ N D ⋅ u ∠ + 180? 3 nz 3 nz
Ou: U D17 3 U ∠ + 17h N U U 2 ND 2 N = ⋅ ⇔ D = 3 ⋅ ∠ + 6h ⇔ = ⋅ ∠ − 6h ⇔ U = ⋅ D ⋅ u ∠ − 6h 1 n u z11 u ∠ + 11h u u 3 nz 3 nz z 2 3
Dz10 ⇔ D5(D17) - z7 1 F N U = 2 ⋅ D17 ⋅ D ⋅ u ∠Θ D17 − θ z7 ⇔ U = 2 ⋅ f z7 n z
3 ⋅ N D ⋅ u ∠ + 510?−210? ⇔ U = 2 ⋅ N D ⋅ u ∠ + 300? 3 nz 3 nz
Ou: U D17 u z7
3 U ∠ + 17h N U U 2 N 2 N ⋅ ⇔ D = 3 ⋅ ∠ + 10h ⇔ = ⋅ D ∠ − 10h ⇔ U = ⋅ D ⋅ u ∠ − 10h 1 u ∠ + 7h nz u u 3 nz 3 nz 2 3
=
Dz2 ⇔ D5 - z3 1 U = 2⋅
FD5 N D ⋅ ⋅ u ∠Θ D5 − θ z3 ⇔ U = 2 ⋅ f z3 n z
3 ⋅ N D ⋅ u ∠ + 150?−90? ⇔ U = 2 ⋅ N D ⋅ u ∠ + 60? 3 nz 3 nz
Ou: U D5 u z3
=
3 U ∠ + 5h N U U 2 N 2 N ⋅ ⇔ D = 3 ⋅ ∠ + 2h ⇔ = ⋅ D ∠ − 2h ⇔ U = ⋅ D ⋅ u ∠ − 2h 1 u ∠ + 3h nz u u 3 nz 3 nz 2 3
Na página seguinte, apresentamos os “Símbolos de Ligação” Dz6, Dz10 e Dz2.
A. A. A. C. Barrias
39 / 59
Dz6
D5-z11
D5
z11
UD
0 A
A
1 2U
4
uz n
C
2
n
C
C
n
Dz10
3
A
1 2
D
C
2
B
C
C
n
2
3
n
3
n
1
C
c uz
10
z
y
2
x
z
3
uz
3
a
2 b
uz
C
n
x
n
b uz
10 z
2
y
uz A
6
1 2
uz
UD C
6
1 2
y
1 2
D
2
8
uz
uz
B
B
c
B
2U
4
2
3
z3
UD A
x
b
D5-z3
D5
A
y
uz A
Dz2
0
z
uz
UD
8
x
uz n
B
10 2
uz
B
1 2U
4
uz
z7
UD A
y
a
D5-z7
D5 0
z
2
6
1 2
uz A
3
x
uz
UD
8
y
1 2
D
B
B
uz
B
3
2
uz x
z
3
c
2 a
A. A. A. C. Barrias
40 / 59
Dy7 ⇔ D7 - y0 1 FD7 N D N 1 ND U= ⋅ ⋅ u ∠Θ D7 − θ y0 ⇔ U = 3 ⋅ D ⋅ u ∠ + 210?−0? ⇔ U = ⋅ ⋅ u ∠ + 210? f y0 n y 1 ny 3 ny
Ou: U D7 3 U ∠ + 7h N U U 1 ND 1 ND = ⋅ ⇔ D = 3 ⋅ ∠ + 7h ⇔ = ⋅ ∠ − 7h ⇔ U = ⋅ ⋅ u ∠ − 7h u y0 1 u ∠ 0h ny u u 3 ny 3 ny
Dy11 ⇔ D7 (19) - y8 1 FD7 N D N 1 ND U= ⋅ ⋅ u ∠Θ D7 − θ y0 ⇔ U = 3 ⋅ D ⋅ u ∠ + 210?−0? ⇔ U = ⋅ ⋅ u ∠ + 210? f y0 n y 1 ny 3 ny
Ou: U D19 u y8
3 U ∠ + 19h N U U 1 ND 1 ND ⋅ ⇔ D = 3 ⋅ ∠ + 11h ⇔ = ⋅ ∠ − 11h ⇔ U = ⋅ ⋅ u ∠ − 11h 1 u ∠ + 8h ny u u 3 ny 3 ny
=
Dy3 ⇔ D7 - y4 1 FD7 N D N 1 ND U= ⋅ ⋅ u ∠Θ D7 − θ y0 ⇔ U = 3 ⋅ D ⋅ u ∠ + 210?−0? ⇔ U = ⋅ ⋅ u ∠ + 210? f y0 n y 1 ny 3 ny
Ou: U D7 u y4
=
3 U ∠ + 7h N U U 1 ND 1 ND ⋅ ⇔ D = 3 ⋅ ∠ + 3h ⇔ = ⋅ ∠ − 3h ⇔ U = ⋅ ⋅ u ∠ − 3h 1 u ∠ + 4h ny u u 3 ny 3 ny
Na página seguinte, apresentamos os “Símbolos de Ligação” Dy7, Dy11 e Dy3.
