x Q. If u ( x, y ) = 2 , find a 2 x +y harmonic conjugate v of u. Soln : Observe the following :
1 (i ) If f ( z ) = , then u = Re f ( z ). z (ii ) f ( z ) is analytic in a domain D = C - {(0, 0)}. y (iii) Im f(z) = v = − 2 . 2 x +y Conclude that v is a H.C. of u.
Chapter 3: Elementary Functions 1. 2. 3. 4. 5.
Exponential Functions Trigonometric Functions Hyperbolic Functions Logarithmic Functions Complex Exponents
1. Inverse Trigonometric Functions 2. Inverse Hyperbolic Functions
3
n
z z = 1 + z + + + ...... + + .... 2! 3! n! z laurin'series of e
=e
z
2
z1 + z2
,
z1 e
e
z2
z1 − z2 =e
z
(2) Let f(z) = e = e x
= e .e
x + iy
iy
x
= e (cosy + i sin y) ≡ u + iv x
x
⇒ u = e cos y, v = e sin y,
x
x
⇒ u x = e cos y, u y = −e sin y x
x
v x = e sin y, v y = e cos y ⇒ u x = v y , u y = −v x
Thus CR equations are satisfied and clearly u x , u y , v x , v y are continuous
⇒ f ( z ) is differentiable and f ′(z) = u x + i v x x
x
x
iy
= e cos y + i e sin y = e . e = e d z z ⇒ e =e dz
( )
z
z
x
(3) e = e . e
iy
iy
e = cos y + i sin y ⇒e
iy
z
2
2
= cos y + sin y = 1 x
x
x
∴ e = e = e as e > 0 ∀ x ∈ R z
⇒ e ≠ 0 for any complex number z.
iφ
We may write e = e . e = ρ e , z
x
iy
when ρ = e = e > 0 & φ = y x
( )
z
∴ arg e = y + 2nπ , n = 0, ± 1, ± 2........... z
(4)
cos 2π = 1 & sin 2π = 0
Hence e πi
2πi
= cos 2π + i sin 2π = 1
e = cos π + i sin π = −1 −π i e = cos( − π ) + i sin ( − π ) = −1
π i/2
e
e
−π i / 2
= cos π / 2 + i sin π / 2 = i = cos ( − π / 2) + i sin ( − π / 2) =−i
5. e
z + 2πi
z
= e .e
2πi
=e
z
z
⇒ e is periodic with imaginary period 2πi.
∴e
z ± 2 nπi
z
= e ∀ n = 0,1,2,3,............
x
(6) e > 0 ∀ x ∈ℜ z
But e may be negative if z ∈C z
Example : Find z such that e = −1
Solution : z
e = −1 x
iy
πi
⇒ e . e = 1.e x
⇒ e = 1, and y = π + 2nπ , n = 0, ± 1,. ± 2... ⇒ x = 0 & y = π + 2 nπ
Thus, if z = x + iy = (2n + 1)π i, n = 0, ± 1,± 2,... z
then e = − 1
Excercise : z
(7) e is not analytic anywhere.
Q. Find all values of z such that e
2z −1
= 1+ i
Solution : 2 z −1 e = 1+ i ⇒e
2 x −1
.e
2iy
= 2
π i 4 e
⇒e
2 x −1
= 2,
π 2 y = + 2nπ ; 4 n = 0,±1, ± 2,..
(
)
1 π ⇒ x = 1 + ln 2 , y = + nπ 2 8 ∴z = x + iy
(
)
1 π = 1 + ln 2 + i + nπ , 2 8 n = 0, ± 1, ± 2,....
Trigonometric Functions (1) If x is real , then ix
−ix
e +e cos x = , 2 ix −ix e −e sin x = . 2i
If z is complex, we define iz
−iz
e +e cos z = , 2 iz −iz e −e sin z = − − − (1) 2i iz ⇒ e = cos z + i sin z ,
sin z cos z tan z = , cot z = , cos z sin z 1 1 sec z = , cos ec z = cos z sin z
2. Since ez is analytic ∀ z and linear
combination
analytic
functions
of is
two again
analytic, hence it follows that sin z and cos z are analytic functions.
