Elementary Functions

  • Uploaded by: alienxx
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Elementary Functions as PDF for free.

More details

  • Words: 4,636
  • Pages: 129
x Q. If u ( x, y ) = 2 , find a 2 x +y harmonic conjugate v of u. Soln : Observe the following :

1 (i ) If f ( z ) = , then u = Re f ( z ). z (ii ) f ( z ) is analytic in a domain D = C - {(0, 0)}. y (iii) Im f(z) = v = − 2 . 2 x +y Conclude that v is a H.C. of u.

Chapter 3: Elementary Functions 1. 2. 3. 4. 5.

Exponential Functions Trigonometric Functions Hyperbolic Functions Logarithmic Functions Complex Exponents

1. Inverse Trigonometric Functions 2. Inverse Hyperbolic Functions

3

n

z z = 1 + z + + + ...... + + .... 2! 3! n! z laurin'series of e

=e

z

2

z1 + z2

,

z1 e

e

z2

z1 − z2 =e

z

(2) Let f(z) = e = e x

= e .e

x + iy

iy

x

= e (cosy + i sin y) ≡ u + iv x

x

⇒ u = e cos y, v = e sin y,

x

x

⇒ u x = e cos y, u y = −e sin y x

x

v x = e sin y, v y = e cos y ⇒ u x = v y , u y = −v x

Thus CR equations are satisfied and clearly u x , u y , v x , v y are continuous

⇒ f ( z ) is differentiable and f ′(z) = u x + i v x x

x

x

iy

= e cos y + i e sin y = e . e = e d z z ⇒ e =e dz

( )

z

z

x

(3) e = e . e

iy

iy

e = cos y + i sin y ⇒e

iy

z

2

2

= cos y + sin y = 1 x

x

x

∴ e = e = e as e > 0 ∀ x ∈ R z

⇒ e ≠ 0 for any complex number z.



We may write e = e . e = ρ e , z

x

iy

when ρ = e = e > 0 & φ = y x

( )

z

∴ arg e = y + 2nπ , n = 0, ± 1, ± 2........... z

(4)

cos 2π = 1 & sin 2π = 0

Hence e πi

2πi

= cos 2π + i sin 2π = 1

e = cos π + i sin π = −1 −π i e = cos( − π ) + i sin ( − π ) = −1

π i/2

e

e

−π i / 2

= cos π / 2 + i sin π / 2 = i = cos ( − π / 2) + i sin ( − π / 2) =−i

5. e

z + 2πi

z

= e .e

2πi

=e

z

z

⇒ e is periodic with imaginary period 2πi.

∴e

z ± 2 nπi

z

= e ∀ n = 0,1,2,3,............

x

(6) e > 0 ∀ x ∈ℜ z

But e may be negative if z ∈C z

Example : Find z such that e = −1

Solution : z

e = −1 x

iy

πi

⇒ e . e = 1.e x

⇒ e = 1, and y = π + 2nπ , n = 0, ± 1,. ± 2... ⇒ x = 0 & y = π + 2 nπ

Thus, if z = x + iy = (2n + 1)π i, n = 0, ± 1,± 2,... z

then e = − 1

Excercise : z

(7) e is not analytic anywhere.

Q. Find all values of z such that e

2z −1

= 1+ i

Solution : 2 z −1 e = 1+ i ⇒e

2 x −1

.e

2iy

= 2

π i 4 e

⇒e

2 x −1

= 2,

π 2 y = + 2nπ ; 4 n = 0,±1, ± 2,..

(

)

1 π ⇒ x = 1 + ln 2 , y = + nπ 2 8 ∴z = x + iy

(

)

1 π  = 1 + ln 2 + i + nπ , 2 8  n = 0, ± 1, ± 2,....

Trigonometric Functions (1) If x is real , then ix

−ix

e +e cos x = , 2 ix −ix e −e sin x = . 2i

If z is complex, we define iz

−iz

e +e cos z = , 2 iz −iz e −e sin z = − − − (1) 2i iz ⇒ e = cos z + i sin z ,

sin z cos z tan z = , cot z = , cos z sin z 1 1 sec z = , cos ec z = cos z sin z

2. Since ez is analytic ∀ z and linear

combination

analytic

functions

of is

two again

analytic, hence it follows that sin z and cos z are analytic functions.