A. A. A. C. Barrias
41 / 59
Dy7
D7 - y0
D7
y0
UD
0
uy
A
7
C
1
A
n
2U
2u y
D
4
2
A
n
UD
8
3
B
n
Dy11
y8
UD
uy
A
7
C
1
n
2U
2u y
D
2
A
n
UD
8
n
y4
UD
uy
A
7
C
1
n
2U
2u y
D
2
A
n
UD
8 C
11 2
c
uy
3
C
3
b
1
B
B
b
3
D7 – y4
D7
4
a
3
B
Dy3
A
11
uy
3
0
2
C
C
c
1
B
B
c
3
D7 – y8
D7
A
b
uy
3
4
2
C
C
0
11
B
B
a
1
B
n
3
a
A. A. A. C. Barrias
42 / 59
Yd7 ⇔ Y6(Y18) - d11 FY18 N Y N 1 NY ⋅ ⋅ u ∠Θ Y18 − θ d11 ⇔ U = ⋅ ⋅ u ∠ + 540?−330? ⇔ U = 3 ⋅ Y ⋅ u ∠ + 210? 1 nd f d11 n d nd 3
U=
Ou: U Y18 N N N 1 U ∠ + 18h 1 U U = ⋅ ⇔ Y = ⋅ ∠ + 7h ⇔ = 3 ⋅ Y ∠ − 7h ⇔ U = 3 ⋅ Y ⋅ u ∠ − 7h u d11 nd u nd nd 3 u ∠ + 11h 3 u
Yd11 ⇔ Y6(Y18) - d7 FY18 N Y N 1 NY ⋅ ⋅ u ∠Θ Y18 − θ d11 ⇔ U = ⋅ ⋅ u ∠ + 540?−330? ⇔ U = 3 ⋅ Y ⋅ u ∠ + 210? 1 f d11 n d nd nd 3
U=
Ou: U Y18 u d7
1
U ∠ + 18h N 1 U U N N ⋅ ⇔ Y = ⋅ ∠ + 11h ⇔ = 3 ⋅ Y ∠ − 11h ⇔ U = 3 ⋅ Y ⋅ u ∠ − 11h nd u nd nd 3 u ∠ + 7h 3 u
=
Yd3 ⇔ Y6 - d3
U=
FY18 N Y N 1 NY ⋅ ⋅ u ∠Θ Y18 − θ d11 ⇔ U = ⋅ ⋅ u ∠ + 540?−330? ⇔ U = 3 ⋅ Y ⋅ u ∠ + 210? 1 nd f d11 n d nd 3
Ou: U Y6 u d3
=
1
U ∠ + 6h N 1 U U N N ⋅ ⇔ Y = ⋅ ∠ + 3h ⇔ = 3 ⋅ Y ∠ − 3h ⇔ U = 3 ⋅ Y ⋅ u ∠ − 3h nd u nd nd 3 u ∠ + 3h 3 u
Na página seguinte, apresentamos os “Símbolos de Ligação” Yd7, Yd11 e Yd3.
