Energia Electrica

  • July 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Energia Electrica as PDF for free.

More details

  • Words: 1,589
  • Pages: 6
ENERGIA ELECTRICA Se denomina energía eléctrica a la forma de energía que resulta de la existencia de una diferencia de potencial entre dos puntos, lo que permite establecer una corriente eléctrica entre ambos —cuando se los pone en contacto por medio de un conductor eléctrico— y obtener trabajo. La energia eléctrica se manifiesta como corriente eléctrica. La energía eléctrica puede transformarse en muchas otras formas de energía, tales como la energía luminosa o luz, la energía mecánica y la energía térmica.

POTENCIAL ELECTRICO El potencial eléctrico en un punto es el trabajo que debe realizar una fuerza eléctrica (ley de Coulomb) para mover una carga positiva q desde el infinito (donde el potencial es cero) hasta ese punto. Dicho de otra forma, es el trabajo que debe realizar una fuerza externa para traer una carga unitaria q desde el infinito hasta el punto considerado en contra de la fuerza eléctrica. Matemáticamente se expresa por:

Considérese una carga de prueba positiva, la cual se puede utilizar para hacer el mapa de un campo eléctrico. Para tal carga de prueba localizada a una distancia r de una carga q, la energía potencial electrostática mutua es:

De manera equivalente, el potencial eléctrico es: =

ENERGIA POTENCIAL ELECTRICA Si el trabajo realizado por una fuerza sobre una partícula que se desplaza de una posición inicial a otra final no depende de la trayectoria, entonces la fuerza es conservativa, como es el caso de la fuerza eléctrica y la fuerza gravitacional. Cuando las fuerzas son conservativas, éstas se pueden expresar a través de una función de energía potencial. Podemos asociar una energía potencial a un sistema de tal forma que si colocamos una partícula cargada, ésta experimenta una fuerza eléctrica. Así, la variación de energía potencial eléctrica cuando desplazamos a una carga

en presencia de un campo eléctrico externo

es

La energía potencial electrica de un sistema de cargas fijas es igual al trabajo que debe realizar un agente externo para reunir el sistema, desplazando cada carga una distancia infinita.

POTENCIAL Se define el potencial como una magnitud que puede ser escalar o vectorial, que sirve para describir la evolución o variación probable de otra magnitud. Generalmente los potenciales aparecen para describir a un campo fisico y también aparece en termodinámica.

DIFERENCIA DE POTENCIAL CAPACITOR La tensión entre dos puntos de un campo eléctrico es igual al trabajo que realiza dicha unidad de carga positiva para transportarla desde el punto A al punto B. En el Sistema Internacional de Unidades, la diferencia de potencial se mide en voltios (V), al igual que el potencial. Si dos puntos que tienen una diferencia de potencial se unen mediante un conductor, se producirá un flujo de corriente eléctrica. Parte de la carga que crea el punto de mayor potencial se trasladará a través del conductor al punto de menor potencial y, en ausencia de una fuente externa (generador), esta corriente cesará cuando ambos puntos igualen su potencial eléctrico (Ley de Henry). Este traslado de cargas es lo que se conoce como corriente eléctrica. Cuando se habla sobre una diferencia de potencial en un sólo punto, o potencial, se refiere a la diferencia de potencial entre este punto y algún otro donde el potencial sea cero.

MATERIAL DIELÉCTRICO Se denomina dieléctricos a los materiales que no conducen la electricidad, por lo que pueden ser utilizados como aislantes eléctricos. Algunos ejemplos de este tipo de materiales son el vidrio, la cerámica, la goma, la mica, la cera, el papel, la madera seca, la porcelana, algunas grasas para uso industrial y electrónico y la baquelita. Los dieléctricos se utilizan en la fabricación de condensadores, para que las cargas reaccionen.

La introducción de un dieléctrico en un condensador tiene las siguientes consecuencias: • • •



Disminuye el campo eléctrico entre las placas del condensador. Disminuye la diferencia de potencial entre las placas del condensador. Aumenta la diferencia de potencial máxima que el condensador es capaz de resistir sin que salte una chispa entre las placas (ruptura dieléctrica). Aumento por tanto de la capacidad eléctrica del condensador.

Normalmente un dieléctrico se vuelve conductor cuando se sobrepasa el campo de ruptura del dieléctrico. Es decir, si aumentamos mucho el campo eléctrico que pasa por el dieléctrico convertiremos dicho material en un conductor. Los dieléctricos más utilizados son el aire, el papel y la goma.

