Em 2019 3e4

  • Uploaded by: api-276675536
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Em 2019 3e4 as PDF for free.

More details

  • Words: 2,029
  • Pages: 8
Quadratic Equations & Functions Exercise 1A 4

(f)

6 2 x+ =0 7 49 6 2 x2  x= 7 49 3 2 3 2 (x  )  ( )2 =  7 7 49 3 2 9 2 (x  ) =  7 49 49 3 1 x =± 7 7

x2 



5

x = 0.81 or 0.05

(g)

x2 + 0.6x  1 = 0 x2 + 0.6x = 1 (x + 0.3)2  (0.3)2 = 1 (x + 0.3)2 = 0.09 + 1 x + 0.3 = ± 1.09  x = 0.74 or 1.34

(h)

x2  4.8x + 2 = 0 x2  4.8x = 2 (x  2.4)2  (2.4)2 = 2 (x  2.4)2 = 5.76  2 x  2.4 = ± 3.76  x = 4.34 or 0.46

(c)

(x + 2)(x  5) = 4x x2  3x  10  4x = 0 x2  7x  10 = 0 7 2 7 )  ( )2 = 10 2 2 7 2 49 (x  ) = + 10 2 4 7 89 x =± 2 4

(x 

 (d)

x = 8.22 or 1.22

x(x  4) = 2(x + 7) x2  4x  2x  14 = 0 x2  6x  14 = 0 (x  3)2  (3)2 = 14 (x  3)2 = 9 + 14 x  3 = ± 23  x = 7.80 or 1.80

Exercise 1B 3 (e) (2x + 3)(x  1)  x(x + 2) = 0 2x2 + x  3  (x2 + 2x) = 0 Math Homework Prepared by Mr Ang KS

1

x2  x  3 = 0 Using a = 1, b = 1 and c = 3, x= (f)

(b)

( 1) 2  4(1)(3) 2(1)

= 2.30 or 1.30

(4x  3)2 + (4x + 3)2 = 25 16x2  24x + 9 + (16x2 + 24x + 9) = 25 32x2 = 7 x2 =

4

 (1) 

7 32



x = ±0.468

3 2 1 x + 2x  =0 4 2 3 1 Using a = , b = 2 and c =  , 4 2

3 1  2  22  4( )( ) 4 2 x= 3 2( ) 4 = 0.230 or 2.90

(c)

5x  7 = x2 x2  5x + 7 = 0 Using a = 1, b = 5 and c = 7, x=

 ( 5) 

( 5) 2  4(1)(7) 2(1)

There is no solution since

3

=

4

3 2

is not defined .

Exercise 1D 4

5

x( x  3) 3 = ( x  1) 2 5

(f)



5(x2  3x) = 3(x2 + 2x + 1)



2x2  21x  3 = 0



x=

 ( 21) 

7 x 1 1  =  2 x 1 x3

( 21) 2  4( 2)(3) = 10.6 or 0.141 2( 2)

7( x  3)  ( x  1)( x  1) 1 = ( x  1)( x  3) 2

 

2(7x + 21  x2 + 1) = x2 + 2x  3 3x2  12x  47 = 0



x=

 ( 12) 

( 12) 2  4(3)(47) 2(3)

= 6.43 or

2.43 5

(g)

4 5 =2 ( x  2) 2 x2

  Math Homework Prepared by Mr Ang KS

4 5 + =2 ( x  2) 2 x2 5( x  2)  4 =2 ( x  2) 2



5x  6 = 2(x2  4x + 4) 2

5

8

(h)

(i) (iii)

(iv)



2x2  13x + 14 = 0



x=

x 5 + =1 ( x  1) 2 x 1

 (13) 

( 13) 2  4( 2)(14) = 5.14 or 1.36 2( 2)

5( x  1)  x =1 ( x  1) 2



 

6x  5 = (x2  2x + 1) x2  8x + 6 = 0



x=

60 pages/min x 60 60 + = 144 x x2 60( x  2)  60 x = 144 x ( x  2)

(ii)

120x + 120 = 144(x2 + 2x) 24: 5x + 5 = 6x2 + 12x 6x2 + 7x  5 = 0 (2x  1)(3x + 5) = 0

 ( 8) 

( 8) 2  4(1)(6) 2(1)

= 7.16 or 0.838

60 pages/min x2

(Shown)

2 1 or x = 1 2 3 2 Reject x = 1 as x > 0 3 1 Required time taken = (2  60)  144 2

x=

(v)

11

(i)

Speed of coach = x  30, so time taken = Time taken by car =

= 6 mins

700 h x  30

700 h x

Total time taken = 20 h 700 700 + = 20 x  30 x 35 x  35( x  30) 20: =1 x ( x  30)

(ii)

70x  1050 = x2  30x x2  100x + 1050 = 0 (Shown) Using a = 1, b = 100 and c = 1050 x=

(iii)

 ( 100) 

( 100) 2  4(1)(1050) 2(1)

= 88.079 or 11.921 = 88.08 or 11.92 Reject x = 11.92 as x =  30 becomes < 0 Time taken for return journey =

Math Homework Prepared by Mr Ang KS

700 88.079

= 7.95 h 3

Exercise 1E 1 (e) y = (3  x)(x + 2)

y = (2  x)(4  x)

(f)

y y = (3 x)(x + 2)

6

y = (2  x)(4  x)

y 2

3

0

x 8

2

y = (x + 1)2  3

(d)

y =  (x  4)2  1

(f) y0 0

y

y = (x + 1)2  3

4

2

1

0

0.732

y = (x  4)2  1

x

Line of symmetry 2 is x = 1.