A. A. A. C. Barrias
43 / 59
Yd7
Y6-d11
Y6
d11
UY
ud
0
b
1
A
1
N
2U Y
2
N
2
UY
3
N
UY N
1
2U Y
2
N
UY N
1
b
b
7
c
11
2u
d
N
a
UY
2
b
c
ud
8 3
3
ud
2U Y
C
b
3
c
4 2
a
d3
0
B
11
Y6-d3
Y6
1
a
ç
ud c
Yd3
A
7
d
N
UY
3
c
c
2u
b
8 C
3
ud a
4 2
c
3
d7
0
B
b
Y6-d7
Y6
1
11
a
ud a
Yd11
A
b
d
c
8 C
7
2u
4 B
a
N
b
3
a
3 a
A. A. A. C. Barrias
44 / 59
Yz7 ⇔ Y6 (Y18) - z11
U = 2⋅
FY18 N Y 1 NY 2 NY ⋅ ⋅ u ∠Θ Y18 −θ z11 ⇔ U = 2 ⋅ ⋅ ⋅ u ∠ + 540?−330? ⇔ U = ⋅ ⋅ u ∠ + 210? f z11 n z n 3 nz 3 z
Ou: U Y18 N 1 U ∠ + 18h U U 2 NY 2 NY = ⋅ ⇔ Y = 3 ⋅ ∠ + 7h ⇔ = ⋅ ∠ − 7h ⇔ U = ⋅ ⋅ u ∠ − 7h 1 u ∠ + 11h nz u z11 u u 3 nz 3 nz 2 3
Yz11 ⇔ Y6 (Y18) - z7
U = 2⋅
FY18 N Y 1 NY 2 NY ⋅ ⋅ u ∠Θ Y18 −θ z7 ⇔ U = 2 ⋅ ⋅ ⋅ u ∠ + 540?−210? ⇔ U = ⋅ ⋅ u ∠ + 330? f z7 n z 3 nz 3 nz
Ou: U Y18 u z7
1 U ∠ + 18h N U U 2 NY 2 NY ⋅ ⇔ Y = 3 ⋅ ∠ + 11h ⇔ = ⋅ ∠ − 11h ⇔ U = ⋅ ⋅ u ∠ − 11h 1 u ∠ + 7h nz u u 3 nz 3 nz 2 3
=
Yz3 ⇔ Y6 - z3
U = 2⋅
FY6 N Y 1 NY 2 NY ⋅ ⋅ u ∠Θ Y6 −θ z3 ⇔ U = 2 ⋅ ⋅ ⋅ u ∠ + 180?−90? ⇔ U = ⋅ ⋅ u ∠ + 90? f z3 n z 3 nz 3 nz
Ou: U Y6 u z3
=
1 U ∠ + 6h N U U 2 NY 2 NY ⋅ ⇔ Y = 3 ⋅ ∠ + 3h ⇔ = ⋅ ∠ − 3h ⇔ U = ⋅ ⋅ u ∠ − 3h 1 u ∠ + 3h nz u u 3 nz 3 nz 2 3
Na página seguinte, apresentamos os “Símbolos de Ligação” Yz7, Yz11 e Yz3.
A. A. A. C. Barrias
45 / 59
Yz7
Y6-z11
Y6
z11
UY
uz
0 1
A
2U
4 B
N
n
2
Y
2
N
n
2
UY
3
N
n
3
UY
2U
B
n
2
Y
N
n
N
n
n
y
z
7 c
1
uz
11 2
uz
a
3 b
3
N
n
uz y
1
x
z
2
UY
y
uz N
n
3
b uz
11 2
uz x
z
7
1 2
uz
8 3
x
2
x
3
2
Y
4
C
3 c
uz
uz N
2
uz
z3
UY
B
3
b
Y6-z3
0 2U
z
z
2
Y6
1
x
uz
Yz3
A
2
uz
UY
3
y
y
1
8 C
11
z
uz N
2
uz
z7
0
4
a
Y6-z7
Y6
1
7
1 2
uz
Yz11
A
x
uz
8 C
uz y
1
3
c
3 a
A. A. A. C. Barrias
46 / 59
Dd8 ⇔ D7(D19) - d11 1 FD19 N D N N U= ⋅ ⋅ u ∠Θ D19 − θ d11 ⇔ U = 3 ⋅ D ⋅ u ∠ + 570?−330? ⇔ U = D ⋅ u ∠ + 240? 1 f d11 n d nd nd 3
Ou: U D19 = u d11
