Electromagnetic Waves Part Iii

  • Uploaded by: MINESY
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Electromagnetic Waves Part Iii as PDF for free.

More details

  • Words: 5,634
  • Pages: 38
Electromagnetic Fields First Semester 2008/2009 Electronic and Comm. Eng. Dept.

(2.3) Sinusoidal time varying fields:  Let all the quantities vary with time in sinusoidal manner. Why?  It is easy to obtain it in laboratory.  The differentiation of sin gives cos and vise versa.  We can convert any function to sin & cos.  To transform the function from time form to complex form, it must be sinusoidal. L

Hint: Solving the function in complex form (algebraic equation ) avoid us the solution of integro-differential equation in time form.

V ∼

I

C

R

1   =   V R + j ω L +  I j ω C  

d i( t ) 1 t V( t ) = R i( t ) + L + ∫ i( t )dt dt C0

Complex representation of field quantities: +j

1. Scalars:

ω ρ

ρ( t ) = ρo cos( ωt + φo ) = Re[ ρo e j( ωt +φo ) ]

= Re[ρo e

jφ o

e

jωt

] = Re[ ρ

e

jωt

]

φ

o

o

ρ = ρ o e jφo ........ Comlex phasor (represented by point in complex domain).

+1

2. Vectors:  E(r, t ) = E ox cos(ωt + φ x ) aˆ x + E oy cos(ωt + φ y ) aˆ y + E oz cos(ωt + φ z ) aˆ z

= Re [ ( E e aˆ + E e aˆ + E = R e [ ( E aˆ + E aˆ + E aˆ ) e ] jφ y

jφ x

ox

x

oy

y

) ]

jφ z jω t ˆ e a e oz z

jω t

x

x

y

y

z

z

 E = E x aˆ x + E y aˆ y + E z aˆ z 3. Derivatives:

ρ( t ) = ρo cos(ωt + φo ) = Re[ ρ ∂ρ( t ) = Re[ (jω) ρ e jωt ] ∂t ∂ 2 ρ( t ) 2 jω t  = Re[ (ω ) ρ e ] 2 ∂t

e jωt ] ∂ ⇒ × ( jω) ∂t ∂2 ⇒ × ( −ω2 ) 2 ∂t

4. Complex parameters of matter ( ε and µ

):

  jψ jψ E = Eo e aˆ1 ; D = Do e aˆ1 ;

Let

E

D

 D D o j( ψD −ψE )  = =  | e − jψε ε e =| ε  E Eo

ε = ε′ − jε′′

Similarly,

µ = µ′ − jµ′′

 Which are the complex permittivity and permeability of the matter

ε′, µ′′ ......

are proportional to the losses.

Or ;

Maxwell’s equations in phasor form (complex domain):     H 1) ∇ × E = − jωµ

      2) ∇ × H = J + jωε E

 3) ∇.D = ρ

 4) ∇.B = 0

 & ∇.J = − jωρ

(2.4) Derivation and solution of wave equations in unbounded media: 2.4.1 Types of media ( according to the values of ε , µ andσ ). 2.4.2 Source-free wave equation. 9.4.2.1 Time form. a. In free-apace ( ε = ε

o

, µ = µo and σ = 0 ).

b. Lossless dielectric ( ε = ε 0 ). c. Lossy dielectric ( ε =ε o ε 0 ).

9.4.2.2 Complex form.

2.4.3 Properties of plane wave.

o

ε

r

, µ = µoµr and σ ≠

r

, µ = µoµr and σ =

(2.4.2) Source-free wave equation :

 Source-free: the solution region does not include any sources ( Jimp = 0 & ρ = 0 ).