3.Using (1) it is easy to prove : i) sin( −z ) = − sin z ii) cos(−z ) = cos z d ( sin z ) = cos z iii ) dz
iv )
d ( cos z ) = − sin z dz
v)
d 2 ( tan z ) = sec z dz
vi) sin( z1 ± z2 ) = sin z1 cos z2 ± cos z1 sin z2 vii) cos( z1 ± z2 ) = cos z1. cos z2 sin z1 sin z2
( 4)
iz
−iz
e +e cos z = , 2 iz −iz e −e sin z = . 2i
Put x = 0, then
i ( iy )
− i ( iy )
+e cos( iy ) = 2 −y y e +e = = cosh y 2 e
1 y −y sin ( iy ) = − (e − e ) 2i 1 y −y = i (e − e ) 2 = i sinh y
cos z = cos( x + iy ) = cos x cos iy − sin x. sin iy = cos x . cosh y − i sin x . sin hy
sin z = sin ( x + iy ) = sin x. cos iy + cos x. sin iy = sin x. cosh y + i cos x . sin hy
Hence (EXCERCISE) 2
2
2
sin z = sin x + sinh y 2
2
2
cos z = cos x + sin h y
Hints : (Use) 2
2
cos h x − sinh x = 1 2
2
cos x + sin x = 1
5.Analyticity of tan z & sec z : sin z 1 tan z = , sec z = cos z cos z ⇒ tan z & sec z are analytic everywhere except at the points where cos z = 0
cos z = 0 ⇒ cos ( x + iy ) = cos x cos hy − i sin x sin hy = 0 ⇒ cos x cos hy = 0, & sin x sinh y = 0
cosh y ≠ 0 y
−y
e +e 1 y 1 ( cosh y = = e + y 2 2 e 2y
= 0 ⇒ e = − 1 < 0)
π ∴ cos x ⇒ 0 ⇒ x = ( 2n + 1) , n = 0, ± 1, ± 2... 2
π But sin x ≠ 0 for x = ( 2n + 1) 2 ∴ sinh y = 0 ⇒ y = 0 e −e 2y = 0 ⇒ e = 1 ⇒ y = 0 sinh y = 2 y
−y
π ∴ z = x + iy = ( 2n + 1) 2 ∴ tan z & sec z are analytic every where except at π z = ( 2n + 1) , n = 0, ± 1 ± 2,..... 2
(6 Ex.) Analyticity of cot z & cosec z : cos z 1 cot z = & cos ec z = sin z sin z ⇒ cot z & cos ec z are analytic every where except at the points where
sin z = 0
sin z = sin ( x + iy ) = sin x cosh y + i cos x. sinh y = 0 ⇒ sin x. cosh y = 0 & cos x sinh y = 0 cosh y ≠ 0 ⇒ sin x = 0 ⇒ x = nπ , n = 0,± 1, ± 2,...
But for
x = nπ ,
cos x ≠ 0
∴sinh y = 0 ⇒ y = 0 ∴z = x + iy = nπ Thus cot z & cos ec z
are
analytic everywhere except at the points where z = nπ ,
n = 0, ±1, ± 2,...
Hyperbolic Functions : Definition : z
−z
e −e sinh z = , 2 z −z e +e cos hz = . 2
(1) e
z
&e
−z
are analytic everywhere
⇒ sin h z & cosh z are analytic everywhere.
d d e − e (2) [ sin h z ] = dz dz 2 z
z
−z
−z
e +e = = cos h z 2 d [ cos hz ] = sin hz Similarly dz
3. cos z = cos h( i z ) , z
−z
e +e cos hz = 2 iz −i z e +e ⇒ cos h( i z ) = = cos z 2
4. cos( i z ) = cosh z cos z = cos h( i z ) 2 ⇒ cos( i z ) = cos h i z = cos h( − z ) = cosh z
( )
5.
sin z = − i sin h ( i z )
6.
sin ( i z ) = − i sin h ( − z ) = i sin h z
7. sinh ( z1 + z2 ) = sin h z1. cos h z2 + cos h z1. sin h z2 8. cos h( z1 + z2 ) = cos h z1. cos h z2 + sin h z1. sin h z2
9. sin h( − z ) = − sin h z cos h ( − z ) = cos h z 2 2 cos h z − sin h z = 1
(10) sin h z = sin hx . cos y + i cos hx . sin y Soln :
sin h z = sin h( x + iy ) = sin hx cos h( i y )
+ cos h x. sin h( i y ) = sin hx. cos y + i cos hx . sin y
Excercise : 2
2
2
sin h z = sin h x + sin y
Similarly a) cosh z = cos hx cos y + i sin hx. sin y 2
2
2
b) cosh z = sin h x + cos y
(11) Analyticity of tan hz & sec h z : sinh z tan h z = , cos hz 1 sec hz = . cos hz
⇒ tanh z & sec hz are analytic everywhere except at the points where cos h z = 0.