3.Using (1) it is easy to prove : i) sin( −z ) = − sin z ii) cos(−z ) = cos z d ( sin z ) = cos z iii ) dz

iv )

d ( cos z ) = − sin z dz

v)

d 2 ( tan z ) = sec z dz

vi) sin( z1 ± z2 ) = sin z1 cos z2 ± cos z1 sin z2 vii) cos( z1 ± z2 ) = cos z1. cos z2 sin z1 sin z2

( 4)

iz

−iz

e +e cos z = , 2 iz −iz e −e sin z = . 2i

Put x = 0, then

i ( iy )

− i ( iy )

+e cos( iy ) = 2 −y y e +e = = cosh y 2 e

1 y −y sin ( iy ) = − (e − e ) 2i 1 y −y = i (e − e ) 2 = i sinh y

cos z = cos( x + iy ) = cos x cos iy − sin x. sin iy = cos x . cosh y − i sin x . sin hy

sin z = sin ( x + iy ) = sin x. cos iy + cos x. sin iy = sin x. cosh y + i cos x . sin hy

Hence (EXCERCISE) 2

2

2

sin z = sin x + sinh y 2

2

2

cos z = cos x + sin h y

Hints : (Use) 2

2

cos h x − sinh x = 1 2

2

cos x + sin x = 1

5.Analyticity of tan z & sec z : sin z 1 tan z = , sec z = cos z cos z ⇒ tan z & sec z are analytic everywhere except at the points where cos z = 0

cos z = 0 ⇒ cos ( x + iy ) = cos x cos hy − i sin x sin hy = 0 ⇒ cos x cos hy = 0, & sin x sinh y = 0

cosh y ≠ 0 y

−y

e +e 1 y 1  ( cosh y = = e + y  2 2 e  2y

= 0 ⇒ e = − 1 < 0)

π ∴ cos x ⇒ 0 ⇒ x = ( 2n + 1) , n = 0, ± 1, ± 2... 2

π But sin x ≠ 0 for x = ( 2n + 1) 2 ∴ sinh y = 0 ⇒ y = 0   e −e 2y = 0 ⇒ e = 1 ⇒ y = 0  sinh y = 2   y

−y

π ∴ z = x + iy = ( 2n + 1) 2 ∴ tan z & sec z are analytic every where except at π z = ( 2n + 1) , n = 0, ± 1 ± 2,..... 2

(6 Ex.) Analyticity of cot z & cosec z : cos z 1 cot z = & cos ec z = sin z sin z ⇒ cot z & cos ec z are analytic every where except at the points where

sin z = 0

sin z = sin ( x + iy ) = sin x cosh y + i cos x. sinh y = 0 ⇒ sin x. cosh y = 0 & cos x sinh y = 0 cosh y ≠ 0 ⇒ sin x = 0 ⇒ x = nπ , n = 0,± 1, ± 2,...

But for

x = nπ ,

cos x ≠ 0

∴sinh y = 0 ⇒ y = 0 ∴z = x + iy = nπ Thus cot z & cos ec z

are

analytic everywhere except at the points where z = nπ ,

n = 0, ±1, ± 2,...

Hyperbolic Functions : Definition : z

−z

e −e sinh z = , 2 z −z e +e cos hz = . 2

(1) e

z

&e

−z

are analytic everywhere

⇒ sin h z & cosh z are analytic everywhere.

d d e − e  (2) [ sin h z ] =   dz dz  2  z

z

−z

−z

e +e = = cos h z 2 d [ cos hz ] = sin hz Similarly dz

3. cos z = cos h( i z ) , z

−z

e +e cos hz = 2 iz −i z e +e ⇒ cos h( i z ) = = cos z 2

4. cos( i z ) = cosh z cos z = cos h( i z ) 2 ⇒ cos( i z ) = cos h i z = cos h( − z ) = cosh z

( )

5.

sin z = − i sin h ( i z )

6.

sin ( i z ) = − i sin h ( − z ) = i sin h z

7. sinh ( z1 + z2 ) = sin h z1. cos h z2 + cos h z1. sin h z2 8. cos h( z1 + z2 ) = cos h z1. cos h z2 + sin h z1. sin h z2

9. sin h( − z ) = − sin h z cos h ( − z ) = cos h z 2 2 cos h z − sin h z = 1

(10) sin h z = sin hx . cos y + i cos hx . sin y Soln :

sin h z = sin h( x + iy ) = sin hx cos h( i y )

+ cos h x. sin h( i y ) = sin hx. cos y + i cos hx . sin y

Excercise : 2

2

2

sin h z = sin h x + sin y

Similarly a) cosh z = cos hx cos y + i sin hx. sin y 2

2

2

b) cosh z = sin h x + cos y

(11) Analyticity of tan hz & sec h z : sinh z tan h z = , cos hz 1 sec hz = . cos hz

⇒ tanh z & sec hz are analytic everywhere except at the points where cos h z = 0.