(2.4.2.1)Time form: a) In free-apace: ( ε = ε o , µ = µo and σ = 0 )    ∂H 2  ∇ × E = −µo ..... (1) ∂ E 2 ∂ ∇ E − µoεo 2 = 0 t

 ∂E ∇ × H = εo ..... (2) ∂t  ∇.D = 0 ..... (3)  ∇.B = 0 ..... (4)  & ∇.J = 0 ..... (5)

Taking the curl of both sides of eqn. (1) :

  ∂ ∇ × ∇ × E = −µo (∇ × H ) ∂t    ∂ ∂E 2 ∇ (∇.E ) − ∇ E = − µo (εo ) ∂t ∂t 0

∂t

Similarly;

 2  ∂ H 2 ∇ H − µoεo 2 = 0 ∂t

Generally:

 2   ∇ − µoεo ∂  2  ∂ t   2

 E    = 0  H  

Source-free wave equation in free-space (2nd order P.D.E.)

Solution of source-free wave equation in free space:  2  ∂ E 2 ∇ E − µoεo 2 = 0 ......... ( I) ; the solution of this equation has the form: ∂t

    E( r , t ) = E x ( r , t )aˆ x + E y ( r , t )aˆ y + E z ( r , t )aˆ z

For simplicity, let us choose the axes such that the electric field coincides with the x-axis and is function of (z,t) only. I.e.,

 E( r , t ) = E x (z, t )aˆ x

; Substituting in eqn.(I) gives,

∂ 2 E x ( z, t ) ∂ 2 E x ( z, t ) − µoεo =0 2 2 ∂z ∂t Any function f ( z  ct ) is the solution of the above equation because : f ′′(z ct ) − µ oεoc 2f ′′(z ct ) = 0 which is satisfied only when:

1 c= = 3 × 108 m / s µ oεo

So, the wave equation is satisfied by f1(z - ct) and also f2 (z + ct) , therefore Ex can be written as:

Ex=A1 f1(z - ct) +A2 f2 (z + ct)

Wave form f (z + ct) at different times Backward wave…….. f ( z + ct )

f ( z - ct ) …….. Forward wave t1 = 0

-z

z t2 > t1

-z

z t3 > t2

-z

z t4 > t3

-z

z t5 > t4

-z

z

b) Lossless dielectric: ( ε = ε   ∂H ∇ × E = −µ ..... (1) ∂t

o

ε

r

, µ = µoµr and σ = 0 )

 ∂E ∇×H = ε ..... (2) ∂t  ∇.D = 0 ..... (3)  ∇.B = 0 ..... (4)  ∇.J = 0 ..... (5)

Taking the curl of both sides of eqn. (1) :

  ∂ ∇ × ∇ × E = −µ (∇ × H) ∂t    ∂ ∂E 2 ∇ (∇.E ) − ∇ E = −µ (ε ) ∂t ∂t 0

  ∂ E 2 ∇ E−µ ε 2 =0 ∂t

Similarly;

  ∂ H 2 ∇ H−µ ε 2 =0 ∂t 2

Generally:

 2  ∂ ∇ − µ ε  2  ∂ t   2

 E    = 0  H  

As the previous case we can prove that,

1 c v= = .........wave velocity µ ε µrεr

 2 1 ∂  ∴  ∇ − 2 2  v ∂t   2

 E   =0 H  

2

Source-free wave equation in lossless dielectric

c) Lossy dielectric: (dielectric with finite conductivity)( ε =ε  ≠0)  ∂H Similarly; ∇ × E = −µ ..... (1) ∂t  

  ∂E ∇ × H = σE + ε ..... (2) ∂t  ∇.D = 0 ..... (3)  ∇.B = 0 ..... (4)  ∇.J = 0 ..... (5)

o

ε

r

, µ = µoµr and σ

  ∂H ∂ H 2 ∇ H−µ σ −µ ε 2 =0 ∂t ∂t 2

Generally:

 2   ∇ − µ σ∂ − 1 ∂  2 2  ∂ t v ∂ t   2

 E    = 0  H  

Taking the curl of both sides of eqn. (1) :

  ∂ ∇ × ∇ × E = −µ (∇ × H) ∂t

   ∂  ∂E 2 ∇ (∇.E ) − ∇ E = −µ (σE + ε ) ∂t ∂t 0

  2  ∂E ∂ E 2 ∇ E−µ σ −µ ε 2 =0 ∂t ∂t

Source-free wave equation where,

in lossy dielectric

1 v= .........wave velocity µ ε  ∂  E  µ σ    ........damping term ∂t  H 

(2.4.2.2) Complex form (general medium): 