Line of symmetry is x = 4.

(i)

x2  8x + 5

(ii)

(iii)

Min. point = (4, 11).

(1, 3)3

7

x

4 (4, 1)

17 2.73

x

(iv)

= (x  4)2  (4)2 + 5 = (x  4)2  11

y y = (x  4)2  11

Line of symmetry is x = 4. 5

Exercise 2A 6

(g)

1 1 1 (3g + 4)  (g + 1)  1  (g + 5) 5 3 3

15:

(h)

11

4

7.32

x

(4, 11)

3(3g + 4)  5(g + 1)  15  5(g + 5) 4g + 7  5g  10 9g  17 g  1

6

0 0.683

8 9

h 3 h + ) < 3(  5) 3 4 2 4h  9 h  10 4( ) < 3( ) 12 2

4(

6:

Math Homework Prepared by Mr Ang KS

2(4h + 9) < 9(h  10) 8h + 18 < 9h  90 h < 108 h > 108 4

7

1 p (2  p)  3  6 10

30:

5(2  p)  90  3p 5p  80  3p 8p  80 p  10 Largest possible value of p = 10 Exercise 2B 5 (c) 3x  3 < x  9 < 2x 3x  3 < x  9 2x < 6 x < 3  9 < x < 3 (d)

2x  x + 6 < 3x + 5 2x  x + 6 x6

and

x  9 < 2x x < 9 x > 9 9

and

x + 6 < 3x + 5 2x < 1 x>

 8

3

1 2

1 <x6 2

0.5

6

Let x be the no. of correct answers, then (30  x) are the no. of wrong answers. 5x + (2)(30  x)  66 5x  60 + 2x  66 7x  126 x  18 Max. correct answers obtained = 18 Given:

10

1 1 x4> x 2 3

and

1 1 x+1< x+3 6 8

3x  24 > 2x 4x + 24 < 3x + 72 x > 24 x < 48  24 < x < 48 So, x = 29, 31, 37, 41, 43, 47 13

14

(d)

(d)

3d  5 < d + 1  2d + 1 3d  5 < d + 1 and 2d < 6 d<3  0d<3 2d d 1  + 5 2 5 2d d5< and 5

d + 1  2d + 1 d  0 d≥0

d5<

Math Homework Prepared by Mr Ang KS

2d d 1  + 5 2 5

5

3d <5 5 1 d<8 3

 15

(c)



d 1  10 5

d ≥ 2

2  d < 8

1 3

4  7  3x  2 11  3x  5 11 5 ≥x≥ 3 3 2 2 1 x3 3 3

 

Required integers are 2 and 3. (d)

10 < 7  2x  1 17 < 2x  8 17 >x≥4 2 1 4x<8 2

 

Required integers are 4, 5, 6, 7 and 8. Exercise 3A 6 (e) (e3)5  (e2)4

7

8

= e15  e8

= e7

(f)

(4f 6)3  (2f 3)3 = 64f 18  (8f 9)

= 8f 9

(c)

(8e5f 3)2  (e3f)3 = 64e10f 6  (e9f 3)

= 64ef 3

(d)

16g8h7  (2g3h2)3

(c)

 3e3  2  f

(d)

 g2    3g 5  3    2 h   2h

4

 27e9     11  f  6

= 16g8h7  (8g9h6)   

  

=

3

81e12 f 11  f8 27e 9

= 2g1h

2h

= g

= 3e3f 3

8 8h 6 g 12 = 18  ( 15 ) =  27 g 3h12 27 g h

Exercise 3B 6

2

(f)

(1000) 3

7

(f)

1 3 ( f )5

8

(d)

10d = 0.01 10d = 102

Math Homework Prepared by Mr Ang KS

= ( 3  1000 )2 = (10)2 1

=



f

=f

5 3



= 100

5 3

d = 2 6

10

(g)

(h)

(m 5 n 3 )  ( m 2 ) 2 ( m 1n) 2

(m 5 n 3 )  m 4 = m 2 n 2 = m5 + (4)  (2)n3  2 6

(5p)3  10p  7p2 + p 3

= m3n

= 125p3  70p3 + 6p3 = 61p3 3

11

12

(f)

(g 3 h  5 ) 2 = gh  5

(e)

(4j4k) 2  2h3k  2

4

6

3

1

3

(m n



1 4

f

2

(e f )

2

=e

3 2

(e)

(f) 14

3 4  1 2

1

)  4

5

2 = e f2

=

g h

6 5

1

1

= 2j2k 2  2h3k  2

4

32m n

8

12 1

= m n  2m

j 2k h3

=

4 5

n



8 5

56

3

5 5 = m n 2

Using A = $5800, P = $5000 and n = 5 years. r 5 ) 100 r 5 5800 (1 + ) = 100 5000 1 r 58 1+ = ( )5  100 50

5800 = 5000(1 +

15

r = 3.01%

Let P be the original sum of money, then r = P + 96.60 = P(1 +

4.2 = 1.05 and n = 4. 4

1.05 4 ) 100

1.05 4 )  P = 96.60 100 1.05 4 P[(1 + )  1] = 96.60  100

P(1 +

Math Homework Prepared by Mr Ang KS

P = $2264.09

7

Math Homework Prepared by Mr Ang KS

8

Related Documents

Em 2019 3e4
November 2019 7
Em
October 2019 30
Em
June 2020 20
Em
June 2020 17
Em
December 2019 40