RIGIDEZ DIELÉCTRICA Definese como la intensidad máxima de un campo eléctrico a que puode ser sujetado el material aislante sin que através de el pase una descarga eléctrica. Para testar la rigidez dieléctrica aplicase entre los cablos que salen del motor y de la armadura del equipamiento una tensión (voltaje) de 1,000 (mil) Volts más el doble de la tension nominal de el equipamiento, con el axilio de un equipamiento llamado HIPOT. Para ejemplificar: Si el equipamiento sea 110 Volts la tensión a ser aplicada será de: 1000 + (2 x 110) = 1,220 Volts. Si el equipamiento sea 220 Volts la tensión a ser aplicada será de: 1000 + (2 x 220) = 1,440 Volts. En VENTISILVA tenemos como regla general aplicar 1.500 Volts en todos los equipamientos, caso sea necesaria para la especificación del cliente podemos garantizar la rigidez dieléctrica hasta 2.100 Volts.

CONSTANTE DIELÉCTRICA La constante dieléctrica o permitividad relativa de un medio continuo es una propiedad macroscópica de un medio dieléctrico relacionado con la permitividad eléctrica del medio.

El nombre proviene de los materiales dieléctricos, que son materiales aislantes o muy poco conductores por debajo de una cierta tensión eléctrica llamada tensión de rotura. El efecto de la constante dieléctrica se manifiesta en la capacidad total de un condensador eléctrico o capacitor. Cuando entre los conductores cargados o paredes que lo forman se inserta un material dieléctrico diferente del aire (cuya permitividad es prácticamente la del vacío) la capacidad de almacenamiento de la carga del condensador aumenta. De hecho la relación entre la capacidad inicial Ci y la final Cf vienen dada por la constante eléctrica:

Donde ε es la permitividad eléctrica del dieléctrico que se inserta. Además el valor de la constante dieléctrica K de un material define el grado de polarización eléctrica de la substancia cuando esta se somete a un campo eléctrico exterior. El valor de K es afectado por muchos factores, como el peso molecular, la forma de la molécula, la dirección de sus enlaces (geometría de la molécula) o el tipo de interacciones que presente. Cuando un material dieléctrico remplaza el vacío entre los conductores, puede presentarse la polarización en el dieléctrico, permitiendo que se almacenen cargas adicionales. La magnitud de la carga que se puede almacenar entre los conductores se conoce como capacitancia ésta depende del material existente entre los conductores, el tamaño, la forma de los mismos y su separación.

CAPACITORES VARIABLES Un condensador o capacitor variable es aquel en el cual se pueda cambiar el valor de su capacidad. En el caso de un condensador plano, la capacidad puede expresarse por la siguiente ecuación:

donde: ε0: constante dieléctrica del vacío εr: constante dieléctrica o permitividad relativa del material dieléctrico entre las placas

A: el área efectiva de las placas d: distancia entre las placas o espesor del dieléctrico Para tener condensador variable hay que hacer que por lo menos una de las tres últimas expresiones cambien de valor. De este modo, se puede tener un condensador en el que una de las placas sea móvil, por lo tanto varía d y la capacidad dependerá de ese desplazamiento, lo cual podría ser utilizado, por ejemplo, como sensor de desplazamiento. Otro tipo de condensador variable se presenta en los diodos varicap.

CIRCUITO SERIE El circuito serie es una configuración de conexión en la que los bornes o terminales de los dispositivos (generadores, resistencias, condensadores, etc.) se conectan secuencialmente. El terminal de salida de un dispositivo se conecta al terminal de entrada del dispositivo siguiente, por ejemplo, el terminal positivo de una pila eléctrica se conecta al terminal negativo de la pila siguiente, con lo cual entre los terminales extremos de la asociación se tiene una diferencia de potencial igual a la suma de la de ambas pilas. Esta conexión de pilas eléctricas en serie da lugar a la formación de una batería eléctrica. Cabe anotar que la corriente que circula en un circuito serie es la misma en todos los puntos del circuito. A modo de ejemplo, en la siguiente figura se muestran varios condensadores en serie y el valor del condensador equivalente:

CIRCUITO PARALELO El circuito paralelo es una conexión donde, los bornes o terminales de entrada de todos los dispositivos (generadores, resistencias, condensadores, etc.) conectados coincidan entre sí, lo mismo que sus terminales de salida. Dos depósitos de agua conectados en paralelo tendrán una entrada común que alimentará simultáneamente a ambos, así como una salida común que drenará a ambos a la vez. Las bombillas de iluminación de

una casa forman un circuito en paralelo. Porque si una bombilla se apaga, las demás siguen encendidas. A modo de ejemplo, en la siguiente figura se muestran varios condensadores en paralelo y el valor de su equivalente:

Ceq = C1 + C2 + ... + Cn La configuración contraria es el circuito en serie. En el cual, si una bombilla se apaga todas las demás bombillas se apagaran también.

CIRCUITO MIXTO El circuito mixto es una combinación de elementos eléctricos conectados en serie y en paralelo. Para la solución de estos circuitos se tratan de resolver primero los elementos más sencillos. Si hay dos elementos conectados en paralelo seguidos, se halla antes uno en serie que los reemplace.

Related Documents