Now cosh z = 0 ⇒ cos ( i z ) = cos( ix − y ) = 0 ⇒ cos ( i x ). cos ( y ) + sin ( ix ). sin ( y ) ⇒ cosh x . cos y + i sinh x. sin y = 0 ⇒ cosh x. cos y = 0, sinh x. sin y = 0.

cos h x ≠ 0 ⇒ cos y = 0

π ⇒ y = ( 2n + 1) , n = 0, ± 1, ± 2,... 2 π For y = ( 2n + 1) , sin y ≠ 0 2 ∴sin h x = 0 ⇒ x = 0

∴ z = x + iy iπ = ( 2n + 1) , 2 n = 0, ± 1, ± 2, ...

⇒ tan hz & sec hz are analytic everywhere except at iπ z = ( 2n + 1) , n = 0, ± 1, ± 2,.... 2

Exercise: coth z and cosech z are analytic everywhere except at z = nπi,

n = 0, ± 1, ± 2,.....

Q. Show that (i ) sin h ( Im z ) ≤ sin z ≤ cos h( Im z ) (ii ) sin h( Im z ) ≤ cos z ≤ cos( Im z )

Sol : (1) sin z = sin ( x + iy ) = sin x. cos( iy ) + cos x. sin ( iy ) = sin x. cosh y + i cos x. sin h y

2

2

2

⇒ sin z = sin x. cos h y 2

2

(

2

+ cos x. sin h y 2

= sin x 1 + sin h y

(

2

)

) 2

+ 1 − sin x . sin h y 2

2

= sin x + sin h y

2

2

2

2

⇒ sin h y ≤ sin z = sin x + sin h y 2

≤ 1 + sinh y 2

= cosh y ⇒ sin hy ≤ sin z ≤ cosh y

(ii ) cos z = cos( x + iy ) = cos x. cos( iy ) − sin x. sin ( iy ) = cos x. cosh y − i sin x. sin h y

2

2

2

⇒ cos z = cos x. cos h y 2

2

+ sin x. sin h y 2

(

2

= cos x 1 + sin h y

(

2

)

)

2

+ 1 − cos x . sin h y 2

2

= cos x + sin h y

2

2

2

2

⇒ sin h y ≤ cos z = cos x + sin h y 2

≤ 1 + sin h y 2

= cosh y ⇒ sin h y ≤ cos z ≤ cos hy

The Logarithmic Function : The natural logarithm of z = x + iy is denoted by log z, i.e. w = log z,

and log z is defined for z ≠ 0 by the relation w

e = z ..............(i ) w

i.e. if e = z , then we write w = log z

Let w = u + iv, z = x + iy = r cos Θ + i r sin Θ iΘ

= r e , where − π < Θ ≤ π , Θ = Arg z

Then (i ) ⇒ e

u + iv

⇒e . e = r e u

iv

=re



⇒e = r = z, u

v = Θ + 2 nπ , n = 0, ± 1, ± 2,......



⇒ u = ln r = ln z , v = Θ + 2nπ

∴ w = log z = u + i v = ln z + i( Θ + 2nπ )

Since Arg z = Θ, − π < Θ ≤ π and arg z = Θ + 2nπ , n is any integer ∴log z = ln z + i arg z ,

z≠0

When n = 0, then arg z = Arg z When n = 0, then the value of log z is called the principal value of log z and is denoted by Log z, i.e. Log z = ln z + i Arg z , z ≠ 0.

∴ log z = ln z + i arg z = ln z + i( Θ + 2nπ )

= ( ln z + iΘ ) + i 2nπ ⇒ log z = Log z + i 2nπ , n = 0, ± 1,± 2,...