The source-free Maxwell’s equations in complex form (Jimp = 0 & ρ = 0 ) is given  by:    

 =0 ∇.E

H ∇ × E = − jωµ

        ∇ × H = σE + jωε E = (σ + jωε ) E

  =0 ∇.H

 = σ + jωε Let us define the following complex quantities: Z = jωµ & Y Thus, Maxwell’s equations will be;     = 0 ..... (3)    H ..... (1) ∇ × E = −Z ∇. E   (Helmholtz’s equations)      ∇ × H = YE ..... (2) ∇. H = 0 ..... (4)   Taking the curl of both sides of eqn. (1) : Generally;

   )  (∇ × H ∇ × ∇ × E = −Z

    ) 2    ∇(∇.E ) − ∇ E = − Z(YE 0

   =0 2   ∇ E − ZY E Similarly;

   =0 2    ∇ H − ZY H

(∇

2

 +K

2

)

E   =0    H  

where,  = − Z Y  ....... Comlex wave number K

 = −Z Y  = − ( jωµ  )( σ + jωε ) K = − jγ = β − jα Phase shift const.

Attenuation const.

γ = α + jβ ...... Propagation Constant.

Solution of source-free wave equation (complex form):   2 2   ∇ E + K E = 0 ..... (1) One of the solutions of this equation has the form:

  - jK . r E = A1 e ........ (2) where,

 K ....... propagation vector.   x aˆ x + K  yaˆ y + K  zaˆ z = K  kˆ ; K  = β - jα .... complex wave number K=K

 r ....... position vector.

 r = x aˆ x + y aˆ y + z aˆ z = r rˆ   - jK . r  - jK (kˆ . r )  - j(β - jα ) (kˆ . r) = A1 e ⇒ From eqn. (2): E = A1 e = A1 e

   e - α (kˆ . r ) e - jβ (kˆ . r ) E = A 1 Attenuation

Phase angle

A wave propagating a distance ξ in an kˆ arbitrary direction has the equation of wave front,ˆ 

z

 r

β (k.r ) = β (r cos ψ) = β ξ

ψ

Then, for the chosen surface all points have the same phase β ξ (which represent a plane). So, this wave is called “ plane

wave ”.

  - α ξ - jβ ξ E = A1 e e

kˆ ξ

y

x

Note: “ for any source-free wave equation, the solution is always a plane wave ”

Plane wave Source

Solution check:   − jK .r  − j( K x x + K y y + K z z ) E = A1 e = A1e   ∂ 2 ∂2 ∂ 2   ∇ E =  2 + 2 + 2  E ∂y ∂z   ∂x   xx+K  yy+ K  z z) − j( K 2 2 2    = A1 (-jK x ) + (-jK y ) + (-jK z ) e 2

[

]

 − j( K x x + K y y + K z z )  2 2 2 2      = − [K x + K y + K z ] [A1e ] = − K E ; which satisfies eqn.(1). Another possible solution is:

  + jK . r E = A2 e ........ (3)

; which will also satisfies eqn.(1).

Generally, the solution of eqn. (1) can be written as:

  − jK . r  + jK . r E = A1 e + A2 e Forward wave Backward wave

(2.4.3) Properties of plane wave : Definition: Plane wave is a class of waves having both electric and magnetic fields contained in one plane called the wave front which is perpendicular to the direction of propagation. 1. Operator ∇ :    − jK . r

E = E0 e



 x+ K  y+ K  z) − j( K   ∂ ∂ ∂    x y z ∇.E =  aˆ x + aˆ y + aˆ z  .  E 0 e eˆ  ∂y ∂z     ∂x   )aˆ + (− jK  )aˆ + (− jK  )aˆ . E = ( − jK

[

x

x

y

y

z

z

]

    x aˆ x + K  y aˆ y + K  z aˆ z ) . E = − jK.E .... (1) = − j( K Similarly,

   ∇ × E = − jK × E ... (2)