Now cosh z = 0 ⇒ cos ( i z ) = cos( ix − y ) = 0 ⇒ cos ( i x ). cos ( y ) + sin ( ix ). sin ( y ) ⇒ cosh x . cos y + i sinh x. sin y = 0 ⇒ cosh x. cos y = 0, sinh x. sin y = 0.
cos h x ≠ 0 ⇒ cos y = 0
π ⇒ y = ( 2n + 1) , n = 0, ± 1, ± 2,... 2 π For y = ( 2n + 1) , sin y ≠ 0 2 ∴sin h x = 0 ⇒ x = 0
∴ z = x + iy iπ = ( 2n + 1) , 2 n = 0, ± 1, ± 2, ...
⇒ tan hz & sec hz are analytic everywhere except at iπ z = ( 2n + 1) , n = 0, ± 1, ± 2,.... 2
Exercise: coth z and cosech z are analytic everywhere except at z = nπi,
n = 0, ± 1, ± 2,.....
Q. Show that (i ) sin h ( Im z ) ≤ sin z ≤ cos h( Im z ) (ii ) sin h( Im z ) ≤ cos z ≤ cos( Im z )
Sol : (1) sin z = sin ( x + iy ) = sin x. cos( iy ) + cos x. sin ( iy ) = sin x. cosh y + i cos x. sin h y
2
2
2
⇒ sin z = sin x. cos h y 2
2
(
2
+ cos x. sin h y 2
= sin x 1 + sin h y
(
2
)
) 2
+ 1 − sin x . sin h y 2
2
= sin x + sin h y
2
2
2
2
⇒ sin h y ≤ sin z = sin x + sin h y 2
≤ 1 + sinh y 2
= cosh y ⇒ sin hy ≤ sin z ≤ cosh y
(ii ) cos z = cos( x + iy ) = cos x. cos( iy ) − sin x. sin ( iy ) = cos x. cosh y − i sin x. sin h y
2
2
2
⇒ cos z = cos x. cos h y 2
2
+ sin x. sin h y 2
(
2
= cos x 1 + sin h y
(
2
)
)
2
+ 1 − cos x . sin h y 2
2
= cos x + sin h y
2
2
2
2
⇒ sin h y ≤ cos z = cos x + sin h y 2
≤ 1 + sin h y 2
= cosh y ⇒ sin h y ≤ cos z ≤ cos hy
The Logarithmic Function : The natural logarithm of z = x + iy is denoted by log z, i.e. w = log z,
and log z is defined for z ≠ 0 by the relation w
e = z ..............(i ) w
i.e. if e = z , then we write w = log z
Let w = u + iv, z = x + iy = r cos Θ + i r sin Θ iΘ
= r e , where − π < Θ ≤ π , Θ = Arg z
Then (i ) ⇒ e
u + iv
⇒e . e = r e u
iv
=re
iΘ
⇒e = r = z, u
v = Θ + 2 nπ , n = 0, ± 1, ± 2,......
iΘ
⇒ u = ln r = ln z , v = Θ + 2nπ
∴ w = log z = u + i v = ln z + i( Θ + 2nπ )
Since Arg z = Θ, − π < Θ ≤ π and arg z = Θ + 2nπ , n is any integer ∴log z = ln z + i arg z ,
z≠0
When n = 0, then arg z = Arg z When n = 0, then the value of log z is called the principal value of log z and is denoted by Log z, i.e. Log z = ln z + i Arg z , z ≠ 0.
∴ log z = ln z + i arg z = ln z + i( Θ + 2nπ )
= ( ln z + iΘ ) + i 2nπ ⇒ log z = Log z + i 2nπ , n = 0, ± 1,± 2,...