Sec 31 : If z1 & z 2 be any two non − zero complex numbers, then (1) log( z1 z 2 ) = log z1 + log z 2  z1  (2) log   = log z1 − log z 2  z2 

But Log ( z1 z 2 ) ≠ Log z1 + Log z 2  z1  Log   ≠ Log z1 − Log z 2 z  2 n

Log z ≠ n Log z

Ex (1) Let z1 = −1, z 2 = −1 z1=-1+i0

z1

z1 z2

∴Log ( z1 ) = ln z1 + i Arg z1

⇒ Log ( − 1) = ln (1) + i Arg z1

= 0 + iπ ∴Log ( z1 ) + Log ( z 2 ) = 2π i

But z1 z2 = 1

⇒ Log ( z1 z2 ) = ln z1 z2 + i Arg ( z1 z2 ) = 0 + i. 0 = 0 Thus Log ( z1 z2 ) ≠ Log z1 + Log z2

Q.3(b) Log ( − 1 + i ) ≠ 2 Log ( − 1 + i ) 2

L.H.S. = Log ( − 1 + i )

[

2

2

= Log 1 + i − 2 i = Log ( − 2 i )

]

= ln − 2i + iArg ( − 2i )  π = ln 2 + i −   2 π = ln 2 − i 2

RHS = 2 Log ( −1 + i )

= 2[ln −1 + i + i Arg ( −1 + i ) ] 3π   = 2 ln 2 + i  4  

1 3π = 2[ ln 2 + i ] 2 4 3π = ln 2 + i 2 ∴LHS ≠ RHS

Q.4 Show that

( a ) log(i

2

) ≠ 2 log i,

log z = ln r + i θ ,

r = z > 0, 3π 11π <θ < 4 4

when

( ) 2

(b) log i = 2 log i, when log z = ln r + iθ , π 9π r = z > 0, < θ < 4 4

Soln (a) : LHS = log(i ) = log( −1) 2

= ln −1 + i θ , = 0 +π i = π i

NOTE : 3π / 4 < θ < 11π 4 ,

θ = arg( − 1) = π + 2nπ and hence n = 0.

We have log i = ln i + i arg i π  = ln 1 + i + 2nπ , where 2  n is an integer 1  = iπ  2n +  2 

3π 1 11π  < θ =  2n + π < 4 2 4  ⇒ n = 1 & hence 5π θ= 2

11 π/4

3 π /4

5π ∴ RHS = 2 log i = 2. i = 5π i 2 LHS =/ RHS

Soln(b) : π 9π < θ = ( 2n + 1)π < 4 4 ⇒n=0 ⇒ LHS = πi

9π/4 π/4

But when

π 1 9π  < θ =  2n + π < 4 2 4  π ⇒ n = 0 & hence θ = 2

π RHS = 2 log i = 2 i = πi 2 ∴LHS = RHS

( ) = 2 log i

i.e. log i

2

π 9π if <Θ< 4 4

Sec 30 : Derivatives of log z and Log z

Remark 1 : Since log z = ln z + i arg z = ln z + i ( Θ + 2nπ ) , n = 0, ± 1, ± 2,..... ⇒ log z is a multivalued function.

Remark 2 : Since Log z = ln z + i Θ , Θ = Arg z ⇒ Log z is a single - valued function.

Re mark 3 :

(

)

1 2 2 ln z = ln x + y 2 is continuous everywhere except at ( 0,0).

Remark 4 : Let α be any real number, and consider f ( z ) = log z = ln z + iθ = ln r + iθ ,

( r > 0,α < θ < α + 2π ) ⇒ u ( r ,θ ) = ln r , v( r ,θ ) = θ

y

α

x

Then log z is single - valued and continuous in the domain D = {z : z > 0, α < θ < α + 2π }

Remark 5: The function log z is NOT continuous on the line

θ =α

as arg z is NOT θ = α continuous on the line

.

For if z is a point on the ray θ=α then there are points arbitrary close to z at which the values of v are nearer to α, and also there are points such that the values of v are nearer to α+2π.

⇒ lim arg z does not exist. z →α

Remark 6 : (i) log z = ln r + i θ

is analytic

in domain D1 = {z : z = r > 0, α < θ = arg z < α + 2π } (ii ) Log z = ln r + i Θ is analytic in the domain D 2 = {z : z = r > 0, − π < Θ = Arg z < π }

As, u( r ,θ ) = ln r , v ( r ,θ ) = θ 1 ⇒ ur = , uθ = 0 r v r = 0, vθ = 1

⇒ CR - equations in polar form r u r = vθ , uθ = −r vr are satisfied and first - order partial derivatives are continuous.

d − iθ ⇒ f ′( z ) = ( log z ) = −e ( ur + i vr ) dz 1 1 = iθ = in D1 z re In particular, when α = −π d 1 ( Log z ) = in D2 . dz z

Remark : 7 Log z is analytic on the whole

complex plane except at ( 0,0 ) and on the ray θ = -π , i.e. on negative real axis.

i.e. singularties of Log z are given by Re z ≤ 0, Im z = 0.