From eqns. (1) and (2):

  kˆ ∇ ≡ − jK = − jK

 : 2. Intrinsic impedance η From Maxwell’s first equation ,

From Maxwell’s second equation,

     ∇ × E = −ZH     ˆ   − jK k × E = −ZH

(

     ∇ × H = YE     ˆ   − jK k × H = YE

)

(

   jK   ˆ H= k ×E = Z   Y  ˆ = k ×E  Z

(

Let

η =

Y   Z  ˆk × E  Z

)

)

(

)

(

Y       E = − jK  =− Z ˆk × H ˆk × H   Y Y   Z  × kˆ = H  Y

(

)

)

Z =| η | ∠ϕη ….. is the intrinsic impedance of the medium. Y

(

   = 1 kˆ × E  then, H  η

)

and

(

  E = η H × kˆ

Example: In free space (ε o , µ o and σ = 0)

 = η = Z /Y

)

kˆ …direction of propagation.

 = jω εo then, Z = jω µo , Y

4π ∗ 10 −7 jω µo / jω εo = µ o / ε o = = 120π Ω = ηo −9 10 / 36π

  3. Relations between E, H and kˆ :

 E

From Maxwell’s 3rd. equation ,

 ∇.D = 0  ∇.E = 0

(ρ = 0)

  kˆ . E = 0 − jK

 kˆ . E = 0

(

)

 H kˆ

 E ⊥ kˆ

   1 ˆ    and H = k ×E H ⊥ E ⊥ kˆ  η   e − jK Z aˆ , A  = A e jψo and η = | η | ∠ϕ  . Find: Example: Let E = A x o η    H , E(z, t) and H(z, t).   jωt  E (z, t ) = Re[ E e ] jψ o − α z - j β z E = Ao e e e aˆ x  − αz   E ( z , t ) = A e cos(ωt - β z + ψ o ) aˆ x o  1  H=

( kˆ × E )  η

similarly,

  A o jψ − αz - jβz - jϕη A o − αZ o H ( z , t ) = e cos(ωt - βz + ψ o − ϕη ) aˆ y H= e e e e aˆ y | η | | η |

4. Phase velocity ( Vp ): “The velocity of points in the wave moving at constant phase” or ;

“ it is the velocity of equiphase plane (wave front) ”.

Const. = (ωt - βz + ψ o − ϕη )

f(z,t)

Differentiate w.r.t. time ,

0 = (ω - β

dz ) dt

 vp

dz ω vp = = dt β

z

5. Wavelength ( λ ):

λ

“The distance between two successive points having the same phase”.

ωt - βz + ψ o - ϕη = ωt - β(z + λ) + ψ o - ϕη + 2π 6. Depth of penetration ( δ ) : (skin depth) “The distance that the wave travel through the medium until its amplitude is reduced by (1/e) ”.  | E |= A oe − αz 1

A o e − α δ = A o e −1

δ=

α

β λ= 2π

or,

2π λ= β

 |E| Ao Ao e δ

z

7. Electric and magnetic energy densities (we and wm): a) Time form:

1  1   1 2 w e = εE.E = D.E = ε | E | .........[ J / m3 ] 2 2 2  2 1   1   1 w m = µH.H = B.H = µ | H | .......[ J / m3 ] 2 2 2 The average values (denoted by < >) of the above quantities are given by:

< wm

1T > = ∫ w m (t, z) dt T0

1T < w e > = ∫ w e (t, z) dt T0

b) Complex form:

1   * w e = ε E.E .......[J/m3 ] 2

1   * < w e > = ε E.E 4

 1    *...... [J/m 3 ]  m = µ H.H w 2

1   *  m > = µ H.H <w 4

The ( * ) stands for the complex conjugate.

 8. The Poynting vector ( S ) : a) Time form:

   S = E × H = S kˆ  1 T < S > = ∫ S( t , z) dt T0

where, where,

 S ….. Poynting vector S ….. Power density [W/m2]. kˆ ….. Direction of propagation.  < S > ….. Average power density.

b) Complex form:

 1   * S= E× H 2

  1   * < S > = Re[S] = Re[E × H ] 2

W/m2

 9. Group velocity (Vg ) : It is defined as the ratio between the average power flow density to the total average electromagnetic energy.