Sec 31 : If z1 & z 2 be any two non − zero complex numbers, then (1) log( z1 z 2 ) = log z1 + log z 2 z1 (2) log = log z1 − log z 2 z2
But Log ( z1 z 2 ) ≠ Log z1 + Log z 2 z1 Log ≠ Log z1 − Log z 2 z 2 n
Log z ≠ n Log z
Ex (1) Let z1 = −1, z 2 = −1 z1=-1+i0
z1
z1 z2
∴Log ( z1 ) = ln z1 + i Arg z1
⇒ Log ( − 1) = ln (1) + i Arg z1
= 0 + iπ ∴Log ( z1 ) + Log ( z 2 ) = 2π i
But z1 z2 = 1
⇒ Log ( z1 z2 ) = ln z1 z2 + i Arg ( z1 z2 ) = 0 + i. 0 = 0 Thus Log ( z1 z2 ) ≠ Log z1 + Log z2
Q.3(b) Log ( − 1 + i ) ≠ 2 Log ( − 1 + i ) 2
L.H.S. = Log ( − 1 + i )
[
2
2
= Log 1 + i − 2 i = Log ( − 2 i )
]
= ln − 2i + iArg ( − 2i ) π = ln 2 + i − 2 π = ln 2 − i 2
RHS = 2 Log ( −1 + i )
= 2[ln −1 + i + i Arg ( −1 + i ) ] 3π = 2 ln 2 + i 4
1 3π = 2[ ln 2 + i ] 2 4 3π = ln 2 + i 2 ∴LHS ≠ RHS
Q.4 Show that
( a ) log(i
2
) ≠ 2 log i,
log z = ln r + i θ ,
r = z > 0, 3π 11π <θ < 4 4
when
( ) 2
(b) log i = 2 log i, when log z = ln r + iθ , π 9π r = z > 0, < θ < 4 4
Soln (a) : LHS = log(i ) = log( −1) 2
= ln −1 + i θ , = 0 +π i = π i
NOTE : 3π / 4 < θ < 11π 4 ,
θ = arg( − 1) = π + 2nπ and hence n = 0.
We have log i = ln i + i arg i π = ln 1 + i + 2nπ , where 2 n is an integer 1 = iπ 2n + 2
3π 1 11π < θ = 2n + π < 4 2 4 ⇒ n = 1 & hence 5π θ= 2
11 π/4
3 π /4
5π ∴ RHS = 2 log i = 2. i = 5π i 2 LHS =/ RHS
Soln(b) : π 9π < θ = ( 2n + 1)π < 4 4 ⇒n=0 ⇒ LHS = πi
9π/4 π/4
But when
π 1 9π < θ = 2n + π < 4 2 4 π ⇒ n = 0 & hence θ = 2
π RHS = 2 log i = 2 i = πi 2 ∴LHS = RHS
( ) = 2 log i
i.e. log i
2
π 9π if <Θ< 4 4
Sec 30 : Derivatives of log z and Log z
Remark 1 : Since log z = ln z + i arg z = ln z + i ( Θ + 2nπ ) , n = 0, ± 1, ± 2,..... ⇒ log z is a multivalued function.
Remark 2 : Since Log z = ln z + i Θ , Θ = Arg z ⇒ Log z is a single - valued function.
Re mark 3 :
(
)
1 2 2 ln z = ln x + y 2 is continuous everywhere except at ( 0,0).
Remark 4 : Let α be any real number, and consider f ( z ) = log z = ln z + iθ = ln r + iθ ,
( r > 0,α < θ < α + 2π ) ⇒ u ( r ,θ ) = ln r , v( r ,θ ) = θ
y
α
x
Then log z is single - valued and continuous in the domain D = {z : z > 0, α < θ < α + 2π }
Remark 5: The function log z is NOT continuous on the line
θ =α
as arg z is NOT θ = α continuous on the line
.
For if z is a point on the ray θ=α then there are points arbitrary close to z at which the values of v are nearer to α, and also there are points such that the values of v are nearer to α+2π.