3 U ∠ + 19h N U U ND N ⋅ ⇔ D = ∠ + 8h ⇔ = ∠ − 8h ⇔ U = D ⋅ u ∠ − 8h u ∠ + 11h n u u n nd 3 d d
Dd0 ⇔ D7 - d7 1 FD7 N D N N U= ⋅ ⋅ u ∠Θ D7 − θ d7 ⇔ U = 3 ⋅ D ⋅ u ∠ + 210º −210º ⇔ U = D ⋅ u ∠ 0h 1 nd f d7 n d nd 3
Ou: U D7 u d7
=
3 U ∠ + 7h N U U N N ⋅ ⇔ D = ∠ 0h ⇔ = D ∠ 0h ⇔ U = D ⋅ u ∠ 0h nd u u nd nd 3 u ∠ + 7h
Dd4 ⇔ D7 - d3 1 FD7 N D N N U= ⋅ ⋅ u ∠Θ D7 − θ d3 ⇔ U = 3 ⋅ D ⋅ u ∠ + 210?−90? ⇔ U = D ⋅ u ∠ + 120? 1 f d3 n d nd nd 3
Ou: U D7 u d3
=
3 U ∠ + 7h N U U N N ⋅ ⇔ D = ∠ + 4h ⇔ = D ∠ − 4h ⇔ U = D ⋅ u ∠ − 4h nd u u nd nd 3 u ∠ + 3h
Na página seguinte, apresentamos os “Símbolos de Ligação” Dd8, Dd0 e Dd4.
A. A. A. C. Barrias
47 / 59
Dd8
D7-d11
d11
D7
ud
UD
0
A
b
C
1
1
A
2U
4
2u
D
B
c
2
B
UD
8
a
3
a
C
1
1
2u
D
B
b
2
B
c
3
c
C
1
1
2u
D
B
a
2
B
A
UD
8 C
b
b
8
c
0
d
2
b
c
ud
C
b
3
4
ud
A
2U
b
d3
UD
4
0
D7-d3
D7
A
a
c
a
3
B
Dd4
0
8
ud
C
C
c
d
2
A
UD
8
c
ud
A
2U
4
d7
UD
4
c
D7-d7
D7
A
0 b
3
B
Dd0
0
b
a
ud
C
C
8
d
2
A
a
B
3
a
4 a
A. A. A. C. Barrias
48 / 59
Dz8 ⇔ D7(D19) - z11 1 F N U = 2 ⋅ D19 ⋅ D ⋅ u ∠Θ D19 − θ z11 ⇔ U = 2 ⋅ f z11 n z
3 ⋅ N D ⋅ u ∠ + 570?−330? ⇔ U = 2 ⋅ N D ⋅ u ∠ + 240? 3 nz 3 nz
Ou: U D19 3 U ∠ + 19h N U U 2 ND 2 N = ⋅ ⇔ D = 3 ⋅ ∠ + 8h ⇔ = ⋅ ∠ − 8h ⇔ U = ⋅ D ⋅ u ∠ − 8h 1 n u z11 u ∠ + 11h u u 3 nz 3 nz z 2 3
Dz0 ⇔ D7 - z7 1 F N U = 2 ⋅ D19 ⋅ D ⋅ u ∠Θ D19 − θ z11 ⇔ U = 2 ⋅ f z11 n z
3 ⋅ N D ⋅ u ∠ + 570?−330? ⇔ U = 2 ⋅ N D ⋅ u ∠ + 240? 3 nz 3 nz
Ou: U D7 u z7
=
3 U ∠ + 7h N U U 2 N 2 N ⋅ ⇔ D = 3 ⋅ ∠ 0h ⇔ = ⋅ D ∠ 0h ⇔ U = ⋅ D ⋅ u ∠ 0h 1 u ∠ + 7h nz u u 3 nz 3 nz 2 3
Dz4 ⇔ D7 - z3 1 F N U = 2 ⋅ D7 ⋅ D ⋅ u ∠Θ D7 − θ z3 ⇔ U = 2 ⋅ f z3 n z
3 ⋅ N D ⋅ u ∠ + 210?−90? ⇔ U = 2 ⋅ N D ⋅ u ∠ + 120? 3 nz 3 nz
Ou: U D7 3 U ∠ + 7h N U U 2 ND 2 N = ⋅ ⇔ D = 3 ⋅ ∠ + 4h ⇔ = ⋅ ∠ − 4h ⇔ U = ⋅ D ⋅ u ∠ − 4h 1 u ∠ + 3h nz u z3 u u 3 nz 3 nz 2 3
Na página seguinte, apresentamos os “Símbolos de Ligação” Dz8, Dz0 e Dz4.