  < S> Vg = < we > + < wm >

Example:

  Eo cos(ωt − β z + ψ o ) aˆ y Let E(z, t ) = E o cos(ωt − β z + ψ o ) aˆ x , H(z, t ) = η

  Find, S, < S > , w e , < w e > , w m and < w m > .

   E o2 S = E×H = cos 2 (ωt − βz + ψo ) aˆ z η  1 T E o2 E o2 2 <S >= ∫ cos (ωt - βz + ψo ) dt aˆ z = aˆ z T0 η 2η 1  2 ε 2 w e = ε | E | = E o cos 2 (ωt − βz + ψ o ) 2 2 1 Tε 2 1 < w e > = ∫ E o cos 2 (ωt − βz + ψo ) dt = εE o2 To2 4  2 µ E o2 1 wm = µ| H | = cos 2 (ωt − βz + ψ o ) 2 2 2 η 1 T µ E o2 1 E o2 2 < wm > = ∫ cos (ωt − βz + ψo ) dt = µ 2 2 To2 η 4 η

   T n 2 2 Note: for sinusoidal E and H; S is f (sin or cos ) then, ∫ (sin 2 or cos 2 ) dt = T / 2 0

(2.5) plane wave in different media: Relation between wave parameters in different media (summary):

Z = jωµ

 = σ + jωε Y

 = − Z Y  = − jγ = β - jα K

γ = α + jβ

....... Comlex wave number

................ Propagation constant.

β ....... Phase shift constant [rad/m].

α ....... Attenution constant [Np/m] (Nepers/meter). ω vp = ....... Phase velocity [m/s] . β

λ=

2π ...... Wavelength [m] . β

1 δ = ...... Skin depth (Penetration depth) [m]. α

 =| η | ∠ϕη ........ Interinsic impedance [Ω]. η = Z / Y

(2.5.1) Free space (εo , μo and σ = 0) :

Z = jω µo

 = jω εo Y

;

 = − Z Y  = ω µoεo = ω / c K

vp = ω / β = c ;

λ=

α=0

;

2π 2π 2π c = = = ; β ω / c 2πf / c f

 = µ o / ε o = 120π η = Z / Y

β = ω /c

δ = 1/ α = ∞

| η |= 120π ; ϕη = 0

(2.5.2) Lossless dielectric ( ε , μ and σ = 0) :

Z = jω µ

 = jω ε Y

;

 = − Z Y  = ω µ ε= ω / v K

vp = ω / β = v =

c ; µrεr

 = µ/ε η = Z / Y

α=0 2π 2π v vp λ= = = = β ω/ v f f

; ;

β = ω /v δ = 1/ α = ∞

| η |= µ / ε ; ϕη = 0

(2.5.3) Good dielectric (ε = ε′ - jε′′ , μo and σ = 0) ( ε′′ < < ε′ ) : Usually the magnetic response is very weak compared to the dielectric response in most materials for wave propagation, so, In such materials μ=μo, so, Assume that μ is real value

Z = jω µ

;

 = jωε = jω(ε′ − jε′′) Y

 = − Z Y  = ω µ(ε′ − jε′′) = ω µε′ 1 − jε′′ / ε′ = ω µε′ ( 1 − jε′′ / 2ε′ ) K α and β are found by taking the real and imaginary parts of jk

ε′′  ωε′′ µ  α = ω µε′  = 2 ε′  2ε′ 

;

β = ω µε′

1 vp = ω / β = ; µε′

Z η = = Y

vp 2π 2π λ= = = β ω µε′ f

1 2 ε′ δ= = α ωε′′ µ

jω µ µ 1 µ ε′′  = = 1 + j  ′ ′ ′ ′ ′ jω(ε − jε ) ε 1 − j(ε′′ / ε′) ε 2ε′ 

µ µ  ε′′  | η |= 1+   ≈ ε′ ε′  2ε′  2

 ε′′  ϕη = tan  ≈0 ′  2ε  −1

;