⇒ lim arg z does not exist. z →α
Remark 6 : (i) log z = ln r + i θ
is analytic
in domain D1 = {z : z = r > 0, α < θ = arg z < α + 2π } (ii ) Log z = ln r + i Θ is analytic in the domain D 2 = {z : z = r > 0, − π < Θ = Arg z < π }
As, u( r ,θ ) = ln r , v ( r ,θ ) = θ 1 ⇒ ur = , uθ = 0 r v r = 0, vθ = 1
⇒ CR - equations in polar form r u r = vθ , uθ = −r vr are satisfied and first - order partial derivatives are continuous.
d − iθ ⇒ f ′( z ) = ( log z ) = −e ( ur + i vr ) dz 1 1 = iθ = in D1 z re In particular, when α = −π d 1 ( Log z ) = in D2 . dz z
Remark : 7 Log z is analytic on the whole
complex plane except at ( 0,0 ) and on the ray θ = -π , i.e. on negative real axis.
i.e. singularties of Log z are given by Re z ≤ 0, Im z = 0.
Definition : A branch of a multiple - valued function f ( z ) defined on a set S is any single valued function F(z) that is analytic in some domain D ⊆ S such that for all z ∈ D, F( z ) is one of the values of f ( z ).
Ex. For each fixed α , log z = ln z + i θ ,
( z > 0,α < θ < α + 2π )
is a branch of log z = ln z + i arg z
Log z = ln z + i Θ ,
( z > 0, − π < Θ < π ) is called the principal branch.
Q.9(a) p. 94 Show that the function Log ( z − i ) is analytic everywhere except on the half line y = 1 ( x ≤ 0 ).
Solution : We have f ( z ) = Log ( z − i ) singularity of f ( z ) is given by
Re ( z − i ) ≤ 0 & Im( z − i ) = 0 ⇒ Re( x + i ( y − 1) ) ≤ 0 & Im( x + i ( y − 1) ) = 0
⇒ x ≤ 0 & y =1
y=1
Q 9 ( b ) Show that the function Log ( z + 4 ) f ( z) = 2 z +i is analytic everywhere except at the points ± (1 - i ) / 2 and on the portion x ≤ − 4 of the real axis.
Solution : Singularities of f ( z ) are given by Re( z + 4 ) ≤ 0, Im( z + 4 ) = 0 & 2
z +i = 0 2
⇒ x + 4 ≤ 0, y = 0 & z = −i
2
Now z = − i = e
⇒z =e ⇒z =e
−π + 2 nπ i 2
, n = 0, 1
−π i + 2 nπ 2 2 −π + nπ i 4
, n = 0,1
When n = 0, then z=
−π i 4 e
π π = cos − i sin 4 4 1 (1 − i ) = 2
When n = 1, then z=e
π π − i 4
3π 3π = cos + i sin 4 4 1 (1 − i ) =− 2
Hence singularities of f ( z ) are 1 (1 − i ) , x ≤ −4. ± 2
Sec 32 : Complex Exponents (1) Let z ≠ 0 be a complex no., and c is any complex no. c
Then z is defined as c
z =e
c log z
If log z is replaced by Log z, then c
z =e
c Logz
is called the principal value c
of z .
Q.2( a ) Show that i is real and find its principal value. i
i
Solution : i = e
i log i
log( i ) = ln i + i arg ( i ) 1 π = 0 + i + 2nπ = 2n + π i 2 2
i
∴ i =e
1 − 2 n + π 2
which is real i
Principal value of i is π − 2 e
(n = 0).
EX. ( b ) Find P.V. of i . -i
Solution : −i
i =e =e
−i log i
=e
1 2 n + π 2
1 −i 2 n + πi 2
, n = 0, ± 1, ± 2,.. −i
π 2
Principal value of i = e
(c) Write log(Log i) in terms of a + ib
π We have Log i = i (WHY ??) 2 π π π ⇒ log ( Log i ) = log i = ln i + i arg i 2 2 2 π = ln ( π 2 ) + i + 2nπ 2 Principal value of π Log ( Log i ) = ln ( π 2 ) + i 2
Q. Find the principal value of (1 - i )
( 1+i ) log ( 1−i ) =e
1+i
Solution : (1 − i ) Now log (1 - i ) = ln 1 − i + i arg (1 − i ) π = ln 2 + i − + 2nπ 4 1+i
1
-i
-π / 4
∴ (1 - i ) =e
1+i
= e
log ( 1−i )
.e
= (1 − i ) . e
log ( 1−i ) + i log ( 1−i )
i log ( 1−i )
1 i ln 2 − 2 n − π 4
i ln 2
1 − 2 n − π 4
= (1 − i )
π i ln 2 4 e e
= (1 - i ) e .e Principal value of
(1 - i )
1+i