A. A. A. C. Barrias
49 / 59
Dz8
D7-z11
D7
z11
UD
0
A
uz
C
1
A
2U
4
n
2
D
2
A
n
2
B
n
Dz0
3
A
2U
n
1 2
D
3
y
x
uz
2
A
n
2
z
y
x
z
y
x
uz
3
B
n
Dz4
3
c uz
0
uz
uz
C
1 2U
2
n
1 2
D
2
b
uz
A
n
2
UD
b uz
0
z
y
2
x
z
3
uz B
n
3
8
1 2
uz
uz
C
3
4
3
B
B
a
z3
UD A
8
D7-z3
D7 A
4
1 2
C
C
b
c
uz
uz
UD
C
z
B
B
8
x
uz
C
1
A
4
2
z7
UD
0
uz
D7-z7
D7
8
y
uz
3
C
4
a
0
z
C
8
1 2
uz
UD
0
x
B
B
8
uz y
1
c
4 a
A. A. A. C. Barrias
50 / 59
Dd10 ⇔ D5(D17) - d7 1 FD17 N D N N U= ⋅ ⋅ u ∠Θ D17 − θ d7 ⇔ U = 3 ⋅ D ⋅ u ∠ + 510?−210? ⇔ U = D ⋅ u ∠ + 300? 1 f d7 n d nd nd 3
Ou: U D17 = u d7
3 U ∠ + 17h N U U ND N ⋅ ⇔ D = ∠ + 10h ⇔ = ∠ − 1 0h ⇔ U = D ⋅ u ∠ − 10h u ∠ + 7h n u u n nd 3 d d
Dd2 ⇔ D5 - d3 1 FD5 N D N N U= ⋅ ⋅ u ∠Θ D5 − θ d3 ⇔ U = 3 ⋅ D ⋅ u ∠ + 150?−90? ⇔ U = D ⋅ u ∠ + 60? 1 nd f d3 n d nd 3
Ou: U D5 u d3
=
3 U ∠ + 5h N U U N N ⋅ ⇔ D = ∠ + 2h ⇔ = D ∠ − 2h ⇔ U = D ⋅ u ∠ − 2h nd u u nd nd 3 u ∠ + 3h
Dd6 ⇔ D5(D17) - d11 1 FD17 N D N N U= ⋅ ⋅ u ∠Θ D17 − θ d11 ⇔ U = 3 ⋅ D ⋅ u ∠ + 510?−330? ⇔ U = D ⋅ u ∠ + 180º 1 nd f d11 n d nd 3
Ou: U D17 u d11
=
3 U ∠ + 17h N U U N N ⋅ ⇔ D = ∠ + 6h ⇔ = D ∠ − 6h ⇔ U = D ⋅ u ∠ − 6h nd u u nd nd 3 u ∠ + 11h
Na página seguinte, apresentamos os “Símbolos de Ligação” Dd10, Dd2 e Dd6.