(ε′ > > ε′′)

(ε′ > > ε′′)

(2.5.4) Dielectric with losses (ε = ε′ - jε′′ , μo and σ = 0) ( ε′′ > > ε′ ) :

Z = jω µ

;

 = jωε = jω(ε′ − jε′′) Y

K = − Z Y  = ω µ(ε′ − jε′′) = ω − jµε′′ 1 + j ε′  = ω µε′′  1 + j ε′′  1 − j  2ε′  2   ε′′  

α = ω µε′′ / 2 ( 1 − ε′ / 2ε′′ )

;

β = ω µε′′ / 2 ( 1 + ε′ / 2ε′′ )

ω 2 1 2  ε′  vp = = = 1 −  β µε′′ ( 1 + ε′/2ε′′ ) µε′′  2ε′′  vp 2π 2π λ= = = β ω / vp f

Z η = = Y

1 1 2  ε′  δ= = 1 +  α ω µε′′  2ε′′ 

;

jω µ = jω(ε′ − jε′′)

µ 1 µ ε′   1 + j  = 1 − j   − jε′′ 1 + j(ε′ / ε′′) ε′′  2ε′′  2 

µ µ  ε′  | η |= 1+  ;  ≈ ε′′ ε′′  2ε′′  2

ε′   ϕη = tan  1 −   ε′′  −1

(ε′ > > ε′′ )

( ε , μ and σ ) ( ω ε> σ )

(2.5.5) Dielectric with finite conductivity  = σ + jω ε Z = jω µ ; Y

:

 = − Z Y  = − jω µ(σ + jω ε) = ω2µ ε(1 − jσ / ω ε) = ω µ ε(1 − jσ / 2ω ε) K

 σ α = ω µ ε  2ω vp = ω / β =

 σ µ = ε 2 ε

1 ; µ ε

β=ω µ ε

;

2π v p λ= = β f

1 2 ε δ= = α σ µ

;

Z jω µ µ 1 µ σ  η = = = = 1 + j   Y (σ + jω ε) ε 1 − j(σ / ω ε) ε 2ω ε µ  σ | η |= 1+  ε  2ω

2

µ   ≈ ε ε

<<1

;

 σ  ϕη = tan    2ω ε −1

(2.5.6) Good conductor ( ε , μ and σ ) ( σ > > ω ε) : A good conductor has high conductivity and large conduction current.

Loss tangent = ε” / ε’ >> 1 Ratio of the conduction current density to the displacement current density in a conducting material is given by σ / ωε >> 1

Z = jω µ

;

 = σ + jω ε Y

jω ε ωµ σ   = − Z Y  = − jω µ(σ + jω ε) = − jω µ σ K 1 + ≈ (1 − j)   σ  2  <<1

ωµ σ α= 2

;

ωµ σ β= 2

− j = 1∠ − 90 1 (1 − j ) 1∠ − 90 = 1∠ − 45 = 2

2ω vp = ω / β = ; µ σ η =

Z jω µ = = Y (σ + jω ε)

ωµ | η |= σ

2π v p λ= = β f

1 2 δ= = α ωµ σ

;

jω µ 1 ωµ = (1 + j) σ 1 − ( jω ε/ σ) 2σ << 1

;

ϕη = tan −1 (1) = 45

(2.5.7) Perfect conductor ( ε , μ and σ → ∞ ):

Z = jω µ

;

 =∞ Y

 = − Z Y  =∞ K

vp = ω / β = 0 ;

Z η = =0 Y

α =β= ∞ λ=

2π =0 ; β

| η |= 0

δ=

;

1 =0 α

ϕη = 0

(9.6) Power, energy and Poynting theorems: (9. 6.1) Poynting theorem (time form) : (in 1884 by John H. Poynting) To find the power flow associated with the electromagnetic wave, it is necessary to develop a power theorem for the electromagnetic field, known as the Poynting Theorem

   S = E × H = S kˆ

 S ….. Poynting vector

Take the scalar product of both sides:

       ∇.S = ∇. E × H = H. ∇ × E − E. ∇ × H

(

)