Definition : A branch of a multiple - valued function f ( z ) defined on a set S is any single valued function F(z) that is analytic in some domain D ⊆ S such that for all z ∈ D, F( z ) is one of the values of f ( z ).

Ex. For each fixed α , log z = ln z + i θ ,

( z > 0,α < θ < α + 2π )

is a branch of log z = ln z + i arg z

Log z = ln z + i Θ ,

( z > 0, − π < Θ < π ) is called the principal branch.

Q.9(a) p. 94 Show that the function Log ( z − i ) is analytic everywhere except on the half line y = 1 ( x ≤ 0 ).

Solution : We have f ( z ) = Log ( z − i ) singularity of f ( z ) is given by

Re ( z − i ) ≤ 0 & Im( z − i ) = 0 ⇒ Re( x + i ( y − 1) ) ≤ 0 & Im( x + i ( y − 1) ) = 0

⇒ x ≤ 0 & y =1

y=1

Q 9 ( b ) Show that the function Log ( z + 4 ) f ( z) = 2 z +i is analytic everywhere except at the points ± (1 - i ) / 2 and on the portion x ≤ − 4 of the real axis.

Solution : Singularities of f ( z ) are given by Re( z + 4 ) ≤ 0, Im( z + 4 ) = 0 & 2

z +i = 0 2

⇒ x + 4 ≤ 0, y = 0 & z = −i

2

Now z = − i = e

⇒z =e ⇒z =e

 −π  + 2 nπ  i   2 

, n = 0, 1

 −π i + 2 nπ    2 2  −π  + nπ  i   4 

, n = 0,1

When n = 0, then z=

−π i 4 e

π π = cos − i sin 4 4 1 (1 − i ) = 2

When n = 1, then z=e

 π  π − i 4 

 3π   3π  = cos  + i sin    4   4  1 (1 − i ) =− 2

Hence singularities of f ( z ) are 1 (1 − i ) , x ≤ −4. ± 2

Sec 32 : Complex Exponents (1) Let z ≠ 0 be a complex no., and c is any complex no. c

Then z is defined as c

z =e

c log z

If log z is replaced by Log z, then c

z =e

c Logz

is called the principal value c

of z .

Q.2( a ) Show that i is real and find its principal value. i

i

Solution : i = e

i log i

log( i ) = ln i + i arg ( i ) 1 π   = 0 + i + 2nπ  =  2n + π i 2 2  

i

∴ i =e

1  −  2 n + π 2 

which is real i

Principal value of i is π − 2 e

(n = 0).

EX. ( b ) Find P.V. of i . -i

Solution : −i

i =e =e

−i log i

=e

1   2 n + π 2 

1  −i  2 n + πi 2 

, n = 0, ± 1, ± 2,.. −i

π 2

Principal value of i = e

(c) Write log(Log i) in terms of a + ib

π We have Log i = i (WHY ??) 2 π π  π  ⇒ log ( Log i ) = log i  = ln i + i arg i  2 2  2  π  = ln ( π 2 ) + i + 2nπ  2  Principal value of π Log ( Log i ) = ln ( π 2 ) + i 2

Q. Find the principal value of (1 - i )

( 1+i ) log ( 1−i ) =e

1+i

Solution : (1 − i ) Now log (1 - i ) = ln 1 − i + i arg (1 − i )  π  = ln 2 + i − + 2nπ   4  1+i

1

-i

-π / 4

∴ (1 - i ) =e

1+i

= e

log ( 1−i )

.e

= (1 − i ) . e

log ( 1−i ) + i log ( 1−i )

i log ( 1−i )

1  i ln 2 −  2 n − π 4 

i ln 2

1  − 2 n − π 4 

= (1 − i )

π i ln 2 4 e e

= (1 - i ) e .e Principal value of

(1 - i )

1+i

Related Documents

Elementary Functions
April 2020 14
Elementary
October 2019 41
Functions
November 2019 47
Functions
December 2019 49
Functions
May 2020 27

More Documents from ""