A. A. A. C. Barrias
51 / 59
Dd10
D5-d7
D5
d7 ud
UD
0
A
4
B
A
c
B
1
1 2u
2U
D
2
B
2
C
C
b
A
3
3
Dd2
4
B
A
1
1 2u
D
2
C
a
A
3
3
Dd6
4
B
A
1
a
1 2u
D
2
C
C
C
3
6
b
10
c
2
a
6
d
b
2
b
b
c
ud
UD
8
b
a
ud B
2U
B
2
d11
UD A
a
c
D5 (17)-d11
D5
0
10
c
ud
UD C
c
d
c
C
2
8
6
ud b
B
2U
B
c
b
d3
UD A
2
D5-d3
D5
0
b
a
ud
UD
8
10
d
a
C
a
A
c
3
a
A. A. A. C. Barrias
52 / 59
Dz10 ⇔ D5(D17) - z7 1 F N U = 2 ⋅ D17 ⋅ D ⋅ u ∠Θ D17 − θ z7 ⇔ U = 2 ⋅ f z7 n z
3 ⋅ N D ⋅ u ∠ + 510?−210? ⇔ U = 2 ⋅ N D ⋅ u ∠ + 300? 3 nz 3 nz
Ou: U D17 3 U ∠ + 17h N U U 2 ND 2 N = ⋅ ⇔ D = 3 ⋅ ∠ + 10h ⇔ = ⋅ ∠ − 10h ⇔ U = ⋅ D ⋅ u ∠ − 10h 1 n u z7 u ∠ + 7h u u 3 nz 3 nz z 2 3
Dz2 ⇔ D5 - z3 1 F N U = 2 ⋅ D5 ⋅ D ⋅ u ∠Θ D5 − θ z3 ⇔ U = 2 ⋅ f z3 n z
3 ⋅ N D ⋅ u ∠ + 150?−90? ⇔ U = 2 ⋅ N D ⋅ u ∠ + 60? 3 nz 3 nz
Ou: U D5 u z3
=
3 U ∠ + 5h N U U 2 N 2 N ⋅ ⇔ D = 3 ⋅ ∠ + 2h ⇔ = ⋅ D ∠ − 2h ⇔ U = ⋅ D ⋅ u ∠ − 2h 1 u ∠ + 3h nz u u 3 nz 3 nz 2 3
Dz6 ⇔ D5(D17) - z11 1 U = 2⋅
FD17 N D ⋅ ⋅ u ∠Θ D17 − θ z11 ⇔ U = 2 ⋅ f z11 n z
3 ⋅ N D ⋅ u ∠ + 510?−330? ⇔ U = 2 ⋅ N D ⋅ u ∠ + 180? 3 nz 3 nz
Ou: U D17 u z11
=
3 U ∠ + 17h N U U 2 N 2 N ⋅ ⇔ D = 3 ⋅ ∠ + 6h ⇔ = ⋅ D ∠ − 6h ⇔ U = ⋅ D ⋅ u ∠ − 6h 1 u ∠ + 11h nz u u 3 nz 3 nz 2 3
Na página seguinte, apresentamos os “Símbolos de Ligação” Dz10, Dz2 e Dz6.
A. A. A. C. Barrias
53 / 59
Dz10
D5-z7
D5
z7
UD
0 A
A
C
2
n
C
C
n
Dz2
A
n
1
C
n
C
C
n
Dz6
A
1
n
2
C
C
3
z
C
n
x
a
6 b
3
x
2
y
uz A
n
3
b uz
2 2
uz y
z
10
1 2
uz
UD
8
2 2
uz z
1 2
D
B
B
y
3
uz
uz
uz B
2U
4
y
c
z11
UD A
x
2
10
D5-z11
D5 0
c
1 2
uz A
3
x
uz
UD
8
b
6
3
uz z
1 2
D
2
B
z
uz
B
2 2
z3 B
2U
4
uz
D5-z3
UD A
y
a
uz y
3
D5 0
x
2
10
1 2
uz A
3
x
uz
UD
8
uz z
1 2
D
B
B
n
1 2U
4
uz B
3
c
6 a
A. A. A. C. Barrias
54 / 59
Dy11 ⇔ D5 (D17) - y6
1 FD17 N D N 1 ND U= ⋅ ⋅ u ∠Θ D17 − θ y6 ⇔ U = 3 ⋅ D ⋅ u ∠ + 510?−180? ⇔ U = ⋅ ⋅ u ∠ + 330? f y6 n y 1 ny 3 ny