(

)

(

)

   ∂H  ∂E   = −µ H . − ε E. − E.J ∂t ∂t

       ∂H  ∂E   − E .  J + ε  = H .  − µ ∂t  ∂t   

  µ ∂H 2 ε ∂E 2   ∇. E × H = − − −E.J 2 ∂t 2 ∂t     ∂ 1 1 2 2 − ∇. E × H =  µH + ε E  + E . J ∂t  2 2 

(

)

(

)

Note:

( )

dx 1 d 2 x = x dt 2 dt

Integrating both sides over volume V,

(

)

    ∂ 1 1 2 2 − ∫ ∇. E × H dv = ∫  µH + ε E dv + ∫ E . Jdv ∂t v  2 2  v v

  J = σE

Using Gauss’ theorem:

(

)

   ∂ 1 1 2 2 2 − ∫ E × H .dS = µ H + ε E  dv + ∫ σE dv ∫ ∂t v  2 2  s v

Poynting theorem (time form)

(

)

 ∂ 1   1  2 −∫ E ×H . dS = µ H + ε E 2 dv + ∫ σE 2 dv ∫ ∂t v  2 2  s v L.H.S. :

    S = E × H = S kˆ where, S ….. Poynting vector and S ….. Power density [W/m2].      P = ∫ E × H . dA = ∫ S . dA where, P….. Total power crossing certain area [W]. A

(

)

R.H.S. :

A

(-ve ..means power flowing into the volume)

1 1   2 Wm = ∫ µH dv = ∫ µ(H.H)dv = ∫ w mdv v2 v2 v

.. Magnetic energy [J].

1 2 1  We = ∫ εE dv = ∫ ε(E.E)dv = ∫ w edv v2 v2 v

.. Electric energy [J].

W = Wm + We

… Total electromagnetic energy [J].

∂W … Rate of change (increase) of electromagnetic energy with time (Power) ∂t [W]. Ploss = ∫ σE 2 dv … Total power loss in the volume V [W]. v

Classification of media Dielectric media Free space:

ε o , µ o and σ = 0

Dissipative media Dielectric with finite conductivity:

ε , µ and σ ; (ω ε> σ) Lossless dielectric: ε , µ and σ = 0

Good dielectric:

ε = ε′ − jε′′ , µ and σ = 0 ; (ε′′ < < ε′) Dielectric with losses:

ε = ε′ − jε′′ , µ and σ = 0 ; (ε′′ > > ε′)

Good conductor:

ε , µ and σ ; (σ > > ω ε) Perfect conductor:

ε , µ and σ ; (σ → ∞ )

(2.4) Derivation and solution of wave equations in unbounded media: of media ( according to the values of ε , µ andσ ): (2.4.1)Types 1. Free space:

ε =ε

o

, µ = µo and σ = 0 .

2. Homogeneous media: ε , µ and σ are not functions of position. 3. Inhomogeneous media: ε and/or µ and/or σ are functions of position.   ε = ε(r ) and/or µ = µ(r ) and/or

 σ = σ (r )

4. Isotropic media: ε , µ and σ are not functions of direction.

  D = εE 5. Anisotropic media: ε and/or µ and/or σ are functions of direction.

 ε xx ε xy ε xz     ε = ε yx ε yy ε yz  and    ε zx ε zy ε zz   

 Dx   ε xx ε xy ε xz   Ex       D y  =  ε yx ε yy ε yz   E y        D z   ε zx ε zy ε zz   E z 

6. Linear media: ε , µ and σ are constants.

7. Non linear media: ε and/or µ and/or σ are functions of the applied field (source).    ε = ε(E) and/or µ = µ(H ) and/or σ = σ(E )

8. Dispersive media: µ ε =and/or and/or σσ= are ε = ε(f ) and/or µ(f ) µand/or σ(f )functions of frequency. 9. Lossy media: µ =complex µ′ − jµ′′ and/or σ ≠ 0. ε = ε′ − εjε′′and/or µ are 10. Simple media (linear isotropic): ε , µ and σ are constants.

Related Documents


More Documents from ""