Ou: U D17 3 U ∠ + 17h N U U 1 ND 1 ND = ⋅ ⇔ D = 3 ⋅ ∠ + 11h ⇔ = ⋅ ∠ − 11h ⇔ U = ⋅ ⋅ u ∠ − 11h u y6 1 u ∠ + 6h ny u u n 3 3 ny y
Dy3 ⇔ D5 - y2
1 FD5 N D N 1 ND U= ⋅ ⋅ u ∠Θ D5 − θ y2 ⇔ U = 3 ⋅ D ⋅ u ∠ + 150?−60? ⇔ U = ⋅ ⋅ u ∠ + 90? f y2 n y 1 ny 3 ny
Ou: U D5 3 U ∠ + 5h N U U 1 ND 1 ND = ⋅ ⇔ D = 3 ⋅ ∠ + 3h ⇔ = ⋅ ∠ − 3h ⇔ U = ⋅ ⋅ u ∠ − 3h u y2 1 u ∠ + 2h ny u u 3 ny 3 ny
Dy7 ⇔ D5 (D17) - y10
1 U=
FD17 N D N 1 ND ⋅ ⋅ u ∠Θ D17 − θ y10 ⇔ U = 3 ⋅ D ⋅ u ∠ + 510?−300? ⇔ U = ⋅ ⋅ u ∠ + 210? f y10 n y 1 ny 3 ny
Ou: U D17 3 U ∠ + 17h N U U 1 ND 1 ND = ⋅ ⇔ D = 3 ⋅ ∠ + 7h ⇔ = ⋅ ∠ − 7h ⇔ U = ⋅ ⋅ u ∠ − 7h u y10 1 u ∠ + 10 h ny u u 3 ny 3 ny
Na página seguinte, apresentamos os “Símbolos de Ligação” Dy11, Dy3 e Dy7.
A. A. A. C. Barrias
55 / 59
Dy11
D5-y6
D5
y6 uy
UD
0 A
A
C
2
n
C
C
n
Dy3
A
uy n
1
C
2
n
C
C
n
Dy7
A
uy B
1 2U
4
11 n
2
C
n
C
C
3
y
3 2
c
uy
UD
8
b
1 2u
D
B
B
b
3
y10
UD A
a
D5-y10
D5 0
3 2
7
A
3
y
uy
UD
8
c
1 2u
D
B
B
11
B
2U
4
c
3
y2
UD A
b
D5-y2
D5 0
3 2
7
A
3
y
uy
UD
8
a
1 2u
D
B
B
n
1 2U
4
11
B
A
7 n
3
a
A. A. A. C. Barrias
56 / 59
Yd11 ⇔ Y6(Y18) - d7
U=
FY18 N Y N 1 NY ⋅ ⋅ u ∠Θ Y18 − θ d7 ⇔ U = ⋅ ⋅ u ∠ + 540?−210? ⇔ U = 3 ⋅ Y ⋅ u ∠ + 330? 1 nd f d7 n d nd 3
Ou: U Y18 N N N 1 U ∠ + 18h 1 U U = ⋅ ⇔ Y = ⋅ ∠ + 11h ⇔ = 3 ⋅ Y ∠ − 11h ⇔ U = 3 ⋅ Y ⋅ u ∠ − 11h u d7 u ∠ + 7h n u u n nd 3 3 d d
Yd3 ⇔ Y6 - d3
U=
FY6 N Y N 1 NY ⋅ ⋅ u ∠Θ Y6 − θ d3 ⇔ U = ⋅ ⋅ u ∠ + 180º −90º ⇔ U = 3 ⋅ Y ⋅ u ∠ + 90? 1 f d3 n d nd nd 3
Ou: U Y6 N N N 1 U ∠ + 6h 1 U U = ⋅ ⇔ Y = ⋅ ∠ + 3h ⇔ = 3 ⋅ Y ∠ − 3h ⇔ U = 3 ⋅ Y ⋅ u ∠ − 3h u d3 nd u nd nd 3 u ∠ + 3h 3 u
Yd7 ⇔ Y6(Y18) - d11
U=
FY18 N Y N 1 NY ⋅ ⋅ u ∠Θ Y18 − θ d11 ⇔ U = ⋅ ⋅ u ∠ + 540?−330? ⇔ U = 3 ⋅ Y ⋅ u ∠ + 210? 1 nd f d11 n d nd 3
Ou: U Y18 N N N 1 U ∠ + 18h 1 U U = ⋅ ⇔ Y = ⋅ ∠ + 7h ⇔ = 3 ⋅ Y ∠ − 7h ⇔ U = 3 ⋅ Y ⋅ u ∠ − 7h u d11 nd u nd nd 3 u ∠ + 11h 3 u
Na página seguinte, apresentamos os “Símbolos de Ligação” Yd11, Yd3 e Yd7.
A. A. A. C. Barrias
57 / 59
Yd11
Y6-d7
d7
Y6 UY
ud
0
c
1
A
1
N
2U
2
N
UY b
3
3
N
Yd3
UY
1
N
2
N
UY a
3
3
N
Yd7
UY
1
1
N
11
c
3
a
7
d
b
2
N
UY
b
b
c
ud
8
c
3
b
2u
Y
4
C
7
ud a
2
b
a
d11
0
B
3
Y6-d11
Y6
2U
a
c
ud
8
A
11
d
c
2
c
2u
Y
4
C
c
ud b
1
B
7
d3
0 2U
c
b
Y6-d3
Y6
A
3
a
ud
8 C
b
d
a
2
11
2u
Y
4 B
a
N
3
a
A. A. A. C. Barrias
58 / 59
Yz11 ⇔ Y6(Y18) - z7
U = 2⋅
FY18 N Y 1 NY 2 NY ⋅ ⋅ u ∠Θ Y18 −θ z7 ⇔ U = 2 ⋅ ⋅ ⋅ u ∠ + 540?−210? ⇔ U = ⋅ ⋅ u ∠ + 330? f z7 n z n 3 3 nz z
Ou: U Y18 u z7
1 U ∠ + 18h N U U 2 NY 2 NY ⋅ ⇔ Y = 3 ⋅ ∠ + 11h ⇔ = ⋅ ∠ − 11h ⇔ U = ⋅ ⋅ u ∠ − 11h 1 u ∠ + 7h nz u u 3 nz 3 nz 2 3
=
Yz3 ⇔ Y6 - z3
U = 2⋅
FY6 N Y 1 NY 2 NY ⋅ ⋅ u ∠Θ Y6 −θ z3 ⇔ U = 2 ⋅ ⋅ ⋅ u ∠ + 180?−90? ⇔ U = ⋅ ⋅ u ∠ + 90? f z3 n z 3 nz 3 nz
Ou: U Y6 u z3
=
1 U ∠ + 6h N U U 2 NY 2 NY ⋅ ⇔ Y = 3 ⋅ ∠ + 3h ⇔ = ⋅ ∠ − 3h ⇔ U = ⋅ ⋅ u ∠ − 3h 1 u ∠ + 3h nz u u 3 nz 3 nz 2 3
Yz7 ⇔ Y6(Y18) - z11
U = 2⋅
FY18 N Y 1 NY 2 NY ⋅ ⋅ u ∠Θ Y18 −θ z11 ⇔ U = 2 ⋅ ⋅ ⋅ u ∠ + 540?−330? ⇔ U = ⋅ ⋅ u ∠ + 210? f z11 n z 3 nz 3 nz
Ou: U Y18 u z11
=
1 U ∠ + 18h N U U 2 NY 2 NY ⋅ ⇔ Y = 3 ⋅ ∠ + 7h ⇔ = ⋅ ∠ − 7h ⇔ U = ⋅ ⋅ u ∠ − 7h 1 u ∠ + 11h nz u u 3 nz 3 nz 2 3
Na página seguinte, apresentamos os “Símbolos de Ligação” Yz11, Yz3 e Yz7.
A. A. A. C. Barrias
59 / 59
Yz11
Y6-z7 z7
Y6 UY
uz
0 A
1 2U
4 B
n
N
2
Y
2
N
n
uz
3
N
n
Yz3
UY
uz
0 n
N
2
Y
2
n
N
N
n
Yz7
UY
2
N
n
2
Y
z
N
n
x
3 2
a
7 b
3
x
2
y
uz N
n
3
b uz
3 2
uz y
z
11
1 2
uz
UY
3
uz
uz z
1
8 C
y
3
c
uz
uz
1
B
y
11
1
z11
0
2U
c
Y6-z11
Y6
4
x
uz
3
b
7
3
2
x
2
UY
A
z
uz
8 C
3 2
uz z
1
4 B
uz
Y6-z3 z3
1
a
uz y
3
Y6
2U
y
11
1 2
x
2
UY
A
x
uz
8 C
uz z
1
3
c
7 a
A. A. A. C. Barrias